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We propose a pair-condensate variational approach (PCV) to determine a set of the most important collective
pairs in the description of low-lying states in atomic nuclei. Having available the precise details on these
key collective pairs—their spin, parity, and structure—can be particularly useful in calculations based on the
nucleon-pair approximation (NPA), helping to reduce their uncertainties. In trial calculations for the transitional
Ba isotopes, our variational approach describes the evolution of quadrupole-deformation properties similar
to Hartree-Fock treatments, while at the same time highlighting the γ softness of 132Ba. Our approach can
conclusively determine which collective pairs are critical for obtaining the lowest possible yrast, quasi-β, quasi-γ
bands, producing both the level structure of these bands and related B(E2) values in reasonable consistency with
experiment. These trial calculations suggest that with our PCV approach the NPA can be meaningfully applied to
transitional nuclei with a wide spectrum of shapes. We also show that while neutron negative-parity pairs could
in principle have an important impact on backbending in 132Ba, they are not favored for this nucleus.
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I. INTRODUCTION

Shell-model studies of atomic nuclei [1,2] must typically
confront two key issues: knowledge of the nucleon-nucleon
interactions and the complexity of the quantum many-body
problem. To handle the latter problem, the nucleon pair
approximation (NPA) [3] has been proposed as an efficient
shell-model truncation scheme. Inspired by studies of the
shell-model foundation of the interacting boson model (IBM)
[4], the NPA usually adopts positive-parity S and D pairs
with angular momentum L = 0 and 2, respectively, in analogy
with the s and d bosons of the IBM [5–8]. With a few such
collective pairs (and the accompanying reduced model space),
the resulting wave functions provide a clear picture of the
key components of low-lying nuclear states in a shell-model
framework. The NPA can be especially useful for the descrip-
tion of heavy or medium-heavy O(6) nuclei in the transition
region between spherical and well-deformed shapes. These
nuclei are normally γ -soft with a large shape uncertainty, and
thus are difficult to be interpreted with conventional mean-
field theories and very difficult to describe with nontruncated
shell-model calculations because of the very large model
spaces required.

In addition to the usual SD pairs, other pairs, e.g., a G
pair with angular momentum L = 4 and positive parity [9] or
pairs with negative parity [10], can significantly improve NPA
results, especially for states with higher angular momentum.
Of course, more pairs means larger model spaces, eventually
making an NPA description comparable to a full shell-model
treatment [11–13]. However, arbitrarily increasing the number
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of collective pairs violates the original intent of the NPA, viz.,
to simplify the shell-model description of low-lying states
with a highly limited number of collective pairs. It is crucial,
therefore, to identify a priori and self-consistently the key
collective pairs in advance of an NPA calculation.

Moreover, without an a priori identification of the key
collective pairs, there can be some ambiguity about the NPA
wave functions. For example, consider the I = 10 backbend
in the 132Ba yrast band [14–16]. Both (νh11/2)−2 pairs and
negative-parity pairs, together with the usual SD pairs, can
produce this backbend, but with different NPA wave func-
tions [17–19]. There is still no consensus as to which set of
collective pairs is optimal for the description of this I = 10
backbend.

In the early 1980s, the Hartree-Fock-Bogolyubov (HFB)
approach was often adopted to demonstrate the importance of
SD pairs in low-lying states, and correspondingly sd bosons
in an IBM framework (see, e.g., Refs. [20,21]). Those works
inspired us to develop a mean-field (like) approach as a pair-
importance guide for the NPA. To best serve the needs of an
NPA calculation, such an approach should have four additional
features:

(1) It should not violate particle-number conservation.
In the transitional region, where the NPA is mostly
used, the nuclear shape can evolve dramatically from
spherical to well deformed. Thus, the NPA wave
function should also evolve rapidly with increasing
valence particle number. Violation of particle-number
conservation mixes the wave function of the nucleus
under investigation with those of nearby nuclei, lead-
ing therefore to a relatively inaccurate description.
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(2) It should enable the NPA to include, or at least have
access to, the complete γ degree of freedom. This is
crucial if we wish to use this method to understand
γ softness, γ instability, shape coexistence, and shape
mixing in transitional nuclei.

(3) It should be amenable to a hole representation. To
reduce the complexity of the Hamiltonian and tran-
sition matrix-element calculations, the NPA, like the
shell model, usually adopts a hole representation of
the valence space, when the nucleon number is slightly
smaller than the corresponding magic number, e.g.,
southwest of (N = 126, Z = 82) and northwest of
(N = 82, Z = 50). In such a case, not only the NPA
states but also the trial wave function from which
collective pairs are generated should be amenable to
a description in terms of hole states.

(4) Such an approach should be able to clarify the im-
portance of both positive- and negative-parity pairs.
In the A ≈ 100, 132, and 208 regions, the intruder
g9/2, h11/2, and i13/2 neutron hole states have relatively
low single-hole energies and the opposite parity to the
other single-hole states in the same major shell. Thus,
it is possible to construct low-energy negative-parity
collective pairs, in which a low-energy negative-parity
hole state is coupled to another hole state with positive
parity to produce a pair of overall negative parity. For
example, we have demonstrated in earlier work [22]
the indispensable role of negative-parity pairs in the
low-lying states of the N = 74 isotones using the NPA
method.

With precisely the four features specified above, we pro-
pose a pair-condensate variational approach (denoted by PCV
herein) to facilitate the approximate treatment of the nu-
clear many-body problem using the NPA method. As we
will see, we do not impose a specific angular momentum
on the collective pair in the variation, but instead, opti-
mize the linear combination of all possible collective pairs
used in the NPA formalism. As a preliminary test of our
proposed method, we apply it to the even Ba isotopes
from A = 132 ≈ 136. These are typical transitional nuclei,
and 132Ba is supposed to be γ soft [17]. They are all
located near or below the N = 82 closed shell, and thus
are optimally treated in hole representation for their neu-
tron shell-model configurations. Such a test should high-
light the first three features listed above. The 132Ba I = 10
backbend enables us to assess the relative importance of
(νh11/2)−2 pairs and negative-parity pairs, as highlighted in
the last feature. Moreover, a phenomenological Hamiltonian
was already optimized for 132Ba in Ref. [17], which should
help to mitigate uncertainties in nuclear interaction. There-
fore, the Ba isotopes are very well-suited test cases for our
variational approach.

The paper is organized as follows. In Sec. II, we de-
tail our variational approach, including the formalism, the
optimization algorithm, and its properties and discuss the
method of calculating deformation parameters and the asso-
ciated optimal collective-pair decomposition. In Sec. III, we
describe our model space and Hamiltonian and then discuss

the trial calculations we have carried out for the even Ba
isotopes and analyze the results that emerged. Two different
variational strategies are considered. One averages overall
angular momenta in the system, whereas the other makes use
of cranking to isolate on states of specific angular momenta.
The importance of the latter approach for the description of
high spin states is emphasized. Finally, we summarize our
results, conclusions, and further prospects in Sec. IV.

II. PAIR-CONDENSATE VARIATION

A. Formalism

Our method starts with a collective-pair condensate, origi-
nally introduced to construct microscopic wave functions of
O(6) nuclei and then subsequently to simplify microscopic
Monte Carlo shell model calculation for the A ≈ 132 region
[23,24]. Our formalism for overlaps and Hamiltonian matrix
elements is an extension of that used in Refs. [23,24], and is
summarized in the Appendix.

The “collective pair” mentioned above is defined as

�† = 1

2

∑
i j

λi jC
†
i C†

j ,

� = (�†)† = 1

2

∑
i j

λi jCjCi, (1)

where C†
i and C†

j are single-particle creation operators, the
i and j indexes represent all the quantum numbers required
to label single-particle states, and the λi j are the structure
coefficients of the � collective pair. We enforce λi j = −λ ji to
ensure the uniqueness of the λi j coefficient. Thus, all the λi j

coefficients can be mapped onto a skew-symmetric matrix λ as

λ =

⎛
⎜⎜⎝

0 λ12 λ13 · · ·
−λ12 0 λ23 · · ·
−λ13 −λ23 0 · · ·
· · · · · · · · · · · ·

⎞
⎟⎟⎠. (2)

Antisymmetry of the λ matrix is the key to speeding
up the matrix-element calculation of the collective-pair
condensate with the optimized BLAS (Basic Linear Algebra
Subprograms) [25] extensions in the MKL (intel Math
Kernel Library) library. Therefore, we always antisymmetrize
the coefficient matrix λ by λ ← 1

2 (λ − λT ), if it is not
skew-symmetric.

We also note that the collective pair defined above does
not have angular momentum, angular-momentum projection
on the principal axis, or even parity as good quantum numbers.
We call such a collective pair as an “uncoupled collective pair”
in this paper, to distinguish it from conventional collective
pairs labeled with definite angular momentum and parity in
the NPA. The uncoupled collective pair includes all two-
body configuration degrees of freedom, which enables us to
determine the importance of all possible NPA collective pairs
in a single unbiased variation.

Unless otherwise noted, an uppercase Greek letter in this
paper always denotes an uncoupled collective pair, and the
corresponding lowercase letter denotes the structure coef-
ficient matrix of this uncoupled collective pair. For exam-
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ple, � is an uncoupled collective pair, γ is its structure
coefficient matrix, and γi j is the structure coefficient for the
C†

i C†
j configuration.

The trial wave function of our variation is a condensate
of uncoupled collective pairs, namely (�†)N |〉, where 2N is
the valence particle/hole number in the model space. The
pair structure coefficients, namely λi j in Eq. (1), are taken as
variational parameters in the PCV, and initialized randomly at
the beginning of the variation. Given an arbitrary shell-model
Hamiltonian H with one-body and two-body interactions, the
Hamiltonian expectation value can be calculated with the
formalism described in the Appendix. Our variation mini-
mizes the Hamiltonian expectation value, as expressed by the
condition

δ

( 〈(�)N H (�†)N 〉
〈(�)N |(�†)N 〉

)
= 0. (3)

We adopt the Broyden-Fletcher-Goldfarb-Shanno algorithm
[26–29] for the PCV variation, which requires the first deriva-
tives of the Hamiltonian expectation value.

In Eq. (A13), we prove that the first derivative of the matrix
element 〈Ô〉 along the direction of an arbitrary � pair reads

∂〈(�)N Ô(�†)N 〉
∂δ‖�

= N〈�(�)N−1Õ(�†)N 〉, (4)

where Ô is an arbitrary linear operator, and Õ = Ô + Ô†.
With Eq. (4), we can express first derivatives of Hamiltonian
expectation value analytically as in Eqs. (A14), (A15), and
(A16).

B. Properties of variation

Here, we note that the formalism presented in the Ap-
pendix does not introduce recursion, and thus a code based
on it has polynomial time complexity. The NPA formalism
[30,31], however, involves recursion with exponential (or even
more aggressive) time complexity. Therefore, as we increase
the valence particle number, the computational time of our
pair-condensate variation increases more slowly than a con-
ventional NPA code, thus making it a burden for an NPA
calculation that incorporates it.

To illustrate the computational cost of our variational ap-
proach, we perform a series of variational calculations for nu-
clei in the northwest region of (N = 82, Z = 50) with �8 va-
lence protons and �8 neutron holes. The single-particle (hole)
space and Hamiltonian parameters are specified in Sec. III
and we do not go into details on them here. The calculations
are performed on a general PC platform with i5-8500 CPU
@ 3.00 GHz. We find that the computational cost is roughly
determined by the maximum of the valence-proton number
and the valence-neutron-hole number. Therefore, we plot the
iteration number required for convergence and the average
computational time of each iteration against the maximum of
valence-nucleon numbers in Figs. 1(a) and 1(b), respectively.
Both computational costs grow more slowly than exponential
as increasing valence-nucleon number. Therefore, we expect
the total computational time of our variational approach to
also grow more slowly than exponential. To illustrate this,
we perform NPA calculations with only SD pairs in the same
nuclear region and show their computational time in Fig. 1(c).

FIG. 1. Computational cost of our pair-condensate variation for
nuclei in the northwest region of (N = 82, Z = 50) against the max
of valence-proton number and valence-neutron-hole number. The
calculational details are described in the text. The straight lines
schematically represent an exponential trend.

The computational cost of the NPA has faster growth than
exponential, and thus than that of our variational approach,
in agreement with the above analysis of the relative time
complexity.

Furthermore, with Eq. (4) and the symmetries of the
Hamiltonian, it can be proven that variation of the (�†)N |〉
condensate has three “self-consistent symmetries”:
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(1) Seniority: If the initial or intermediate � has only an S
pair component, then the variation will not allow � to
develop other non-S pair components.

(2) Angular-momentum projection: If the initial or inter-
mediate � has fixed angular-momentum projection,
then subsequent iterations of the variation will keep
this projection until convergence.

(3) Parity: If the initial or intermediate � is labeled with a
certain parity, then the variation does not change that
parity nor mix it with the other parity.

One can perform a variation with spherical and axially-
symmetric deformation, by imposing symmetries (1) and (2),
respectively, on the initial � pair. In our trial calculations,
we also observe that the optimized pair condensate always
has no parity mixing, even without imposing any symmetry.
Such an observation has not yet been proven mathematically
as universal.

C. Deformation parameters and pair decomposition

As noted in Sec. I, our pair-condensate variation should
provide the NPA access to the full quadrupole-deformed
degrees of freedom, and an a priori quantitative measure
of collective-pair importance in low-lying states. Therefore,
after the variation, we follow the procedure suggested by
Ref. [32] to determine the quadrupole deformation parameters
of the pair-condensate ground state, and to decompose the
uncoupled collective pair � into a series of collective pairs
that can be adopted for use in the NPA.

To calculate the deformation parameters β and γ , we first
define the total quadrupole operator as Q̂ = Q̂π − Q̂ν , where
Q̂π and Q̂ν are the quadrupole operator for proton and neutron,
respectively. Here, a negative sign is introduced before the
Q̂ν operator, since the valence neutrons of the Ba isotopes
occupy hole states in our calculations. In Cartesian coor-
dinates, the quadrupole operator Qi j = 3xix j − r2δi j , where
i and j indices refers the three axes of X, Y, Z , and δ is
a Kronecker symbol. Then, the Q̂ expectation of the pair
condensate (�†)N |〉 can be mapped into a three-dimensional
matrix, with three eigenvalues, Q1 < Q2 < Q3. The β and γ

parameters are related to these eigenvalues by

Q1 =
√

2π

5
[
√

3[Q2 + Q−2) −
√

2Q0],

Q2 =
√

2π

5
[−

√
3(Q2 + Q−2) −

√
2Q0],

Q3 = 2

√
4π

5
Q0,

(5)

with

Q0 = 3

2π

√
4π

5
〈r2〉β cos γ ,

Q2 = 3

2π

√
4π

5
〈r2〉 β√

2
sin γ ,

Q2 = Q−2.

(6)

The NPA calculations make use of collective pairs with
definite parity, angular momentum L, and projection on the
principal axis M, as defined by

AL†
M =

∑
a�b

βLM
ab AL†

M (ab), AL†
M (ab) = (C†

a × C†
b )(L)

M√
1 + δab

, (7)

where C†
a and C†

b are single-particle creation operators in
spherical basis, a and b represent the three-dimensional
harmonic-oscillator quantum numbers as normally denoted by
{nl jm}, and βLM

ab is the structure coefficient of the collective
pair in the NPA. Thus, an arbitrary uncoupled collective �

pair can be rewritten as a sum over AL†
M pairs. If the structure

coefficients λi j is also determined in the spherical basis, then
the pair structure coefficients βLM

ab of these AL†
M pairs are

determined as

βLM
ab =

√
1 + δab

∑
i j

δ ja jiδ jb j j 〈 jimi, j jm j |LM〉λi j, (8)

where δ is a Kronecker symbol, and 〈 jimi, j jm j |LM〉 is an
angular-momentum Clebsch-Gordan coefficient.

Due to the rotational invariance of the nuclear Hamiltonian,
the principal axis for the angular-momentum projection is
uncertain, and thus the βLM

ab coefficients are actually varied as
a space rotation. This will lead to a linear dependence of the
{βLM

a1b1
, βLM

a1b2
, βLM

a1b3
, . . .} vectors with different M values. (To

simplify the following description, such vectors are denoted
by {βLM}.) One can introduce a unitary transformation to
orthogonalize the {βLM} vectors into {β̃LK} vectors, so that∑

a�b β̃LK
ab β̃LK ′

ab ≡ 0 if K 
= K ′. Then, we adopt the {β̃LK}
vector as the pair-structure coefficients of the collective pair
with angular momentum L in the NPA calculation to follow.

Here, we note that the K index is introduced to distin-
guish several linearly independent {β̃LK} vectors. It is not an
angular-momentum projection. Furthermore, if we normalize
the pair structure coefficients as

∑
i< j (λi j )2 = 1, then it can be

readily shown that
∑

L,K,a�b(β̃LK
ab )2 = 1, so that that the length

squared of the {β̃LK} vector corresponds to the weight of the
collective pair AL† with β̃LK

ab values as structure coefficients.
Namely, it can be taken as a quantitative measure of the
importance of the collective pair AL†.

III. TRIAL CALCULATIONS FOR THE EVEN
BARIUM ISOTOPES

A. Model space and Hamiltonian

As in earlier NPA calculations for 132Ba [17–19], we limit
the single-particle model space to the orbitals of the 50-82
shell. The single-particle motion of the valence neutrons is
described in hole representation so that the wave functions in-
volve fewer creation operators. The corresponding collective
pair condensate reads (�†

π )3(�†
ν )N |〉, where �π is a proton

uncoupled collective pair, �ν is the analogous collective
neutron hole pair, and N is the number of neutron hole pairs
for the Ba isotope under investigation.
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In this work, we adopt the same phenomenological Hamil-
tonian that was proposed in Ref. [17], namely,

H =
∑

σ=π, ν

⎛
⎝∑

j

ε jσ n̂ jσ −
∑
s=0,2

GsσP (s)†
σ · P̃ (s)

σ − κσ Q̂σ · Q̂σ

⎞
⎠

+ κπνQ̂π · Q̂ν, (9)

with

P (0)† =
∑

a

√
2 ja + 1

2
(C†

a × C†
a )(0),

P (2)† =
∑

ab

q(ab)(C†
a × C†

b )(2),

Q̂ =
∑

ab

q(ab)(C†
a × C̃b)(2).

(10)

In Eq. (10), all operators are written in a spherical basis.
Thus, the structure coefficients of the quadrupole operator

Q̂ can be expressed as q(ab) = −
√

2 ja+1
5

〈a||r2Y 2||b〉
r2

0
, where Y 2

is the rank-2 spherical harmonic and r0 = √
h̄/(mλ) is the

oscillator parameter. Also ε jσ , G(0)
σ , G(2)

σ are the single-particle
energies and strength parameters of the monopole-pairing and
quadrupole-pairing interactions between like-nucleons, while
κσ and κπν are the strengths of the quadrupole-quadrupole
interactions between like particles and between protons and
neutrons, respectively. Table I lists explicitly the Hamiltonian
parameters as proposed in Ref. [17].

The PAR-1 and PAR-2 Hamiltonian parameters listed in
Table I have both been used in calculations that reproduce
the yrast level scheme of 132Ba, including its I = 10 back-
bend, within the NPA framework. However, they included
different sets of collective pairs to achieve such reproduction:
(1) PAR-1 included Lπ = 5− and Lπ = 6− collective pairs
[18] in addition to SD pairs, (2) PAR-2 included so-called H
pairs based on the (νh11/2)−2 configuration and even angular
momentum from L = 0 to 10 [17] in addition to SD pairs. It
has been shown possible to find a unified Hamiltonian that
reproduces the backbend in 132Ba with each set of collective
pairs [19]. We note here that the PAR-1 and -2 parameters
are optimized only for 132Ba. There may be some difficulty
therefore in their ability to reproduce the experimental data
for 134Ba and 136Ba.

TABLE I. Adopted Hamiltonian parameters in units of MeV.
These parameters were originally proposed for the NPA calculation
of 132Ba [17]. The upper part of the table presents the single-particle
(s.p.) energies; the lower part presents two-body interaction parame-
ters. There are two different sets of two-body interaction parameters,
denoted by PAR-1 and PAR-2 for simplicity.

s.p. s1/2 d3/2 d5/2 g7/2 h11/2

επ 2.990 2.708 0.962 0.000 2.793
εν 0.332 0.000 1.655 2.434 0.242
two-body G0π G2π G0ν G2ν κπ κν κπν

PAR-1 0.130 0.030 0.130 0.026 0.045 0.065 0.070
PAR-2 0.170 0.040 0.150 0.026 0.030 0.100 0.080

B. Results of the pair-condensate variation

Using the parameters listed in Table I, we performed
PCV calculations for the various Ba isotopes considered in
this work. The variational results are listed in Table II. For
132Ba, the PAR-1 and PAR-2 parameters both favor β values
≈0.1. With fewer valence neutron holes, the favored β value
decreases to ≈0.03 as we approach the N = 82 closed shell,
as expected. For the γ parameter, the PAR-1 Hamiltonian
drives the nuclear shape from prolate to triaxial deformation
(0◦ → 20◦), whereas the PAR-2 Hamiltonian drives it from
triaxial to oblate (≈20◦ → 60◦).

We also performed Hartree-Fock (HF) calculations for the
Ba isotopes using the same Hamiltonians and list the results in
Table III. The HF method provides a somewhat similar shape
evolution as arose in the PVC calculations. As we approach
the N = 82 closed shell, the favored β decreases from ≈0.1 to
≈0.04, and the favored γ increases toward the oblate (→ 60◦)
value, albeit with sizable differences between the results for
PAR-1 and PAR-2. The general similarity in results suggests
that the PCV approach can reasonably access the full range of
quadrupole degrees of freedom. We also note that PCV always
produces lower minimum energy than HF by ≈1.5 MeV,
reflecting the gain in energy resulting from the pair correla-
tions introduced in the PCV method.

Using our approach, we can also explore the issue of γ

softness in 132Ba. We perform shape-constrained variations
across the minimum and along the γ direction for this nucleus,
using both the HF and PCV approaches. In the HF treatment,
the shape constraint is enforced by introducing two Lagrange
multipliers, λ0 and λ2, in the Hamiltonian according to

H ′ = H − λ0r2Y 2
0 − λ2r2Y 2

2 , (11)

where Y 2
0 and Y 2

2 are rank-2 spherical harmonics. This is
referred to as a linear constraint and is widely used in mean-
field calculations. However, with such a linear constraint,
there is no analytic relation between the Lagrange multipliers
(λ0 and λ2), on the one hand, and the deformation parameters
(β and γ ), on the other hand. In an HF calculation with a
linear constraint, we must repeatedly tune λ0 and λ2 to achieve
specific (β, γ ) values along the γ direction across the global
minimum.

However, the PCV method is computationally more costly
than the HF method, and it is therefore not feasible to tune
(λ0, λ2) in this way. Instead, when using the PCV method, we
adopt a quadratic constraint, modifying the expectation value
of the Hamiltonian according to

〈H ′〉 = 〈H〉 + C{(〈Q̂zz〉− μzz )2 + (〈Q̂xx〉 − μxx )2 + 〈Q̂xz〉2},
(12)

where C is a large positive real number (we take C = 1000,
herein), Q̂zz, Q̂xx, and Q̂xz is the quadrupole operator in Carte-
sian coordinates, and μzz and μxx are related to the desired β

and γ parameters by

μzz = 12

5
〈r2〉β cos γ ,

μxx = 6

5
〈r2〉β[

√
3 sin γ − cos γ ]. (13)
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TABLE II. Minimum energies, deformation parameters, and collective-pair weights of the optimized collective-pair condensate (PCV) for
the various even Ba isotopes considered. The adopted Hamiltonian parameters are listed in Table I. The minimum energy is presented in units
of MeV. Collective pairs with weights less than 0.1 are omitted here. Here, we list two sets of PCV results with ωX = 0 and ωB. ωX = 0
corresponds to the global minima without cranking, which shall provide collective pairs supposedly important for the major structure of the
yrast band. ωX = ωB corresponds to the sudden change of moment of inertia, namely, the backbend, as highlighted with blue dotted line in
Fig. 3, where the ωB values are specified, and the subscript “B” is the abbreviation of “backbend.” Thus, the collective pairs with ωX = ωB are
supposed to be responsible to induce a backbend.

ωX = 0 ωX = ωB

Emin −12.334 Emin −9.130
β 0.106 γ <1◦ β 0.093 γ <1◦

PAR-1 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.463 Lπ = 0+ (S) 0.447 Lπ = 10+ (H ) >0.999 Lπ = 2+ (D) 0.273
Lπ = 2+ (D) 0.453 Lπ = 2+ (D) 0.489 Lπ = 4+ (G) 0.399

132Ba Lπ = 6+ (I) 0.320

Emin −15.418 Emin −11.055
β 0.102 γ 16◦ β 0.083 γ 31◦

PAR-2 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.428 Lπ = 0+ (S) 0.520 Lπ = 10+ (H ) 0.945 Lπ = 4+ (G) 0.112
Lπ = 2+ (D) 0.449 Lπ = 2+ (D) 0.444 Lπ = 6+ (I) 0.819

Emin −9.355 Emin −5.582
β 0.079 γ <1◦ β 0.049 γ <1◦

PAR-1 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.497 Lπ = 0+ (S) 0.530 Lπ = 10+ (H ) >0.999 Lπ = 6+ (I) 0.988

134Ba Lπ = 2+ (D) 0.440 Lπ = 2+ (D) 0.433

Emin −11.744 Emin −7.783
β 0.072 γ 19◦ β 0.056 γ 26◦

PAR-2 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.474 Lπ = 0+ (S) 0.657 Lπ = 10+ (H ) 0.967 Lπ = 6+ (I) 0.968
Lπ = 2+ (D) 0.429 Lπ = 2+ (D) 0.330

Emin −6.242 Emin −2.502
β 0.040 γ 20◦ β 0.032 γ <1◦

PAR-1 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.642 Lπ = 0+ (S) 0.786 Lπ = 10+ (H ) >0.999 Lπ = 6+ (I) >0.999

136Ba Lπ = 2+ (D) 0.349 Lπ = 2+ (D) 0.210

Emin −7.806 Emin −3.063
β 0.031 γ >59◦ β 0.032 γ <1◦

PAR-2 Neutron pair weight Proton pair weight Neutron pair weight Proton pair weight
Lπ = 0+ (S) 0.701 Lπ = 0+ (S) 0.911 Lπ = 10+ (H ) >0.999 Lπ = 6+ (I) 0.946
Lπ = 2+ (D) 0.296

Both the HF and PCV calculations with the associated
shape constraints described above provide one-dimensional

TABLE III. Minimum energies and deformation parameters from
HF calculations for the various even Ba isotopes considered. The
adopted Hamiltonian parameters are listed in Table I. The minimum
energy is presented in units of MeV.

Emin β γ

PAR-1 −11.049 0.113 <1◦
132Ba PAR-2 −14.007 0.116 13◦

PAR-1 −7.878 0.093 15◦
134Ba PAR-2 −9.641 0.093 16◦

PAR-1 −4.604 0.045 36◦
136Ba PAR-2 −5.643 0.044 37◦

potential energy surfaces (PES), as illustrated in Fig. 2. When
comparing the surfaces that derive from the HF and PCV
calculations for 132Ba, we see that the PCV method yields a
flatter minimum along the γ direction, thereby more effec-
tively establishing γ softness for this nucleus. This suggests
that our pair condensate method may prove especially useful
when trying to obtain an accurate description of γ -soft nuclei.

From Table II, we note that the pair decompositions that
derive from the PAR-1 and PAR-2 Hamiltonians are very sim-
ilar. SD pairs contribute most (over 85%) of the composition
of the optimized � pairs, reemphasizing the importance of SD
pairs in low-lying states that was seen earlier in the previous
NPA calculations [3].

However, there is a known I = 10 backbend in the yrast
bands of 132−136Ba, as reflected by the sudden decrease of
EI − EI−2 and B(E2, I → I − 2) at that angular momentum.
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FIG. 2. Potential energy surfaces along the γ direction across
the minima from shape-constrained HF calculations compared with
those from our pair-condensate variational method (PCV). Panels
(a) and (b) present the results obtained using the parameters shown
in Table I for PAR-1 and PAR-2, respectively. The γ minima are
highlighted here, since some are not very obvious due to the γ

softness.

This backbend at high spins cannot be described solely in
terms of S and D pairs, requiring additional higher spin pairs
as well [17–19].

A frequent approach to deal with a backbend in rotational
bands is through the introduction of cranking [34,35] in
the microscopic theory being used [36–38]. For example,
Ref. [20] adopted the cranked HFB approximation to study
the evolution of SD pairs across a backbend. Similarly, the
cranked shell model has been applied extensively to under-
stand the I = 10 backbend in the Ba isotopes [16,39,40].
To identify and construct the appropriate collective pairs for
the backbend in the PCV approach, we too will introduce
cranking, by introducing the cranked Hamiltonian,

Hcrank = H − ωX JX . (14)

Here ωX is the angular velocity and JX is the angular mo-
mentum projection on the X axis. Compared with the shape
constraint in HF, as illustrated by Eq. (11), the minimization
of Hcrank corresponds to a linear constraint of the angular-
momentum expectation value (〈JX 〉), with ωX a Lagrange
multiplier chosen to yield a given angular momentum on
average. Thus, with an appropriate ωX , we can identify the
key collective pairs for excited states with higher spin, e.g.,
the Iπ = 10+ yrast isomer, which is critical for the I = 10
backbend.

We plot the evolution of the minimum energy of the pair
condensate with increasing angular velocity (ωX ) in Fig. 3
for the various nuclei under investigation. A sharp rise of
the minimum energy is seen for all of the nuclei studied
around ωX ≈ 0.3, which corresponds to a sudden change of
the moment of inertia, i.e., to a backbend. We extract the
collective pairs from the optimized pair condensate after the
backbend (as highlighted by the blue dotted lines in Fig. 3).
The collective pairs extracted in this way should be important

FIG. 3. Minimum energy versus angular velocity ωX from the
cranked PCV variation. The blank line corresponds to a normal
variation with random initiation, while the red dashed line corre-
sponds to initiation with negative-parity �ν . The sudden change of
moment of inertia from the normal PCV variation is highlighted by
the blue dotted line, where a backbend occurs, and the corresponding
angular velocity (ωB) is also specified. The subscript “B” is an
abbreviation for “backbend.” We extract the collective pairs from
ωX = ωB variations as listed in the right column of Table II. These
should be the pairs that are responsible for the yrast I = 10 backend
of the Ba isotopes.

to construct the second rotational band, which crosses the
ground band and in doing so induces the backbend. We also
show these collective pairs in Table II. For both the PAR-1 and
PAR-2 parameter sets, the dominant neutron collective pair is
an HL=10 pair that arises from the (νh11/2)−2 configuration.
The dominant proton collective pair in 134Ba and 136Ba is
an Lπ = 6+ pair, arising from the (πg7/2)2 configuration.
In 132Ba, proton D (Lπ = 2+) and G (Lπ = 4+) pairs also
contribute substantially for the PAR-1 Hamiltonian whereas a
proton G pair contributes substantially for the PAR-2 Hamil-
tonian. We note that the importance of the neutron HL=10 pair
for the I = 10 backbend was already emphasized in Ref. [17].
The previous CSM calculation also found a band crossing
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frequency for (νh11/2)−2 alignment in 132Ba at ωX ≈ 0.3
[16,39,40], in agreement with our cranking results.

In Ref. [18], it was proposed that the inclusion of neu-
tron negative-parity pairs may be an alternative approach
for describing the I = 10 backbend in 132Ba. However, the
pair-condensate variational results after the backbend suggest
otherwise and indeed we will see in the next subsection that
even without any negative-parity pairs, the NPA can achieve
an excellent description of the 132Ba backbend. How can we
understand why such a pair was able to produce a reasonable
description of the backbend in those earlier calculations even
though not favored by our cranking treatment? To address this,
we impose negative parity on the initial �ν pair of our crank-
ing treatment and then perform another variational treatment
for the Ba isotopes. According to the parity self-consistent
symmetry, namely, symmetry (3) described in Sec. II B, such
a variation should converge to a negative-parity �ν pair.
We also plot the minimum energy of that solution against
the angular velocity (ωX ) in Fig. 3. For 132Ba and 134Ba,
the negative-parity �ν pair also produces a sharp rise of
the minimum energy much as the positive-parity pair does.
For 136Ba, however, the points at which the sharp rise oc-
curs have a difference in the angular velocity larger than
0.1 MeV.

It requires at least two negative-parity pairs to produce a
similar cranking plot to the plot with positive-parity pairs.
These negative-parity pairs can provide two h11/2 holes, with
which the (νh11/2)−2 configuration, i.e., the HL=10 pair can be
reconstructed. Such reconstruction connects the negative-pair
coupling and the HL=10 pair and thus explains why negative-
parity collective pairs were able to describe the HL=10-pair
dominant I = 10 backbend in our previous NPA calculation
[18] for 132Ba. However, we also note that cranking with
negative-parity �ν pairs leads to a higher minimum energy
than cranking with positive parity for almost all the ωX values.
For this reason, negative-parity neutron collective pairs are not
favored, even for the PAR-1 parameter set, and thus will not
be used in the NPA calculations to follow.

C. NPA calculations using PBCS and PCV pairs

We introduce the collective pairs listed in Table II in our
NPA calculations with the PAR-1 and PAR-2 Hamiltonians
of Eq. (9). The level schemes obtained using the collective
pairs from the PCV variational method are plotted in the PCV
column of Fig. 4, including the yrast, quasi-β, and quasi-γ
bands. We compare the calculated results with the experi-
mental data [33], as well as with results from conventional
NPA calculations in which collective pairs are obtained from
a numerical fit to projected BCS wave functions (PBCS) [11].
We note that the PBCS pairs were applied earlier in NPA
calculations for 132Ba [18,19], so that the 132Ba results with
PBCS presented here are simply a replot of those earlier
results. Following Ref. [18], our NPA calculation with the
PBCS pair for 132Ba includes the appropriate SD pairs as
well as Lπ = 5−, and Lπ = 6− pairs when we use the PAR-1
parameters. When we use the PAR-2 parameters, the relevant
pairs included are its SD pairs and all the HL=2≈10 pairs, as
in Ref. [17]. For 134,136Ba, the NPA calculations with PBCS

adopt the same collective-pair sets as for PCV (as listed in
Table II) to permit a meaningful comparison, although they
do not have the same pair structures.

We first focus on a comparison between our calculated
level schemes and those from experiments. Generally speak-
ing, the NPA calculations with both the PBCS and PCV col-
lective pairs achieve a reasonable agreement with experiments
for 132Ba. However, when we change the valence neutron-
hole number, the agreement gradually worsens. In particular,
the yrast bands of 134Ba and 136Ba resulting from the NPA
calculations show somewhat larger moments of inertia than
the experimental data, and the calculated quasi-β and -γ
bands are lower in energy than in experiment for these two
nuclei. The reason is that our Hamiltonian parameters were
optimized for 132Ba alone [17] so that greater disagreement
with experiments for the other nuclei is to be expected.

We now discuss the yrast backbend in a bit more detail.
The backbend can be most clearly seen and discussed through
an EI − EI−2 versus I plot of the yrast band levels, which
we present in Fig. 5. The experimental data for all three Ba
isotopes exhibit an I = 10 backbend with relatively small
E10 − E8 values. The NPA calculations reproduce such a
backbend for both 132Ba and 134Ba but seem to fail for 136Ba.
Instead, we observe in our calculation for this nucleus a
sudden decrease of EI − EI−2 for I = 6 in the yrast band. This
is another success of our NPA treatment since experiments
also suggest a sudden decrease of E6 − E4, as can be seen in
Fig. 5(c).

It is important to reiterate here that the variational PCV
analysis did not give rise to any negative parity pairs to
be included in the NPA calculations, as is evident from
Table II. Instead, the I = 10 backbend was produced solely
by including the appropriate positive-parity pairs, even for
the PAR-1 Hamiltonian. This is different from the earlier
explanation of the I = 10 backbend mechanism in Ref. [18],
which resulted from an arbitrary choice of collective pairs,
as is inherent in the PBCS approach. In contrast, the PCV
method provides a well-defined and unambiguous way to
choose the dominant pairs, so that we can now finally
pin down conclusively the I = 10 backbend mechanism
of 132Ba.

Perhaps most importantly, both the PAR-1 and PAR-2
calculations have the common feature that the I = 10 back-
bend is spontaneously produced (the sudden drop of level
space EI − EI−2) when we introduce cranking in our pair-
condensed variational analysis and then use the resulting
pairs in the NPA. (Without cranking, pure SD calculations do
not reproduce the I = 10 backbend [17].) This demonstrates
fairly convincingly that the introduction of cranking in our
variational analysis is indeed a practical way to improve the
NPA when dealing with higher spin states and backbending
phenomena.

To further demonstrate the usefulness of the PCV ap-
proach, we compare the NPA results that are obtained using
the collective pairs from the PBCS and PCV approaches,
i.e., the right two columns of Fig. 4, respectively. For 132Ba
with PAR-1, we see that levels from the PCV calculation
[Fig. 4(c1)] are systematically lower than those from the cor-
responding PBCS calculation [Fig. 4(b1)]. A reasonable low-
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FIG. 4. Level schemes from experiment [33] (labeled “Expt.”) and NPA calculations with the “PBCS” and “PCV” pair-optimization
approaches. Results with the PAR-1 and PAR-2 parameters shown in Table I are both presented. The “PBCS” calculation for 132Ba follows
Refs. [17,18]. All the other calculations include the collective pairs listed in Table II. The horizontal dashed lines highlight the ground states
of the “PBCS” calculations for a clearer comparison.

energy truncation scheme of the shell model should provide
the lowest yrast levels possible since lower energy hints larger
overlap between the eigenstates from a truncated subspace and
those from the full shell-model space. The comparison just
noted suggests that PCV is superior to PBCS for 132Ba for the
PAR-1 parameter set. With PAR-2, as shown in Figs. 4(b2)
and 4(c2), some improvement of PCV over PBCS can likewise
be noted, but the difference is not as dramatic as in the PAR-1
analysis. The less dramatic improvement can be attributed to

the fact that the PBCS calculations with PAR-2 have been
highly optimized with the HL=10

ν pair in Refs. [17]. Since the
PBCS with PAR-2 starts from a similar backbend mechanism
to the PCV, they should provide similar spectra, and this is
illustrated in Figs. 4(b2) and 4(c2). However, we note that the
HL=10

ν pair had to be artificially introduced in the PBCS pair
optimization, while in PCV the pair arises in a self-consistent
and a priori way when considering I = 10 backbend. Here too
we see the key benefit provided by the PCV approach.
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FIG. 5. EI − EI−2 in the yrast bands of the even Ba isotopes. The
experimental data (Expt.) is from Ref. [33].

As we approach the N = 82 closed shell, the difference
between the PBCS and PCV level schemes becomes negli-
gible, although PCV still produces slightly lower levels. For
136Ba, with N = 80, the two approaches again provide nearly
identical level spectra. As shown in Table II, the nuclear
deformation becomes very small as we approach the shell
closure, and it is precisely for very small deformations where
the PBCS method with only an S-pair condensate works well.

As is well known, E2 transition rates can provide a sensi-
tive probe of nuclear structure wave functions. As an example,
the I = 10 backbend in the Ba isotopes is also reflected by the
reduced B(E2, 10 → 8) values, as can be seen, e.g., in Fig. 6.
This feature is nicely reproduced by our NPA calculations,
both with the PBCS and PCV approaches, for all of the Ba
isotopes under investigation. In the B(E2) calculations shown
in Fig. 6, we used effective charges of eπ = 2e and eν = −1e,
following Refs. [17,18]. Thus, the NPA success in describing
spectral features of the I = 10 backbend in Fig. 4 (except for
136Ba) carries over to E2 properties as well. We should also
note the small B(E2, 6 → 4) of 136Ba in Fig. 6(c), which is
correlated with the small energy gap of E6 − E4 in Fig. 4(a′′).
It seems that a new “backbend” around I = 6 may be occur-
ring with a mechanism similar to that of the I = 10 backbend.
Of course, it is not appropriate to speak about a rotational band
in a nearly spherical nucleus like 136Ba, which is the reason we
put the term “backbend” here in quotes. Nevertheless, we can
now understand why our calculated spectrum for 136Ba does
not produce an I = 10 “backbend,” even though the B(E2)
values seem to. The calculated I = 6 “backbend” lowers the
8+ state too much to create a small energy gap of E10 − E8,
but it does not reduce the significant difference between the

FIG. 6. Same as described in the caption of Fig. 5 except for
B(E2, I → I − 2). The effective charges are eπ = 2e and eν = −1e,
following Refs. [17,18].

8+ and 10+ wave functions, as reflected by the small B(E2,
10 → 8) value. Thus, we believe that the adopted Hamiltonian
parameters provide reasonable wave functions for the full set
of 132−136Ba nuclei.

In Fig. 6, we also note that for 132Ba the PCV calculation
leads to larger B(E2) values than the PBCS calculation before
the backbend. This is to be expected since the PBCS method
neglects the proton-neutron interaction during the pair opti-
mization, thus suppressing some of the configuration mixing
and collectivity that would ensue from these correlations,
whereas the PCV calculations include them. For 134Ba and
136Ba, the two approaches give rise to similar B(E2) evolution
with increasing spin I . As for the spectral comparison, the
difference between B(E2) values from the PBCS and PCV
calculations likewise fades as we approach the N = 82 shell
closure. Thus, the PCV approach can provide a good descrip-
tion of the nuclear collectivity exhibited by deformed nuclei
while at the same time reducing to the PBCS approach for
spherical nuclei. It can therefore flexibly describe the entire
nuclear transition region with a wide spectrum of nuclear
shapes, something that was not possible with earlier treat-
ments.

To more fully demonstrate the validity of our proposed
pair-condensate variation, it would be useful to evaluate the
overlap between NPA wave functions and the corresponding
shell-model wave functions, as was done in Refs. [11–13].
Unfortunately, it is not possible to carry out such an analysis
for the Ba isotopes at present. Extended verification of our
method with smaller model spaces and with a variety of
interactions should be explored.
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IV. SUMMARY

In the present work, we have proposed a pair-condensate
variational approach to improve NPA calculations and to
define the optimal collective pairs for a description of atomic
nuclei. The variational method has particle-number conserva-
tion, as needed to accurately describe transitional nuclei, the
regime in which the NPA is especially useful. It also includes
all the two-body-configuration degrees of freedom. Therefore,
it works for asymmetric deformed nuclei and can estimate the
possible importance of negative-parity collective pairs. It can
also be applied in a hole representation to enable the investi-
gation of transitional regions slightly below magic numbers.
We have also proposed three self-consistent symmetries for
such a variational analysis.

We have performed trial calculations for the even Ba
isotopes in the northwest transitional region above (N = 82,

Z = 50). The proposed variational approach can describe the
nuclear shape of the various Ba isotopes we considered and,
most importantly, provides an improvement over earlier NPA
calculations. In detail, the variational method produces similar
nuclear shape evolution to an analogous HF calculation and
establishes γ softness for the nucleus 132Ba. This illustrates
both the validity of our variational approach and its abil-
ity to describe asymmetric deformation. By incorporating
cranking in our variational approach, we have been able
to demonstrate the key role of the neutron HL=10 pair and
proton I pairs in the description of the higher I yrast states.
The NPA calculations carried out using the input from our
cranked variational approach were able to successfully and
self-consistently describe the low-lying level schemes of the
even Ba isotopes from 132Ba through 136Ba and their I = 10
backbend, while producing lower energies than earlier NPA
calculations [17,18]. We also explained why negative-parity
pairs could in principle produce a backbend in 132Ba but
are nevertheless not recommended for an optimal description
within the framework of our method.

Finally, we wish to emphasize here that previous NPA
calculations (e.g., in Refs. [17–19]) invariably adopted col-
lective pairs that were blindly chosen, adjusted, and never
fully justified. With the pair-condensate variational approach
we have proposed in this work, NPA calculations can now be
carried out with greater confidence on which collective pairs
to include and on their structure. In subsequent work, we will
further study the possibility of parity mixture in the optimized
pair condensate, extensively verify the validity of our varia-
tional approach by wave function overlap analysis, and will
then apply the method to more realistic NPA calculations.
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APPENDIX: FORMALISM FOR PAIR CONDENSATE

Unless specifically noted to the contrary, an uppercase
Greek letter in this Appendix always denotes an uncoupled
collective pair and the corresponding lower case letter denotes
the structure coefficient matrix of this uncoupled collective
pair. Thus, for example, if � is an uncoupled collective pair,
then γ is its structure coefficient matrix. Furthermore, γi j

is the structure coefficient associated with the C†
i C†

j pair

configuration or with the C†
i Cj particle-hole configuration.

Now consider the contraction of two uncoupled collective
pairs, � and �, which can be expressed as

[�,�†] = −1

2
tr(q) + Q, (A1)

where q is a matrix of the form q = λγ , tr(q) is the trace of the
q matrix, and Q is a one-body operator with q as its structure
coefficient matrix, viz., Q = ∑

qi jC
†
i Cj [23,24].

The contraction of a collective pair and an arbitrary one-
body operator reads

[�, Q] = 1

2

∑
i jkl

γi jqkl [CjCi,C†
k Cl ] =

∑
i jl

qilγi jCjCl . (A2)

If we let � = [�, Q], then the coefficient matrix of � is λ =
γ q + qT γ , where qT is the transpose of of matrix q. The above
two contractions will be frequently used in the formalism to
follow.

As in Refs. [23,24], the overlap of the pair condensate
(�†)N |〉 is denoted by IN , and it reads

IN = 〈(�)N (�†)N 〉 = −1

2
N

N−1∑
l=0

tr(λ2l+2)JN−1
l , (A3)

where

JN
l =

[
N!

(N − l )!

]2

IN−l . (A4)

To further calculate the required Hamiltonian matrix
elements, we also need the formalism for three other
overlaps, viz., 〈�1(�)N−1(�†)N 〉, 〈�1�2(�)N−2(�†)N 〉, and
〈�1�2�3(�)N−3(�†)N 〉, where �1, �2, and �3 are arbitrary
pairs with coefficients matrices γ1, γ2, and γ3, respectively. To
simplify our formalism, these three overlaps are denoted by
〈γ1, N〉, 〈γ1, γ2, N〉, and 〈γ1, γ2, γ3, N〉, respectively.

References [23,24] already provided

〈γ1, N〉 = −1

2
N

N−1∑
l=0

tr(γ1λ
2l+1)JN−1

l , (A5)

where the J tensor is defined in Eq. (A4).
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Now we turn to the more complicated overlap 〈γ1, γ2, N〉.
It is given by

〈γ1, γ2, N〉 = 〈�1�2(�)N−2(�†)N 〉

=
N−1∑
l=0

〈�1(�)N−2(�†)l [�2,�
†](�†)N−1−l〉

= −1

2
N tr(γ2λ)〈γ1, N − 1〉

+ N (N − 1)〈�1(�)N−2(�†)N−2�020†〉, (A6)

where the �020 pair has a coefficient matrix γ 020 = λγ2λ.

Next, we further expand the last term of above equation
according to

〈�1(�)N−2(�†)N−2�020†〉
= 〈(�)N−2(�†)N−2[�1, �

020†]〉

+
N−3∑
l=0

〈(�)N−2(�†)l [�1,�
†](�†)N−l−3�020†〉

= −1

2
tr(γ1λγ2λ)IN−2 − 1

2
(N − 2)tr(γ1λ)〈λγ2λ, N − 2〉

+ (N − 2)(N − 3)〈λγ1λ, λγ2λ, N − 2〉
+ (N − 2)〈λγ1λγ2λ + λγ2λγ1λ, N − 2〉. (A7)

Combining the above two equations, we find that

〈γ1, γ2, N〉 = − 1

2N (N − 1)
tr(γ1λγ2λ)JN

2 + 1

4
N (N − 1)tr(γ2λ)

N−2∑
l=0

tr(γ1λ
2l+1)JN−2

l

+ 1

4
N (N − 1)(N − 2)2tr(γ1λ) ×

N−3∑
l=0

tr(γ2λ
2l+3)JN−3

l − N (N − 1)(N − 2)2
N−3∑
l=0

tr(γ1λγ2λ
2l+3)JN−3

l

+ N (N − 1)(N − 2)(N − 3)〈λγ1λ, λγ2λ, N − 2〉. (A8)

By solving the above recursion relation, we can express the 〈γ1, γ2, N〉 overlap in terms of matrix traces and the overlap-
related J tensor as

〈γ1, γ2, N〉 = 〈�1�2(�)N−2(�†)N 〉

= −1

2
N (N − 1)

N−2−N%2
2∑

k=0

[
(N − 2)!!(N − 3)!!

(N − 2k)!!(N − 2k − 1)!!

]2

tr(γ1λ
2k+1γ2λ

2k+1)JN−2k
2

+ 1

4
N (N − 1)

N−2−N%2
2∑

k=0

[
(N − 2)!!(N − 3)!!

(N − 2k − 2)!!(N − 2k − 3)!!

]2

tr(γ2λ
2k+1)

N−2k−2∑
l=0

tr(γ1λ
2l+2k+1)JN−2k−2

l

+ 1

4
N (N − 1)

N−3+N%2
2∑

k=0

[
(N − 2)!!(N − 3)!!

(N − 2k − 3)!!(N − 2k − 4)!!

]2

tr(γ1λ
2k+1)

N−2k−3∑
l=0

tr(γ2λ
2k+2l+3)JN−2k−3

l

− N (N − 1)

N−3+N%2
2∑

k=0

[
(N − 2)!!(N − 3)!!

(N − 2k − 3)!!(N − 2k − 4)!!

]2 N−2k−3∑
l=0

tr(γ1λ
2k+1γ2λ

2k+2l+3)JN−2k−3
l , (A9)

where the % symbol is a remainder operator as in the C-language standard.
Following the same philosophy, we express 〈γ1, γ2, γ3, N〉 as

〈γ1, γ2, γ3, N〉 = 〈�1�2�3(�)N−3(�†)N 〉

= 1

N (N − 1)(N − 2)

N−3−N%3
3∑

t=0

[
N!!!(N − 1)!!!(N − 2)!!!

(N − 3t )!!!(N − 3t − 1)!!!(N − 3t − 2)!!!

]2

×
[

1

4
tr(γ2λ

2t+1)tr(γ1λ
2t+1γ3λ

2t+1) − tr(γ1λ
2t+1γ2λ

2t+1γ3λ
2t+1)

]
JN−3t

3

+ N (N − 1)(N − 2)

N−3−N%3
3 −(N%3==0)∑

t=0

1

N − 3t − 3

[
(N − 3)!!!(N − 4)!!!(N − 5)!!!

(N − 3t − 6)!!!(N − 3t − 4)!!!(N − 3t − 5)!!!

]2

× 〈γ̃ , N − 3 − 3t〉
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− 1

2
N (N − 1)(N − 2)

N−3−N%3
3∑

t=0

1

N − 3t − 2

[
(N − 3)!!!(N − 4)!!!(N − 5)!!!

(N − 3t − 3)!!!(N − 3t − 4)!!!(N − 3t − 5)!!!

]2

× tr(γ3λ
2t+1γ2λ

2t+1)
〈
λtγ1λ

t , N − 2 − 3t
〉

− 1

2

N−3−N%3
3∑

t=0

N!!!(N − 1)!!!(N − 2)!!!(N − 3)!!!(N − 4)!!!(N − 5)!!!

[(N − 3t − 3)!!!]2(N − 3t − 1)!!!(N − 3t − 2)!!!(N − 3t − 4)!!!(N − 3t − 5)!!!

× tr(γ3λ
2t+1)

〈
λtγ1λ

t , λtγ2λ
t , N − 3t − 1

〉

+
N−3−N%3

3 −(N%3==0||N%3==1)∑
t=0

N!!!(N − 1)!!!(N − 2)!!!(N − 3)!!!(N − 4)!!!(N − 5)!!!

(N − 3t − 3)!!!(N − 3t − 4)!!![(N − 3t − 5)!!!]2(N − 3t − 6)!!!

× 1

(N − 3t − 7)!!!

∑̃
〈· · · 〉, (A10)

where the boolean expressions (N%3 == 0) and (N%3 == 0||N%3 == 1) are equal to 0 or 1, following the C-language
standard, the γ̃ is the following sum of five skew-symmetric matrices,

γ̃ =
[

1

4
tr(γ1λ

2t+1)tr(γ2λ
2t+1) − 1

2
tr(γ1λ

2t+1γ2λ
2t+1)

]
λt+1γ3λ

t+1

− 1

2
tr(γ2λ

2t+1)λt+1[γ1λ
2t+1γ3 + γ3λ

2t+1γ1]λt+1 + λt+1[γ2λ
2t+1γ1λ

2t+1γ3 + γ3λ
2t+1γ1λ

2t+1γ2]λt+1

− 1

2
tr(γ1λ

2t+1γ3λ
2t+1)λt+1γ2λ

t+1 − 1

2
tr(γ1λ

2t+1)λt+1[γ2λ
2t+1γ3 + γ2λ

2t+1γ3]λt+1

+ λt+1[γ1λ
2t+1γ2λ

2t+1γ3 + γ1λ
2t+1γ3λ

2t+1γ2 + γ2λ
2t+1γ3λ

2t+1γ1 + γ3λ
2t+1γ2λ

2t+1γ1]λt+1,

and
∑̃ 〈· · · 〉 is the following sum of five overlaps,

∑̃
〈· · · 〉 =

∑
i 
= j j 
=ki 
=k

〈λt+1γiλ
t+1, λt+1{γ jλ

2t+1γk + γkλ
2t+1γ j}λt+1, N − 3t − 3〉

− 1

2
tr(γ2λ

2t+1)〈λt+1γ1λ
t+1, λt+1γ3λ

t+1, N − 3t − 3〉 − 1

2
tr(γ1λ

2t+1)〈λt+1γ2λ
t+1, λt+1γ3λ

t+1, N − 3t − 3〉.

For the matrix element of an arbitrary one-body operator Q, we have

〈(�)N Q(�†)N 〉 =
N−1∑
l=0

〈(�)l [�, Q](�)N−l−1(�†)N 〉 = N〈λq + qT λ, N〉 = −N2
N−1∑
l=0

tr(qλ2l+2)JN−1
l . (A11)

One sees that for any one-body operator, 〈(�)N Q(�†)N 〉 = 〈(�)N Q†(�†)N 〉, where the coefficient matrix of Q† is qT , and
tr(qT λ2l+2) = tr(qλ2l+2). This is as required for a general Hermitian operator.

For the matrix element of an arbitrary two-body operator �†�, where the � pair has coefficient matrix γ ,

〈(�)N�†�(�†)N 〉 =
N−1∑
l=0

〈(�)l [�,�†](�)N−l−1�(�†)N 〉 = −1

2
N tr(γ λ)〈γ , N〉 + N (N − 1)〈γ , λγ λ, N〉. (A12)

For an arbitrary operator Ô, the derivative of its matrix element along the direction of an arbitrary � pair reads

∂〈(�)N Ô(�†)N 〉
∂δ‖�

= lim
δ‖�→0

〈(� + δ‖��)N Ô(�† + δ‖��†)N 〉 − 〈(�)N Ô(�†)N 〉
δ‖�

= lim
δ‖�→0

δ‖�N〈�(�)N−1Ô(�†)N 〉 + δ‖�N〈(�)N Ô(�†)N−1�†〉 + O
(
δ2
‖�

)
δ‖�

= N〈�(�)N−1(Ô + Ô†)(�†)N 〉, (A13)

where O(δ2
‖� ) is the second infinitely small quantity of δ‖� .
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In our variation, we choose all the λi j as our variables. With respect to a single matrix element λkl , the corresponding direction
pair is �kl with coefficient matrix λkl and associated matrix element λkl

i j = δikδ jl − δ jkδil , where the δ is the usual Kronecker
symbol.

If Ô is the identity operator, then Eq. (4) reduces to the first derivative of the overlap IN , namely,

∂〈(�)N (�†)N 〉
∂λkl

= 2N〈λkl , N〉 = 2N2
N−1∑
m=0

(λ2m+1)kl J
N−1
m . (A14)

If Ô = Q is a one-body operator, then

∂〈(�)N Q(�†)N 〉
∂λkl

= N〈�kl (�)N−1(Q + Q†)(�†)N 〉

= N〈[�kl , Q + Q†](�)N−1(�†)N 〉 + N
N−2∑
m=0

〈�kl (�)m[�, Q + Q†](�)N−m−2(�†)N 〉

= N〈γ̃ kl , N〉 + N (N − 1)〈λkl , γ̃ , N〉, (A15)

with γ̃ kl = λkl (q + qT ) + (q + qT )λkl , γ̃ = λ(q + qT ) + (q + qT )λ.
If Ô = �†� is a two-body operator, then

∂〈(�)N�†�(�†)N 〉
∂λkl

= 2N〈�kl (�)N−1�†�(�†)N 〉

= 2N〈[�kl , �†](�)N−1�(�†)N 〉 + 2N
N−2∑
m=0

〈�kl (�)m[�,�†](�)N−m−2�(�†)N 〉

= −N tr(λklγ )〈γ , N〉 − N (N − 1)tr(λγ )〈λkl , γ , N〉 + 2N (N − 1)(N − 2)〈λkl , λγ λ, γ , N〉
+ 2N (N − 1)〈λklγ λ + λγλkl , γ , N〉

= 2Nγkl〈γ , N〉 + 2N (N − 1)

〈
λklγ λ + λγλkl − 1

2
tr(λγ )λkl , γ , N

〉
+ 2N (N − 1)(N − 2)〈λkl , λγ λ, γ , N〉.

(A16)
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