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On the basis of an extended antisymmetrized molecular-dynamics calculation, we study the cluster structure
of the 0+ and 1− states in 18O. We discuss that several different kinds of the cluster states appear in the excitation
spectrum, and their monopole and dipole transitions are interesting fingerprints of unique cluster structure. We
show that the monopole and dipole transitions are enhanced for the 14C + α cluster states, while they are hindered
for the molecular-orbit state. We also point out that a ratio of the electric and isoscalar monopole transition
strengths gives a good hint for the structure of the excited states.
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I. INTRODUCTION

The nucleus 18O has been an important testing ground
for our understanding of clustering in N �= Z nuclei. It is
of importance and interest to investigate how extra neutrons
affect and enrich clustering, since the core nucleus 16O has
the famous 12C + α cluster states [1–7].

A number of experimental [8–18] and theoretical [19–26]
studies have even explored the 14C + α cluster states in
the spectrum of 18O. They firmly established the positive-
parity band built on the 0+

2 state at 3.63 MeV, which has
a 14C(0+

1 ) + α cluster structure [8,19,20,23–26]. Due to the
parity asymmetry of the 14C + α configuration, this band
should be accompanied by the negative-parity band (parity
doublet). However, the assignment of the negative-parity band
has been rather controversial and unsettled. Gai et al. [9,10]
assigned the 1−

1 state at 4.46 MeV as the doublet partner of
the 0+

2 state based on the enhanced E1 transition strength
between them. However, this assignment was not supported
by the theoretical calculations [23–26]. For example, from the
multiconfiguration cluster model calculations, Descouvemont
and Baye [23] pointed out that the 4.46 MeV state is predomi-
nated by the 14C(2+) + α channel and cannot be considered as
the partner of the 0+

2 state. Alternatively, they showed that the
calculated 1−

3 state has the pronounced 14C(0+
1 ) + α cluster

structure and tentatively assigned it to the 1− state observed
at 7.62 MeV [8,27]. Later, this assignment was corrected by
several experiments [13,14]. They assigned a new negative-
parity band built on the 1− state at 8.03 MeV as the partner
of the 0+

2 state. A confusing fact is that this assignment was
again denied by another recent experiment: Avila et al. [17]
reported that the α spectroscopic factor of the 8.03 MeV state
is not large, and, hence, the state cannot be a 14C(0+

1 ) + α

cluster state.

In addition to the 14C + α cluster states, von Oertzen et al.
[16] proposed a novel type of cluster state which is composed
of the 12C + α cluster core and two valence neutrons occu-
pying so-called molecular orbits (MO state). They tentatively
assigned the 7.80 and 10.59 MeV states as the 0+ and 1−
doublet of the MO states. The existence of such MO states
was qualitatively supported by antisymmetrized molecular-
dynamics (AMD) calculations [26], and experimental efforts
to find more convincing evidence is now ongoing [18]. To
understand a rich variety of clustering systematics in 18O, we
need to identify the pair of the 0+ and 1− cluster states.

In this decade, the isoscalar monopole and dipole transition
strengths are attracting a lot of interest as a novel probe for the
0+ and 1− cluster states, and have already been used for the
discussion on clustering in many stable and unstable nuclei
[28–45]. Therefore, we expect that they provide a new insight
to clustering of 18O.

For this purpose, we perform an extended AMD calcula-
tion for 18O taking into account the coupling of the 14C(0+

1 ) +
α and 14C(2+

1 ) + α channels. We analyze the cluster structure
of the 0+ and 1− states referring their α-spectroscopic fac-
tors and investigate how clustering affects the monopole and
dipole transition strengths. We show that the dipole transition
strength between the doublet of the 14C + α cluster states is
greatly enhanced, while that of the MO states is hindered. We
also discuss that a ratio of the electric and isoscalar monopole
transition strengths also gives us an interesting hint on the
cluster structure.

This paper is organized as follows: In the next section,
we briefly explain how we calculated the wave functions of
the cluster states in 18O. We also explain the electric and
isoscalar monopole and dipole transition matrices. In Sec. III,
we first review the calculated and observed spectra of the
cluster states. Subsequently, we investigate the effect of the
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cluster states on patterns of the transition strengths. The final
section summarizes this work.

II. THEORETICAL FRAMEWORK

In this study, we use the same Hamiltonian as in our
previous study [26],

H =
A∑

i=1

ti − tc.m. +
A∑

i< j

vi j, (1)

where ti and tc.m. represents the single-particle and center-of-
mass kinetic energies. vi j includes the Gogny D1S effective
nucleon-nucleon interaction [46] and Coulomb interaction.

The model wave function is a parity-projected Slater deter-
minant,

�AMD = PπA { ϕ1, . . . , ϕA } , π = ±, (2)

where Pπ is the parity-projection operator, and the single-
particle wave packet has the deformed Gaussian form [47–49],

ϕi(r) =
∏

σ=x,y,z

exp { −νσ (rσ − Ziσ )2 }

⊗ (αi |↑〉 + βi |↓〉) ⊗ (|p〉 or |n〉). (3)

Each Gaussian wave packet has the variational parameters;
the Gaussian centroid vector Zi and the spin parameters αi

and βi. The isospin is fixed to either proton or neutron.
The Gaussian width parameters νx, νy, and νz are also the
variational parameters and common to all wave packets.

These variational parameters are determined by the fol-
lowing two methods. The first is the energy variation with
the constraint, which was already used in our previous study
[26]. Using the frictional cooling method, the variational
parameters are so chosen to minimize the total energy under
the constraint on the quadruple deformation parameter β. We
obtain the optimized wave function �AMD(β ) for each value
of β (β = 0.00, 0.05, . . . , 1.40). As discussed in Ref. [26],
if β is small, we obtain the almost spherical shell-like wave
functions corresponding to the ground state. With the increase
of β, we obtain a variety of cluster states such as the 14C + α

cluster, molecular-orbit state, and linear chain of α particles.
In this study, we extend a model space by applying the

second method. We use Brink-type wave functions which are
14C and α cluster wave functions placed on the z axis with the
intercluster distance d ,

�Brink (d ) = PπA
{
�α

(
−14

18
d

)
�C

(
4

18
d

)}
. (4)

Here, �α and �C represents the intrinsic wave functions of
4He and 14C, respectively. �α is assumed to have the (0s)4

configuration, and �C is approximated by a single AMD
wave function which has 90% overlap with the full GCM
wave function obtained in Refs. [50,51]. The intercluster
distance d ranges from 0.4 fm to 8.0 fm with the intervals
of 0.4 fm. Since �C is oblately deformed, we consider three
different orientations of 14C cluster. Figures 1(a)–1(c) show
the example of the 14C + α Brink wave functions in which
the symmetry axis of 14C is directed to the z, x, and y axis,

FIG. 1. Density distributions of the Brink-type wave functions in
which the symmetry axis of the oblately deformed 14C is directed
along the (a) z, (b) x, and (c) y axis. The intercluster distance d is
fixed at 4.8 fm in all panels.

respectively. Note that the superposition of different orien-
tations of �C naturally handles the coupling of 14C(0+

1 ) + α

and 14C(2+
1 ) + α channels, which is known to be important in

describing the 14C + α cluster [23]. This point is an advantage
of the present calculation compared with previous AMD
studies.

These wave functions are projected to the eigenstate of the
angular momentum and are superposed to describe the ground
and excited states,

	Jπ

M p =
∑
Ki

fKipPJ
MK�π

AMD(βi ) +
∑
Ki

gKipPJ
MK�π

Brink (di ),

(5)

where PJ
MK and the index p denote the angular-momentum

projection operator and quantum numbers other than the an-
gular momentum, respectively. The coefficients fKip and gKip

are determined by diagonalizing the Hamiltonian [52].
As a measure of the 14C + α clustering, we calculate the

α-spectroscopic factor. We first calculate the α reduced width
amplitude (RWA) which is the probability amplitude to find
the 14C and α clusters at the intercluster distance a. It is
defined as the overlap between the reference cluster state and
the wave function given by Eq. (5),

y j
J (a) =
√

18!

14!4!

〈
δ(r − a)

r2
�α

[
�

j
CY
(r̂)

]J

M

∣∣∣∣	Jπ
M p

〉
,

j = 0+ or 2+. (6)

The reference cluster state (bra state) is the 14C( j) + α cluster
state in which the 14C( j) and α clusters are mutually orbiting
with intercluster distance a, and the intrinsic angular momen-
tum j of the 14C cluster is coupled with the orbital angular
momentum 
 to the total angular momentum J . Here, the
α-cluster wave function �α is the same as what appears in
Eq. (4), while the 14C cluster wave function �

j
C is projected

to the eigenstate of the angular momentum jπ = 0+ or 2+
from the intrinsic wave function �C in Eq. (4). In the practical
calculation, Eq. (6) is evaluated by the Laplace expansion
method [53]. The α spectroscopic factor Sα is given by a
squared integral of y j
J ,

Sα =
∫ ∞

0
daa2|y j
J (a)|2. (7)

In this work, we focus on the electric and isoscalar
monopole (E0 and IS0) and dipole (E1 and IS1) transition
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FIG. 2. Spectrum of the 0+ and 1− states obtained by the present calculation in comparison with other model calculations [23,25]. Vertical
axis shows the energy relative to the 0+

2 state, while numbers in the figure show the energies relative to the ground state. The proposed
assignments of the cluster states 1− (0+) with cluster configurations based on the experiments [8,10,13,14,16,17,27] are also shown.

strengths. As discussed in Refs. [9,10], the E1 transition
strength is a good probe for the 14C + α cluster states, since
the intrinsic structure has a static dipole moment. In addition
to the E1 transition strength, in this decade, the E0, IS0, and
IS1 transition strengths have been regarded and utilized as
a novel probe for the various kinds of clustering [31,39], as
it was proved that these transitions from the ground state to
an excited cluster state must be considerably enhanced. The
transition operators are defined as follows:

ME0 =
Z∑

i=1

er′2
i , MIS0 =

A∑
i=1

r′2
i , (8)

ME1
μ =

Z∑
i=1

er′
iY1μ(r̂′

i ), MIS1
μ =

A∑
i=1

r′3
i Y1μ(r̂′

i ). (9)

Note that the single-particle coordinate r′
i is measured from

the center-of-mass rc.m., i.e., r′
i ≡ ri − rc.m., and hence, our

calculation is free from the spurious center-of-mass contribu-
tions. The transition strength from the initial state 	Jπ

0p to the
0+ state is evaluated by the reduced transition matrix,

M(λ; Jπ → 0+) = 〈	0+ |Mλ
0

∣∣	Jπ

0p

〉
, (10)

where Mλ
0 is any of the transition operators where λ is either

E0, IS0, E1, or IS1.

III. RESULTS

A. Cluster states and their structure

Figure 2 shows spectra of the 0+ and 1− states ob-
tained by the present calculation compared with the other
theoretical calculations [23,25]. It also shows the proposed
assignments of the cluster states based on the experiments
[8,10,13,14,16,17,27]. The ground state does not have a pro-
nounced cluster structure but a slightly deformed shell-like
structure shown in Fig. 3(a). As explained in our previous
work [26], this state is dominated by the neutron (d5/2)2 con-
figuration, although the density distribution of the two valence
neutrons is similar to that of the Nilsson orbit ([220, 1/2]) due
to non-negligible quadrupole deformation.

In the present calculation, the bandhead of the positive-
parity 14C(0+

1 ) + α cluster band is obtained as the 0+
2 state at

6.1 MeV, which slightly overestimates the observed excitation
energy (3.63 MeV). From the calculated spectroscopic factor
shown in Fig. 4, this assignment is rather unique because only
this state is dominated by the 14C(0+

1 ) + α channel in the
low-energy region. It is interesting to note that the intrinsic
density of this state shown in Fig. 3(b) does not clearly show
the α clustering despite of its large α spectroscopic factor, but
it looks like a strongly deformed state. Indeed, it has a 1.7:1
ratio of the large axis over the small axis and a 2h̄ω excited
single-particle configuration. Therefore, this state may also be
regarded as a superdeformed state. We consider that this state
has duality of superdeformation and clustering. Note that such
duality has also been discussed for various nuclei by many
authors [54–61].

The corresponding negative-parity partner is also uniquely
identified as the 1−

4 state at 11.6 MeV. It is clear that other
1− states have relatively small spectroscopic factors and are
excluded from the doublet partner. For example, the intrinsic
density of the 1−

1 state [Fig. 3(e)] clearly shows the absence
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FIG. 3. Density distributions of the intrinsic states which are the
dominant component of each 0+ or 1− state. Solid lines show the
proton density distribution, while the color plot show that of two
valence neutrons.
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FIG. 4. Calculated α spectroscopic factors of the 0+ and 1− states.

of the prominent α clustering in this state. Thus, the present
calculation yields 5.5 MeV energy splitting between the 0+
and 1− doublet of the 14C(0+

1 ) + α configuration, which is
larger than that of the 12C + α doublet of 16O (3.5 MeV), and
as large as that of the 16O +α doublet of 20Ne (5.9 MeV).
This indicates a distortion of the 14C(0+

1 ) + α clustering in
the positive-parity state which brings about extra binding
energy to the 0+ state and enlarges the doublet splitting. It is
notable that other theoretical calculations also yielded similar
magnitudes of the splitting: Furutachi et al. [25] reported the
4.9 MeV splitting from their AMD calculation which used a
different effective interaction and model wave functions from
ours. Descouvemont et al. [23] reported 6.0 MeV splitting
from their multiconfiguration cluster model calculation. Thus,
theoretical calculations suggest the consistent magnitudes of
the doublet splitting approximately equal to 5–6 MeV.

Experimentally, the assignment of the positive-parity
14C(0+

1 ) + α state is well established and unique
[8,19,20,23–26]; it is the 0+

2 state at 3.63 MeV, but the
assignment of the negative-parity state is controversial. Gai
et al. [10] proposed the 1−

1 state at 4.45 MeV as the partner
of the 0+

2 state because the 14C + α intrinsic structure can
naturally explain the observed strong E1 transition between
them. However, this assignment gives a very small doublet
splitting of 0.82 MeV, which contradicts to all theoretical
calculations. Furthermore, the present calculation shows the
1−

1 state is a mixture of the small amount of the 14C(0+
1 ) + α

and 14C(2+
1 ) + α components, which is consistent with the

results by Descouvemont et al. [23] but contradicts the
assignment by Gai et al. Other candidates of the doublet
partner are the 1− state at 8.03 MeV observed by the breakup
reaction [13,14] and the 9.19, 9.76, and 10.39 MeV states
observed by the resonant scattering [17]. In these assignments,
the magnitudes of the doublet splitting are approximately in
between 4 to 7 MeV. Thus, all these assignments look com-
patible with the theoretical results, but there is no conclusive
evidence.

TABLE I. Calculated reduced matrix for the E0, IS0, E1, and
IS1 transitions in Weisskopf units (in 10−2 W.u. for the E1 tran-
sitions). 1 W.u. is equal to 5.93 e fm2, 5.93 fm2, 0.665 e fm, and
4.39 fm3 for the E0, IS0, E1, and IS1 transitions, respectively.

Jπ
i → Jπ

f ME0 [ W.u.] MIS0 [W.u.]

0+
1 → 0+

2 0.36 0.67
0+

1 → 0+
3 0.28 0.83

0+
1 → 0+

4 0.02 0.02

0+
1 → 0+

5 0.28 0.56

0+
2 → 0+

5 1.31 2.75

ME1 [10−2 W.u.] MIS1 [W.u.]

1−
1 → 0+

1 1.20 0.77

1−
2 → 0+

1 2.53 0.51

1−
3 → 0+

1 7.99 0.40

1−
4 → 0+

1 3.57 0.70

1−
1 → 0+

2 5.11 1.58

1−
2 → 0+

2 7.23 1.74

1−
3 → 0+

2 2.94 0.75

1−
4 → 0+

2 17.3 5.19

1−
4 → 0+

5 38.7 17.4

In addition to the 14C + α doublet, the present calculation
predicts two excited cluster states; the 0+ states at 11.8 MeV
(0+

4 ) and 13.6 MeV (0+
5 ) whose intrinsic densities are shown

in Figs. 3(c) and 3(d), respectively. The 11.8 MeV state has
the 12C + α cluster core surrounded by the valence neutrons
occupying the molecular orbit (MO state) which is similar
to those known for Be, C, and Ne isotopes [50,62–66]. We
consider that this state may correspond to the MO structure
suggested by von Oertzen, who proposed a tentative assign-
ment to the 7.80 MeV state [16]. The 0+

5 state at 13.6 MeV is
the 14C + α higher-nodal state (HN state). In this state relative
motion between the 14C and α clusters is excited as seen in its
density distribution [Fig. 3(d)]. The corresponding observed
state might be the 9.90 MeV state reported by Avila et al. [17],
because it is the only 0+ state which has a large spectroscopic
factor in this energy region.

In short, theoretical calculations predict the doublet of the
0+ and 1− states with the 14C + α configuration, but the
assignment of the 1− state has not been established uniquely.
The 14C + α HN and MO states are also suggested by the
experiments and the present calculation.

B. Monopole and dipole transitions
to and between the cluster states

Here, we investigate how the characteristics of the cluster
states discussed in the previous section are reflected to the
E0, IS0, E1, and IS1 transition strengths listed in Table I.
For this purpose, the calculated transitions are schematically
illustrated in Fig. 5.

In Ref. [31], Yamada et al. proved that electric and
isoscalar monopole transitions from the ground state to the
α-cluster state can be considerably enhanced. Since the α-
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FIG. 5. Schematic figure which illustrates the cluster states of
18O and the transitions among them.

cluster states appear at relatively small excitation energy
compared with other collective states [67], the strong E0 and
IS0 strengths at small excitation energy can be attributed
to the α-cluster formation. Therefore, the strong monopole
transition has been regarded as a signature of the cluster states
in stable and unstable nuclei [28–38,41,44,45]. In the present
calculation, as expected, we find that the 0+

2 state, which has a
14C + α cluster structure, has nonsmall E0 and IS0 transition
strengths from the ground state. However, they are not as
strong as the Weisskopf unit for the following reason: As
seen in Fig. 4 and also discussed in Ref. [23], the dominant
cluster component of the ground state is the 14C(2+

1 ) + α

channel, while that of the 0+
2 state is different, the 14C(0+

1 ) +
α channel. This mismatch of the internal structure reduces the
monopole strengths between them. The same argument also
applies to the 0+

5 state. As the 0+
5 state is also dominated by

the 14C(0+
1 ) + α channel, the monopole transition from the

ground state is not so enhanced. On the contrary, the transition
between the 0+

2 and 0+
5 states is very strong because they

have similar internal structure. It is interesting to note that the
IS0 matrices for the 0+

1 → 0+
2 and 0+

1 → 0+
5 transitions are

almost twice as large as the E0 matrices. This is naturally
understood because these excitations are α clustering, and,
hence, protons and neutrons should contribute equally to the
transitions. On the other hand, for the 0+

1 → 0+
3 transition,

the IS0 matrix is much larger than twice of the E0 matrix.
This is due to the fact that the 0+

3 state is not an α-cluster
state but an excited state predominated by the excitation of
valence neutrons. Thus, not only the magnitude but also the
ratio of the electric and isoscalar monopole matrices gives us
an insight to nuclear structure. We also note that the 0+

1 →
0+

4 transition is rather hindered in both of the electric and
isoscalar channels compared with other states because the 0+

4
has a MO structure so that the 0+

1 → 0+
4 transition involves

the rearrangement of the two valence neutrons. A similar
hindrance of the monopole transitions was also discussed for
Be isotopes [32,36].

Experimentally, two different values of M(E0) for the
0+

1 → 0+
2 transition were reported: The lower value of

0.49 W.u. is not far from our result, but the larger value of
1.01 W.u. is much larger than ours. There is a possibility
that we underestimated the α clustering of the 0+

2 state. In

particular, the amount of the 14C(2+) + α component in the
0+

2 state may not be large enough in our calculation because
the transition strength is sensitive to it. We also mention
the importance of the rotational effect of the 14C cluster.
If we calculate the 0+

1 → 0+
2 transition without the 14C + α

Brink-basis wave functions, the electric monopole transition
strength is 0.18 W.u., which is much smaller than both of
the experimental values. As for the 0+

1 → 0+
4,5 transitions,

no corresponding experimental data have been reported so
far. The measurement of the transition strengths from the
ground states to the 7.80 and 9.90 MeV states will provide
an interesting hint about clustering in 18O, as they are the
candidates of the calculated 0+

4,5 states.
The electric and isoscalar dipole transitions are good

probes to identify the 1− cluster states because they are
enhanced between the doublet (0+ and 1− states) [9,39].
Indeed, the present results confirm that both of the electric and
isoscalar dipole transition matrices are large for the 1−

4 → 0+
2

transition. Furthermore, we find that they are also enhanced
for the 1−

4 → 0+
5 transition because of the well-developed

cluster structure of the 0+
5 state. Experimentally, the 8.03,

9.19, 9.76, and 10.39 MeV states are the candidates of the 1−
4

state, which constitutes the doublet with the 0+
2 state, but the

convincing evidence is missing. Therefore, the magnitude of
the dipole transitions of these candidates will be very useful
to identify the doublet.

Compared with the 1−
4 → 0+

2 transition, the 1−
4 → 0+

1
transition is not so enhanced. This may be again due to
the mismatch of the internal structure. The ground state is
dominated by the 14C(2+

1 ) + α channel, while the 1−
4 state

is dominated by the 14C(0+
1 ) + α channel. We note that a

similar discussion was also made for the 1−
2 → 0+

1 transition
of 16O [43]. Finally, we mention the 1−

1 → 0+
2 transition

for which a very strong E1 transition was reported by Gai
et al. In our calculation, like other theoretical calculations, the
enhanced E1 transition was not reproduced because the 1−

1
state exhibits no clustering, as seen in its density [Fig. 3(e)].
This may indicate that some cluster correlations are missing in
theoretical calculations. Thus, the inconsistency between the
theory and experiment for the 1−

1 state still remains an open
question.

IV. SUMMARY

To understand clustering systematics in a N �= Z nucleus
18O, we perform an extended AMD calculation, taking into
account the coupling of the 14C(0+

1 ) + α and 14C(2+
1 ) + α

channels, and analyzed the cluster structure of the 0+ and 1−
states. We also investigate to what extent the characteristics of
the cluster states are reflected in the patterns of the monopole
and dipole transition strengths.

Based on the calculated α spectroscopic factors, we iden-
tify the 0+

2 and 1−
4 states as a doublet of the 14C(0+

1 ) + α

cluster states. This assignment gives 5.5 MeV for the doublet
splitting, which is consistent with other theoretical calcula-
tions. Furthermore, our calculation predicts the 0+

4 and 0+
5

states, which respectively have the MO structure and the
14C(0+

1 ) + α HN structure.
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From the analysis of the electric and isoscalar monopole
transitions, we find that the transitions to the 14C + α cluster
states, namely, the 0+

1 → 0+
2 and 0+

1 → 0+
5 transitions, are

much stronger than the transition to the MO state (0+
1 → 0+

4 ).
This is a good measure to distinguish the 14C + α cluster
states and MO states and to identify an experimental coun-
terpart of the 0+

5 state. We also find that, for the 0+
1 → 0+

2
and 0+

1 → 0+
5 transitions, the isoscalar transition matrix is

approximately twice as large as the electric transition matrix
reflecting the fact that protons and neutrons equally contribute
to these α-clustering excitations.

As for the dipole transitions, we confirm that both electric
and isoscalar dipole transitions are greatly enhanced between
the 14C + α cluster states, namely, the 1−

4 → 0+
2 and 1−

4 → 0+
5

transitions. However, we could not resolve the inconsistency
between theories and experiments for the electric-dipole tran-
sition of the 1−

1 state.
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