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Least action and the maximum-coupling approximations in the theory of spontaneous fission
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We investigate the dynamics of spontaneous fission in a configuration-interaction (CI) approach. In that
formalism the decay rate is governed by an effective interaction coupling the ground-state configuration and
a fission doorway configuration, with the interaction strength determined by inverting a high-dimensioned
CI Hamiltonian matrix that may have a block-tridiagonal structure. It is shown that the decay rate decreases
exponentially with the number of blocks at a rate determined by the largest eigenvalue of a matrix in the block
space for Hamiltonians with identical off-diagonal blocks. The theory is greatly simplified by approximations
similar in spirit to the adiabatic and the least-action approximations in continuum representations. Here each
block is replaced by a single matrix element. While the adiabatic reduction underestimates the coupling, a
reduction based on a maximum-coupling approximation works well in a schematic CI model.
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I. INTRODUCTION

The theory of spontaneous fission is a challenging subject
of multidimensional quantum tunneling. The theory is usually
formulated by defining one or more collective coordinates in a
constrained mean-field theory and then mapping the Hamilto-
nian or energy functional onto a Schrödinger equation in those
coordinates. See, for example, Refs. [1–4]. Once a tunneling
path through the collective space is determined, the decay rate
is calculated from the collective potential and inertia by using
the Wenzel-Kramers-Brillouin (WKB) formula.

The configuration-interaction (CI) approach offers a
completely different framework for calculating the large-
amplitude dynamics needed in fission theory. Instead of in-
voking collective coordinates to describe the dynamics, the
theory is based on the Hamiltonian interactions between
configurations in a discrete basis. Not all of the tools for
carrying out realistic calculations are presently in place, but
several aspects have been demonstrated. In particular, one
need not rely entirely on collective coordinates to construct
the needed configuration spaces [5]. Also, it is feasible to
estimate the decay widths of doorway states into fission chan-
nels with available calculational tools [6]. There are at least
three advantages of the CI approach over the conventional
approaches that can be mentioned. First, the overcompleteness
problem inherent in the generator coordinate method (GCM)
can be mitigated. Second, couplings to intrinsic excitations
can be incorporated relatively easily. Finally, the Hamiltonian
formulation is particularly suited for calculating fission cross
sections in the K-matrix reaction theory [7,8].

We have previously explored a schematic model based on
the discrete basis approach, with application to induced fis-
sion [8] and to spontaneous fission [9]. The Hamiltonian in the
schematic model is simple enough to be fully solvable, so that

it can serve as a test of existing approximations. One of the
important findings in Ref. [9] is that the adiabatic approxima-
tion, which is deeply embedded in the theory of spontaneous
fission, may significantly underestimate the decay width. This
has already been shown in realistic calculations in the WKB
framework comparing the adiabatic treatment with the more
sophisticated least-action approach [10–12]. Clearly there is
a need to understand the accuracy of the approximations
inherent in the different approaches.

In this paper we propose a new approximation scheme
within the CI framework, called here the “maximum-coupling
approximation.” It has a close resemblance to the least-action
approximation in the WKB formalism. Since the model is
exactly solvable numerically, its accuracy can be tested. It
was shown in the pioneering study of Moretto and Babi-
net [12] that treating the pairing field as a dynamic vari-
able strongly affects the calculated action in the tunneling
region. This conclusion was recently re-affirmed by realis-
tic calculations of the action using the GCM [10,11]. The
same idea can be also implemented in the discrete-basis
approach. This is done by increasing the pairing interac-
tion to construct intermediate configurations at each shape
parameter. As we will show, this approximation reproduces
quite well the decay width that is obtained with the full
Hamiltonian.

The paper is organized as follows: In Sec. II, we introduce
the general framework for calculating transport in a CI basis,
as well as the approximations and reductions made for dealing
with large spaces. In Sec. III we apply the theory to the
schematic model proposed in our earlier publications, com-
paring exact numerical calculations to approximate treatments
including the maximum-coupling approximation. Finally, in
Sec. IV, we discuss the relationship to the least-action ap-
proach.
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II. DISCRETE-BASIS APPROACH

We assume that a basis of many-body states has been
constructed [13–15] to calculate the decay from a ground-
state configuration1 through a doorway configuration for a
particular decay channel. Because there is a large-amplitude
reorganization of orbitals and occupation factors in the tran-
sition, many intermediate configurations must be included in
the space.

A. Formulation

The general form of the Hamiltonian matrix is

H =
⎛
⎝Eg vT

g 0
vg Hb vd

0 vT
d Ed

⎞
⎠, (1)

in a notation using Roman boldface type font for matrices.
Eg and Ed are the energies of the ground-state and doorway
configurations, Hb (for “barrier”) is the Hamiltonian matrix
of the intermediate configurations, and vg and vd are vector
arrays of the matrix elements coupling Hb to the two endpoint
configurations. The energy of the doorway configuration has
an imaginary part �d/2, which may be evaluated with the
Fermi golden rule as has been argued in Refs. [6,13]. Notice
that the introduction of a complex energy is equivalent to
assuming a quasisteady outgoing flow for the decay. The
decay width can then be computed by diagonalizing the non-
Hermitian H to find the imaginary part of the eigenenergy of
the appropriate eigenfunction. However, the interpretation is
complicated by the strong dependence of the decay width on
the energy difference Ed − Eg = � − i�d/2. As was shown
in Ref. [9], it is helpful to make an approximate reduction of
H to an effective 2×2 Hamiltonian matrix

Heff =
(

Eg veff

veff Eg + � − i�d/2

)
, (2)

where

veff = vg[Eg1 − Hb]−1vT
d . (3)

Here 1 is the unit matrix. This formulation also has the advan-
tage that one avoids the computational issues associated with
diagonalizing large non-Hermitian matrices. The coupling
matrix element veff is generally small enough to be treated
perturbatively, in which case the decay width � f is given by

� f ≈ �dv
2
eff

�2 + �2
d/4

. (4)

Thus the accuracy of approximations to [Eg1 − Hb]−1 can be
assessed from comparing their derived veff values. The main
calculational problem is inverting the large matrix in Eq. (3).

1The term “ground state” should be qualified: we do not mean the
true eigenstate but only the state representing it in the many-body
configuration space.

B. Large configuration spaces

The calculational problem of evaluating Eq. (3) can be
simplified if the configurations in Hb can be ordered by some
attribute such as the degree of elongation or the changes
in orbital occupation numbers. Such configurations may be
constructed, e.g., in the Hartree-Fock approximation with a
constraint on shape degrees of freedom [13–15]. The con-
figurations that are well separated in the ordered list are not
directly connected by the Hamiltonian, and the matrix can
therefore be considered to be block tridiagonal,

Hb ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

H1 V1 0 0 · · ·
VT

1 H2 V2 0 · · ·
0 VT

2 H3 V3 · · ·
0 0 VT

3 H4
. . .

...
...

...
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

with Nb blocks.
Similar Hamiltonians also occur in the theory of electron

transport in carbon nanotubes [16] and other structures [17],
and the same calculational techniques can be applied here. As
is well known, block-tridiagonal matrices can be inverted by
Gaussian elimination operating on the blocks rather the indi-
vidual elements of the matrix (see Appendix). The block form
of Gaussian elimination still requires inverting the diagonal
block matrices, but their dimensions are much smaller when
there are many blocks in Hb. Further speedups are possible
if the matrix has a block Toeplitz form2 [17–19]. Later we
will derive an asymptotic expression for the suppression of
the tunneling rate as a function of the number of blocks in a
block Toeplitz Hb of special form.

C. Adiabatic and maximum-coupling approximations

A very common approximation used in the WKB approach
is the adiabatic treatment of the wave function under the
barrier. The equivalent approximation in the CI approach is
obtained by projecting the block matrices Hn onto the local
ground state. To this end, we first diagonalize the Hn to find
the local ground states,

Hnψ
(ad)
n = E (ad)

n ψ(ad)
n . (6)

Then we use the projection operators Pn = |ψ(ad)
n 〉〈ψ(ad)

n | to
reduce H to the (Nb + 2)-dimensional matrix

Had =

⎛
⎜⎜⎜⎜⎜⎜⎝

Eg vg 0 · · · 0

vg E (ad)
1 vad

1 · · · 0
...

. . .
. . .

. . .
...

0 0 vad
Nb−1 E (ad)

Nb
vd

0 0 0 vd Ed

⎞
⎟⎟⎟⎟⎟⎟⎠

, (7)

where Nb is the number of blocks, and vad
n = 〈ψ(ad)

n |Vn|ψ(ad)
n+1〉,

vg = 〈φg|vg|ψ(ad)
n 〉 and similarly for vd .

2A Toeplitz matrix has all blocks on the same diagonal equal, i.e.,
Hn = HT and Vn = VT independent of n.
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As mentioned earlier, realistic calculations in the
collective-coordinate approach have shown that the barrier
penetration integral can be increased substantially by using
wave functions that have stronger pairing condensates [20].
The least-action approach chooses a pairing condensate hav-
ing a strength that minimizes the action integral along the tun-
neling path. It was suggested in Ref. [9] that the least-action
treatment of the WKB penetrability could be simulated in the
CI approach in a similar way, replacing the local ground-state
wave functions used to construct Had by wave functions that
were more strongly paired. The maximum-coupling approxi-
mation is to choose the pairing strength which maximizes the
derived veff .

III. APPLICATION TO THE SCHEMATIC MODEL

In this section we test various approximations with the
schematic pairing-plus-quadrupole model introduced ear-
lier [8,9]. For completeness, we first summarize details of
the model as presented in those publications. The Fock-space
Hamiltonian is defined as

Ĥ =
Norb−1∑

k=0

εkn̂k + vQQ̂Q̂ − G
∑
k �=k′

P̂†
k P̂k′ , (8)

where n̂k = a†
kak + a†

k̄
ak̄ is the number operator for orbital k,

Q̂ = ∑
k qkn̂k represents the quadrupole moment, and P̂k =

a†
ka†

k̄
is the pair creation operator.

The specific Hamiltonian treated numerically acts in a
space of six doubly degenerate orbitals, k = 0, . . . , 5, con-
taining six paired particles, which we call the (6,6) model.
The single-particle energies are given by

εk = [k mod(Norb/2)]ε0, (9)

where ε0 is the single-particle level spacing. The quadrupole
moments are set to qk = (−1,−1,−1, 1, 1, 1) for the six
orbitals. The parameter ε0 sets the energy scale for the Hamil-
tonian. In terms of it, the other numerical parameters are
chosen in the following way: We estimate ε0 at Q = 0 using
the Fermi-gas approximation to obtain ε0 ≈ 2/3 MeV as a
typical value for the actinide nuclei. The fission barrier height
in the actinide region is B ≈ 6 MeV [21], which is realized
in the present (6,6) model with vQ = −13ε0/32. The strength
of the pairing gap is chosen to be G = 0.563ε0 in order to
reproduce � = 1 MeV in the BCS approximation with the
single-particle spectrum of the (6,6) model. These parameters
are slightly different from those in Ref. [9], but we have
confirmed that the conclusions in Ref. [9] remain the same
with the new parameter set.

The active model space includes only seniority-zero states;
that is, configurations with three pairs in the six orbitals.
There are four sets of configurations in the active space,
distinguished by expectation values of the Q̂ operator, Q =
−6,−2, 2, and 6. As indicated in Fig. 1, there is one configu-
ration at Q = −6, the model ground state, and one configura-
tion at Q = +6, which we take as the doorway state to fission.
These two configurations are separated by a barrier formed
by two blocks of configurations at Q = ±2. The resulting
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FIG. 1. The model space for (Norb, Np) = (6,6) in the schematic
discrete-basis model. The filled circles denote the diagonal energies,
while the lines show the nonzero Hamiltonian matrix elements
connecting configurations. The configurations contained in the in-
terior diagonal blocks are enclosed in solid-line rectangles. The
off-diagonal block V9 is indicated by the matrix elements passing
through the dashed-line rectangle. Finally, the coupling vectors vg

and vd are indicated by the matrix elements passing through the
dashed-line ellipses.

Hamiltonian has the form

H =

⎛
⎜⎜⎝

Eg vT
g 0 0

vg H9 V9 0
0 V9 H9 vg

0 0 vT
g Eg

⎞
⎟⎟⎠. (10)

Here Eg is the energy of the ground-state energy and vg

represents the coupling of the ground state and doorway to
configurations in the barrier region. The blocks H9 and V9

are (9×9)-dimensional matrices. As in the previous section,
we reduce the Hamiltonian to an effective 2×2 matrix of the
form (2). Its coupling matrix element is given by

veff = (vg0)

[
Eg1 −

(
H9 V9

V9 H9

)]−1(
0
vg

)
. (11)

The numerically exact value of veff for the assigned model
parameters is given on the first line in Table I.

A. Adiabatic approximation

The adiabatic approximation reduces the (20×20)-
dimensional Hamiltonian to a 4×4 matrix. The effective

TABLE I. Comparison of the adiabatic and maximum-coupling
(MC) approximations to the exact coupling matrix element in the
(6,6) schematic model, as calculated by Eq. (11).

Model veff veff/veff (exact)

Exact 0.0650
Adiabatic 0.0221 0.34
MC 0.0653 1.00
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coupling in the further reduction to Eq. (2) is

v
(ad)
eff = vadv

2
g(

E (ad)
b

)2 − v2
ad

, (12)

where E (ad)
b = E (ad)

0 − Eg is the adiabatic barrier height. The
numerical value is shown on the second line of Table I. As
we showed in Ref. [9], the adiabatic approximation consid-
erably underestimates veff with the suppression factor S ≡
(v(ad)

eff /veff )2 of 0.116 with the present parameter set. A further
calculation with a larger model spaces containing three to four
internal blocks showed an even larger suppression factors.

B. Maximum-coupling approximation

Guided by the findings in the collective-coordinate ap-
proach, we introduce the pairing condensate as a dynamical
variable. In the present approach, this corresponds to changing
the ground-state wave function in Eq. (6) to the lowest state of
the block Hamiltonian having G changed to Gp, that is, the
solution to the eigenvalue equation

H9(Gp)
∣∣φ(ad)

0 (Gp)
〉 = E (ad)

0 (Gp)
∣∣φ(ad)

0 (Gp)
〉
. (13)

The model Hamiltonian with the original G is then diag-
onalized with the basis defined by φ

(ad)
0 (Gp); the optimum

pairing strength is the one giving the largest veff . We call this
the maximum-coupling approximation. The various matrix
elements in the 4×4 reduction are shown in the upper panel
of Fig. 2. The solid line with filled circles show the interaction
matrix element vg, vd , and vad in the adiabatic approximation;
that is, with Gp = G. The dashed line with open circles
denotes the same quantities obtained with Gp = 5.4G. Note
that the fission barrier is higher, since the energy is not
minimized. The increase of the barrier height is more than
compensated for by the increase in vg and vad. Figure 2(b)
shows the suppression factor S(Gp) ≡ [v(ad)

eff (Gp)/veff ]2 as a
function of Gp/G. One can see that the suppression factor has
a maximum near Gp/G = 5.4, at which point the exact veff is
well reproduced.

C. Block Toeplitz modeling

Realistic CI modeling of actinide nuclei might require of
the order of ≈20 configuration sets to describe the physical
barrier region [15, Fig. 8]. The (6,6) model with its two sets is
too oversimplified to simulate the behavior of long chains of
intermediate configuration. However, we simulate the chains
by replicating the H9 and V9 blocks along the diagonal and
subdiagonals. The Hamiltonian is then characterized by the
number Nb of H9 blocks along the main diagonal. Such
matrices are known as block Toeplitz matrices; as mentioned
earlier there has been much effort in other fields to find
efficient algorithms to invert them. It turns out that, for the
(6,6) Hamiltonian, one can extract the asymptotic dependence
on Nb from the properties of the eigenvalues of a matrix having
the same dimension as H9.

First, we show in Table II the effective coupling strength
veff as a function of Nb. See also Fig. 3. As is expected,
veff decreases as Nb increases. The table and the figure also
show the ratio of veff (N ) to veff (N − 1). One can see that the
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FIG. 2. (a) Comparison of energies and Hamiltonian matrix el-
ements in the adiabatic approximation (the solid line with filled
circles) to those obtained in the maximum-coupling approximation
(the dashed line with open circles). The numbers denote coupling
strengths connecting the neighboring adiabatic states. (b) The sup-
pression factor S(Gp) ≡ [v(ad)

eff (Gp)/veff ]2 as a function of Gp/G.

ratio goes asymptotically to a constant C which we call the
Nb-scaling factor,

C = lim
N→∞

veff (N )/veff (N − 1) = 0.2386. (14)

A formula for C can be derived as follows: assume a
Toeplitz structure of Hb with symmetric VT . We start with the

TABLE II. The effective coupling strength veff for the block-
tridiagonal matrix, Eq. (5), as a function of the number of blocks, Nb.
H9 and V9 are taken from the (6,6) model. The ratio to the effective
strength for Nb − 1 is also shown. The last row shows the ratio e−α

as computed from Eq. (21).

Nb veff (N ) veff (Nb)/veff (Nb − 1)

1 0.277
2 0.0650 0.2345
3 0.0154 0.2372
4 0.00367 0.2380
5 0.000875 0.2384
6 0.000209 0.2385
7 0.0000498 0.2386
8 0.0000119 0.2386

Eq. (21) 0.2386
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FIG. 3. The effective coupling strength veff (upper panel) and the
ratio to the effective strength for Nb − 1 (lower panel) as a function
of the number of blocks Nb.

equation for the wave function

H

⎛
⎝φg

ψ

φd

⎞
⎠ = Eg

⎛
⎝φg

ψ

φd

⎞
⎠, (15)

which is valid when Ed = Eg. Writing the nth block compo-
nent of the interior wave function as ψn, each block row has
the form

VT ψn−1 + HT ψn + VT ψn+1 = Egψn. (16)

Note that V T
9 = V9 ≡ VT in this equation. Equation (16) is

invariant under translation of the block indices n, which
implies that the wave function can be expressed as a sum over
amplitudes that vary from block to block as ψλ

n+1 = Cλψ
λ
n

where Cλ is a constant. For tunneling under a barrier, Cλ are all
real and can be written as Cλ = e±αλ . Substituting in Eq. (16)
one obtains

(eαλ + e−αλ )VT ψn + (HT − Eg1)ψn = 0. (17)

This is equivalent to the eigenvalue equation

[−2(HT − Eg1)−1VT ]ψn = λψn, (18)

with αλ related to the eigenvalue by

cosh(αλ) = λ−1. (19)

The wave function will be decaying going from the ground
state toward the doorway configuration, so we may assume
that the asymptotic behavior is

ψn+1 = e−αλψn, (20)

with αλ > 0. Thus, veff decreases when a block is added by

C = e−αλ = e− cosh−1(|λ|), (21)

where λ is the eigenvalue of Eq. (18) having the largest
absolute value. Note that eigenvalues with |λ| > 1 correspond
to undamped propagation modes. If such eigenvalues are
present, the physical conditions for barrier penetration are
violated.

The last line in Table II shows the Nb-scaling factor C
derived from Eq. (21) for the (6,6) model. The agreement with
the observed reduction factor is excellent.

In a more general case with V �= V T , we have found two
ways to compute C. One is somewhat parallel to the above
argument, but starting from the block row equation

(VT )T ψn−1 + HT ψn + VT ψn+1 = Egψn, (22)

rather than Eq. (16). The other method is based on partial
Gaussian elimination and is presented in the Appendix.

For the first method, we assume ψn±1 = e∓αψn as in
Eq. (17). Substituting in Eq. (22), one obtains

[(VT )T eα + HT − Eg1 + VT e−α]ψn ≡ M(α)ψn = 0. (23)

This equation is satisfied when the determinant of M(α) is
zero. This can be solved numerically for α, from which the
Nb-scaling factor is evaluated as C = e−α .

We have verified that this method yields the same value
of the Nb-scaling factor as that obtained with Eq. (21) when
V = VT = V9. Moreover, we have also confirmed that this
method leads to the exact scaling factor when some of the
components in V9 is set to be zero so that V9 �= (V9)T .

IV. LINK TO LEAST ACTION APPROACH

A. Derived action in the configuration-interaction framework

The action integral in the collective-coordinate approach is
given by

S =
∫ [

2I (x)

h̄2 [V (x) − Eg]

]1/2

dx, (24)

where I is the inertia of the system, often calculated in
the Gaussian overlap approximation [22, Sec. 10.7.4]. The
variable x is a shape degree of freedom associated with the
fission path, and V (x) is the energy of the GCM configuration
at the point x. We want to minimize S given the Hb matrix of
block Toeplitz form. We first reduce the matrix to the form

Hb =

⎛
⎜⎜⎜⎜⎝

e v 0 0 · · · 0
v e v 0 · · · 0
0 v e v · · · 0
...

...
. . .

. . .
. . .

0 0 0 v e

⎞
⎟⎟⎟⎟⎠, (25)

with the aid of a one-dimensional projection operator acting
on the HT and VT matrices. The equation, which corresponds
to Eq. (16), then reads

vψn−1 + eψn + vψn+1 = Egψn. (26)
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FIG. 4. The local action S ∝ √
B/|v| as a function of Gp/G.

Here, the barrier height B and the coupling strength v are estimated
with the lowest eigenstate of the intermediate Hamiltonian H9 with a
modification of the strength of the pairing interaction from G to Gp.

This is to be compared with a Schrödinger equation for a
collective Hamiltonian,(

− h̄2

2I

d2

dx2
+ V (x)

)
φ(x) = Eψ (x). (27)

Discretizing the differential operator as

d2

dx2
φ(x) ∼ 1

(�x)2
[ψ (xn−1) − 2ψ (xn) + ψ (xn+1)], (28)

where �x is a mesh spacing of the variable x, and the inertia
parameter I and the collective potential V (x) can be read off
as [23]

I = − h̄2

2v

1

(�x)2
, (29)

V (x) = e − 2v. (30)

Since the collective potential has a constant shift −2v at all
the points of x, we expect that the energy E in Eq. (27) is ap-
proximately given by E = Eg − 2v. Introducing exponentially
decaying wave functions in Eq. (27),

ψ (xn−1) = eS�xψ (xn), ψ (xn+1) = e−S�xψ (xn), (31)

one obtains

cosh(S�x) = [IB(�x)2 + 1], (32)

with B ≡ e − Eg. To be consistent with the discretization in
Eq. (28), we expand the left-hand side of this equation to
obtain

cosh(S�x) ∼ 1 + S(�x)2

2
= [IB(�x)2 + 1], (33)

from which the local action S reads

S ∼
√

2BI (34)

and its increment from block to block is

S�x/h̄ =
√(

B

−v

)
. (35)
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the number fluctuation �N2 defined by Eq. (36). (middle and bottom
panels) The barrier height B and the interaction v as a function of the
abnormal density defined by Eq. (37).

Figure 4 shows the action as a function of Gp/G, where
B and v are estimated with φ

(ad)
0 (Gp) in Eq. (13). As in

the maximum-coupling approximation discussed in Sec. II B,
both B and |v| increase as a function of Gp, but the ratio has
a minimum at some large value of Gp. With the parameter
set which we employ for the (6,6) model, the minimum
of the action is found at Gp/G = 4.1. This is close to the
value Gp/G = 5.4 we obtained in the maximum-coupling
approximation. In fact the suppression factor is not sensitive
to the value of Gp around the optimum value, as may be seen
in Fig. 2(b).

B. Connection to the “number fluctuation”

In Refs. [10,11], the least-action formalism is applied
by treating the number fluctuation as a collective vari-
able in Hartree-Fock-Bogoliubov (HFB) wave functions. In
terms of the HFB canonical variables uk, vk , it is given by
[22, Eq. (6.44)],

�N2 = 4
∑
k>0

v2
k u2

k = 4
∑
k>0

v2
k

(
1 − v2

k

)
. (36)
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A related measure of the pairing strength is the abnormal
density κ , defined for a P†P pairing interaction as

κ =
∑
k>0

ukvk =
∑
k>0

vk

√
1 − v2

k . (37)

Since the CI approach is a number-conserving framework and
has no number fluctuation, one cannot make a direct com-
parison to HFB pairing. But one can still make a connection
through the orbital occupation numbers nk in the CI local
ground state,

nk = 〈
φ

(ad)
0 (Gp)

∣∣a†
kak

∣∣φ(ad)
0 (Gp)

〉
. (38)

We make the identification v2
k = nk to relate the CI wave

function to the HFB quantities in Eq. (36) or (37). The result
comes out to κ = 1.46 and �N2 = 1.50 for the adiabatic wave
function (Gp = G). Figure 5 shows how the quantities relate
to the action change with the two measures of pairing strength.

Figure 5(a) shows the action increment Eq. (35) as a
function of �N2. It decreases to 4.7 at Gp = 4.1G where it has
a minimum. The ratio is 3.13, which is close to the ratio ≈3.17
for 234U shown in Ref. [10]. Figures 5(b) and 5(c) show the
barrier height B and the interaction v as a function of the pair
density κ . These plots are shown to compare with the known
small-amplitude behavior in BCS theory. There the leading
behavior is v ∼ κ2 and B ∼ Bad + (κ − κad )2 for B [12]. A fit
to these functional forms would be quite poor. But it might be
that the validity of the quadratic formulas need a much larger
orbital space than we have in the (6,6) modeling.

V. SUMMARY

Using a schematic configuration-interaction model for
spontaneous fission, we have investigated two approximations
that go beyond the adiabatic approximation. To this end,
we have constructed a single configuration at each shape
by increasing the strength of the pairing interaction. This
was motivated by the fact the pairing fluctuation makes an
important degree of freedom in describing spontaneous fis-
sion based on the density-functional approach. An increase
of the pairing interaction results in an increase of both the
barrier height and the coupling strength between neighboring
configurations. In the first approximation, we investigated the
maximum coupling approximation, in which the optimum
value of the modified pairing strength is determined so that the
effective coupling strength veff between the ground state and
the fission doorway state is maximized. In this connection, we
have investigated a chain of the interior matrix and have found
that the effective coupling strength has a scaling property as
a function of the number of blocks. We have shown that the
scaling property can be understood by a simple eigenvalue
equation if one assumes exponentially decaying wave func-
tions for the fission degree of freedom.

In the second approximation, we have investigated the least
action approach, in which the optimum value of the modified
pairing strength is determined to minimize the action. This
approximation can be derived in the context of the discrete
basis model that we employ in this paper. We have shown
that the optimum value of the modified pairing is close
to that in the maximum-coupling approximation, yielding

a reasonable value of the effective coupling strength. This
gives some justification for treating the barrier penetration
by the WKB formula with parameters derived from the CI
approach.

In realistic applications to spontaneous fission, our studies
with the schematic model have indicated that the adiabatic
approximation can considerably underestimate the effective
coupling strength, and thus the decay rate. The two ap-
proximations discussed in this paper; that is, the maximum-
coupling approximation and the least action approach, provide
a promising truncation scheme of configurations, by taking
into account the nonadiabatic effects. The maximum-coupling
approximation can be extended also to the case where the
configurations are not orthogonal to each other [16,17].
The main advantage of the CI approach is that it per-
mits much richer configuration spaces than can be easily
achieved with the GCM or pure mean-field dynamics. How-
ever, as mentioned earlier, new computation tools need to
be developed for constructing the spaces and especially for
calculating Hamiltonian matrix elements between arbitrary
configurations.
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APPENDIX: BLOCK SCALING FACTOR FROM
THE GAUSSIAN ELIMINATION METHOD

For a block-tridiagonal matrix (5), the Green’s function
G = [Hb − Eg1]−1 has a form of

G =

⎛
⎜⎝

G11 · · · G1N
...

. . .
...

GN1 · · · GNN

⎞
⎟⎠. (A1)

Here the subscript b in the number of blocks Nb has been
dropped for clarity. In this notation the effective coupling (3)
is given by

veff = −vT
g G1Nvd . (A2)

The matrix G1N can be computed by a partial block-wise
Gaussian elimination [16–18,24,25]. In this method, one first
generates matrices An by iterating

An = VT
n−1(H̃n−1 − An−1)−1Vn−1, n = 2, 3, . . . , N, (A3)

starting from A1 = 0. Here, H̃n is defined as H̃n ≡ Hn − Eg1.
We assume all blocks have the dimension, so A matrices are
square and of the same dimension. The (N, N ) component of
the Green’s function GNN is given by

GNN = (H̃N − AN )−1. (A4)
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The Green’s function component G1N in Eq. (A2) can be
obtained recursively as

Gn,N = −(H̃n − An)−1VnGn+1,N , n = N − 1, . . . , 1.

(A5)

For our purposes, we do not need the Green’s function
itself but only the Nb-scaling factor relating G1,N and G1,N−1.
From the algebraic structure of the Gaussian elimination
quantities it is easy to show that the relationship can be
expressed as

G1N (N ) = −G1,N−1(N − 1)VN−1GNN (N ) (A6)

= −G1,N−1(N − 1)VN−1(H̃N − AN )−1. (A7)

Note that the effective interaction is given by veff (N ) =
−vT

g G1N (N )vd and veff (N − 1) = −vT
g G1,N−1(N − 1)vd .

For a block Toeplitz matrix with Vn = VT and H̃n =
HT , one may expect that Eq. (A3) produces a sequence
that converges to a fixed A ≡ A∞ as N → ∞ [25]. In this
limit, GNN → (HT − A∞)−1 ≡ G∞. When this is realized,
one may also assume that the Nb-scaling factor C can be
computed from

G1N (N ) = CG1,N−1(N − 1). (A8)

Substituting this to Eq. (A6), one finds that C may be cal-
culated as C = λmax, where λmax is the largest eigenvalue of
−VT G∞. Note that the iterations in Eq. (A3) need not be
extended to n = N if the asymptotic form of An is approached
with fewer iterations.

TABLE III. The Nb-scaling factor corresponding to Table II, but
obtained with the Gaussian elimination method. In this method, the
scaling factor is given by λmax(n), that is, the largest eigenvalue of
−VT (HT − An)−1, where the matrix An is given by Eq. (A3). The
table shows this quantity as a function of n.

n λmax(n)

1 0.22576
2 0.23788
3 0.23857
4 0.23861
5 0.23861
6 0.23861
7 0.23861
8 0.23861
9 0.23861
10 0.23861

Table III shows λmax(n), that is, the largest eigenvalue of
−VT (HT − An)−1, as a function of n. One can first see that the
asymptotic value of this quantity coincides with the Nb-scaling
factor shown in Table II. Second, one can see that, after a few
iterations, λmax(n) quickly converges to the asymptotic value.
This implies that GNN (N ) = (HT − AN )−1 can be estimated
as GNN (N ) ∼ Gnn(n) = (HT − An)−1 with a much smaller
value of n compared with the actual N .
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