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Background: Weakly bound and unbound nuclei close to particle drip lines are laboratories of new nuclear
structure physics at the extremes of neutron/proton excess. The comprehensive description of these systems
requires an open quantum system framework that is capable of treating resonant and nonresonant many-body
states on equal footing.
Purpose: In this work, we develop the complex-energy configuration interaction approach to describe binding
energies and spectra of selected 5 � A � 11 nuclei.
Method: We employ the complex-energy Gamow shell model (GSM) assuming a rigid 4He core. The effective
Hamiltonian, consisting of a core-nucleon Woods-Saxon potential and a simplified version of the Furutani-
Horiuchi-Tamagaki interaction with the mass-dependent scaling, is optimized in the sp space. To diagonalize the
Hamiltonian matrix, we employ the Davidson method and the Density Matrix Renormalization Group technique.
Results: Our optimized GSM Hamiltonian offers a good reproduction of binding energies and spectra with the
root-mean-square (rms) deviation from experiment of 160 keV. Since the model performs well when used to
predict known excitations that have not been included in the fit, it can serve as a reliable tool to describe poorly
known states. A case in point is our prediction for the pair of unbound mirror nuclei 10Li - 10N in which a huge
Thomas-Ehrman shift dramatically alters the pattern of low-energy excitations.
Conclusion: The new model will enable comprehensive studies of structure and reactions aspects of light drip-
line nuclei.
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I. INTRODUCTION

With progress in radioactive beam experimentation and
many impressive advances in microscopic nuclear theory,
light nuclei provide an excellent ground for testing both
nuclear interactions and many-body approaches. Of particu-
lar interest are weakly bound and unbound nuclear systems
with extreme neutron-to-proton imbalance, whose structure is
profoundly affected by the coupling to the continuum of decay
and reaction channels [1–4].

The important challenge for the field of low-energy nu-
clear theory is to unify nuclear bound states with resonances
and scattering continuum within one consistent framework
[5]. There are many open questions that can be answered
by studying drip-line systems [6]: What can be said about
properties of weakly bound or unbound many-body systems
close to the reaction threshold? Do their properties depend on
any particular realization of the Hamiltonian? Which nuclear
properties are impacted by the coupling to the continuum
of scattering and decaying states? Theoretically, a coherent
description of the interplay between bound and unbound states
in the many-body system requires an open quantum system
formulation. In this context, this area of research is truly

interdisciplinary. Indeed, open quantum systems are studied in
various fields of physics: nuclear physics, atomic and molecu-
lar physics, nanoscience, quantum optics, etc. In spite of their
differences, such systems often display universal properties
that are common to all weakly bound or unbound systems
close to the reaction/decay threshold.

Impressive progress has been achieved in describing
weakly bound and unbound nuclei using A-body methods
rooted in realistic inter-nucleon interactions [7–11]. Exam-
ples include microscopic computations of 11Be [12,13], 7He
[14–16], and 9He [17].

On a more phenomenological level, configuration integra-
tion techniques, based on the concept of valence nucleons
coupled to an inert core have reached a high level of sophis-
tication. Approaches such as the real-energy continuum shell
model [18,19] and shell model embedded in the continuum
[20–23] have been applied to systems near particle-emission
threshold with one/two nucleons allowed in the continuum
space. Another powerful tool is the complex-energy Gamow
shell model (GSM) [24–26], an extension of the interacting
shell model to the treatment of open quantum systems. GSM
has been successfully used to describe structural and reaction
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properties of exotic nuclei (see Refs. [27–31] for recent repre-
sentative applications).

This study can be viewed as a continuation of previous
work on the development of a quantitative GSM description
of light nuclei using a 4He-nucleon potential and finite-range
interaction between valence nucleons. In the first paper [31],
where calculations were carried out in the spdf model space,
the core-nucleon potential was optimized to nucleon-4He
phase shifts. By means of the principal-component analysis, it
was concluded that a very reasonable description of energies
of 6 � A � 9 nuclei (with the root-mean-square (rms) devi-
ation from experiment of 250 keV) could be achieved with
only four interaction parameters. In the follow-up study [32],
where calculations were performed in the spd space, exper-
imental energies and widths of 5−8He could be reproduced
within tens of keV precision by adjusting only one parameter
(the strength of spin-singlet central neutron-neutron term). In
this work, we use the GSM model to describe binding energies
and spectra of 5 � A � 11 nuclei in the sp space by carrying
out simultaneous optimization of the core-nucleon potential
and the valence two-body interaction with the mass-dependent
interaction scaling to effectively account for the missing three-
body forces. We show that with the appreciable reduction
of the parameter space (four strengths of the core-nucleon
potential and four parameters of the two-body interaction),
a very reasonable agreement with experimental energies is
obtained.

Predictions were also made for the particle-unstable nu-
clei 10Li, 10N, and 11O, which are excellent laboratories of
open quantum system physics. In particular, a spectacularly
strong Thomas-Ehrman effect in the 10N - 10Li mirror pair is
predicted.

This paper is organized as follows. The theoretical model is
outlined in Sec. II, which contains a short overview of GSM,
description of the GSM Hamiltonian, and the optimization
protocol. Results are presented in Sec. III, with the optimiza-
tion results discussed first, followed by predictions for lithium
isotopes and their mirror partners. Finally, Sec. IV presents
conclusions and perspectives for future studies.

II. THEORETICAL MODEL

A. Gamow shell model

Here we briefly recall the GSM formalism. In this work, we
describe the lithium isotopes and their mirror partners in terms
of valence nucleons coupled to the 4He core. This picture is
justified by the fact that the 4He nucleus is a tightly bound
system with the first excited state located 20.21 MeV above
the ground state (g.s.) [33].

The GSM Hamiltonian can be written as

H =
Nval∑

i

[
p2

i

2μi
+ Uc(i)

]
+

Nval∑
i=1, j>i

[
Vi, j + pi p j

Mc

]
, (1)

where Nval denotes the number of valence nucleons, μi and
Mc are the reduced mass of the nucleon and the mass of the
core, respectively, Uc is the core-nucleon potential, and Vi, j

is the interaction between valence nucleons. The Hamiltonian

Eq. (1) is written in the cluster-orbital shell model coordinates
[34] defined with respect to the center of mass of the core.

The GSM Hamiltonian is diagonalized in the Berggren ba-
sis [35], which allows to consistently treat bound, resonance,
and scattering states. In the complex-momentum space, the
Berggren basis obeys the closure relation for each partial wave
(�, j): ∑

n=b,d

|ũn〉 〈un| +
∫
L+

|ũ(k)〉 〈u(k)| dk = 1, (2)

where b and d stand for the bound states and selected decaying
resonant states, respectively, and the contour L+ representing
the nonresonant scattering states is located in the fourth quad-
rant of the complex k-plane. The specific shape of L+ is not
important as long as all resonant states between the real axis
and the contour L+ are included. In practical applications, the
contour is discretized for each (�, j), which results in a finite
number of single-particle (s.p.) states. From this discretized
set of shells one constructs Slater determinants, which form
a many-body basis within which the GSM Hamiltonian is di-
agonalized. Due to the inclusion of resonances and complex-
momentum scattering states, the Hamiltonian representation
in the Berggren basis is complex symmetric [26].

As in any configuration interaction approach, the dimen-
sion of the Hamiltonian matrix grows quickly with the number
of active particles. In the context of the GSM, it increases
more quickly than in the conventional shell model due to
the presence of discretized scattering states. To this end, we
truncate the model space by working with natural orbitals
which provide an optimized set of s.p. states [31,36,37].

The natural orbitals are first computed in a truncated space
where few valence particles are allowed to occupy continuum
shells. A truncation is then performed on the s.p. basis by
keeping only natural orbitals for which the modulus of the
occupation number is greater than a certain (small) value.
Finally, a new set of Slater determinants is constructed, for
which also a truncation on the number of particles in the
continuum is enforced, and the numerical diagonalization is
performed using the Davidson method [38].

To check the accuracy of this truncation procedure in the
case of the largest systems, a supplementary computation
was also performed using the density-matrix renormalization
group (DMRG) [39,40] method. The DMRG allows per-
forming calculations without the s.p. particle basis truncation
and without restrictions on the number of particles in the
continuum. In this approach, the many-body Schrödinger
equation is solved iteratively in tractable truncated spaces,
which are gradually increased until the numerical convergence
is reached. We have checked that, in all cases discussed in this
work, the GSM results are in good agreement with those of
DMRG (see more discussion in Sec. II D).

B. GSM Hamiltonian

The core-nucleon potential is taken as a Woods-Saxon
(WS) field, with a central and spin-orbit terms, and the
Coulomb field for protons:

Uc(r) = V0 f (r) − 4V�s
1

r

df (r)

dr
� · s + UCoul(r), (3)
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where f (r) = −(1 + exp[(r − R0)/a])−1. The WS radius R0

and diffuseness a were taken from Ref. [31]: R0(n) = 2.15
fm, R0(p) = 2.06 fm, a(n) = 0.63 fm, and a(p) = 0.64 fm.
The Coulomb potential is generated by a spherical Gaussian
charge distribution with radius Rch = 1.681 fm [41].

Following Ref. [31], the interaction between valence nu-
cleons is a sum of central, spin-orbit, tensor, and Coulomb
terms:

V = Vc + VLS + VT + VCoul. (4)

The central, spin-orbit and tensor interactions are constructed
based on the finite-range Furutani-Horiuchi-Tamagaki (FHT)
force [31,42,43]. For each term, the radial form factor is
represented by a sum of three Gaussians with different widths
representing the short, intermediate, and long ranges of the
nucleon-nucleon interaction. This interaction has been used
successfully to describe structure and reactions involving light
nuclei [28–32,44,45].

To be applied in the present GSM formalism, the interac-
tion is rewritten in terms of the spin-isospin projectors �ST

[46]:

Vc(r) = V 11
c f 11

c (r)�11 + V 10
c f 10

c (r)�10

+V 00
c f 00

c (r)�00 + V 01
c f 01

c (r)�01,

VLS = (L · S)V 11
LS f 11

LS (r)�11,

VT(r) = Si j
[
V 11

T f 11
T (r)�11 + V 10

T f 10
T (r)�10

]
, (5)

where r ≡ ri j stands for the distance between the nucleons i
and j, r̂ = ri j/ri j , L is the relative orbital angular momentum,
S = (σ i + σ j )/2, and Si j = 3(σ i · r̂)(σ j · r̂) − σ i · σ j . The in-
teraction Eq. (5) is characterized by the seven interaction
strengths in spin-isospin channels, V 11

c , V 10
c , V 00

c , V 01
c , V 11

LS ,
V 11

T , and V 10
T .

In Ref. [31], the FHT interaction was used in the GSM
description of bound and unbound nuclei with A � 9. While
a good energy reproduction was achieved, the systematic
statistical study of the parameters carried out in Ref. [31]
demonstrated that some of the terms in the FHT interaction
were sloppy, i.e., not well constrained.

In this study, we use a simplified version of the FHT
interaction where we consider the central V 10

c ,V 01
c , and tensor

V 10
T terms. This choice is not only informed by the previous

statistical work [31] but also justified by effective field theory
(EFT) arguments [47–51]. Indeed, in the EFT expansion of the
bare nucleon-nucleon interaction, these three terms appear at
leading order, whereas the other terms present in the original
FHT interaction correspond to higher orders of EFT. However,
we have observed that adding the central term V 00

c improves
the overall description of the nuclei considered in this work
and hence we have also included it in Vi, j . We want to mention
here that a similar approach was employed in Ref. [32] to
construct an effective neutron-neutron interaction for the de-
scription of the helium isotopic chain in the Berggren basis. In
that case, using only the central term V 01

c , a good reproduction
of weakly bound and unbound states in helium nuclei was
achieved.

As it is customary in shell-model studies [52,53], a mass-
dependent interaction-scaling factor of the form (6/A)α is

introduced to effectively account for the missing three-body
forces [54,55]. We found that the value α = 1/3 gives a very
reasonable description of experimental energies. Finally, the
Coulomb interaction between valence protons is treated by
incorporating its long-range part into the basis potential and
expanding the short-range two-body component in a truncated
basis of HO states [56,57].

C. Interaction optimization protocol

Our interaction optimization protocol strictly follows that
of Ref. [31]. In short, we minimize the χ2 penalty function:

χ2(p) =
Nd∑
i=1

(Oi(p) − Oexp
i

δOi

)2

, (6)

where p is the vector of parameters used, Nd is the number
of observables, Oi(p) are the calculated observables, Oexp

i are
experimental values, and δOi are the adopted errors that have
been obtained from the χ2 normalization [58,59].

The minimization of χ2 is done using the Gauss-Newton
method. Since the GSM Hamiltonian is linear in the strength
parameters, the Jacobian matrix at the minimum p0,

Jiα = 1

δOi

∂Oi

∂ pα

∣∣∣∣
p0

, (7)

can be calculated exactly using the Hellmann-Feynman theo-
rem [60]. The covariance matrix C can be expressed in terms
of J:

C � (JT J )−1. (8)

In the situation where the Jacobian matrix is noninvertible
or has a very small determinant, the Gauss-Newton method
becomes unstable. This typically happens when a parameter
is sloppy, i.e., not well constrained by observables. To sta-
bilize the calculation, the matrix inversion is replaced by its
pseudoinverse, derived from the singular value decomposition
(SVD) of the Jacobian matrix [31].

The uncertainties on parameters and predicted observables
can be computed with the help of the covariance matrix C. For
more details, the reader is referred to Ref. [31].

The four strengths of the WS potential and four parameters
of the two-body interaction are simultaneously optimized to
reproduce 15 energy levels in lithium isotopes and their mirror
partners given in Table I.

The calculations are performed in a model space which
includes s1/2, p3/2, and p1/2 partial waves for both protons
and neutrons. Since the optimization involves energies only,
for the sake of speeding-up the optimization and for better
stability, we used a deeper WS potential to generate the
basis, in which the 0p3/2 and 0p1/2 poles are bound. A real
contour was then used to describe the nonresonant continuum
space. The contour L+, independent of interaction parame-
ters, was divided into three segments: [0, kpeak], [kpeak, kmid],
and [kmid, kmax], with the values kpeak = 0.25 fm−1, kmid =
0.5 fm−1, and the cutoff momentum kmax = 4 fm−1. Discretiz-
ing each segment with 10 points using the Gauss-Legendre
quadrature guarantees the convergence of results.
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TABLE I. Energy levels used in the GSM Hamiltonian optimiza-
tion. The energies are given with respect to the 4He g.s. The exper-
imental values Eexp are taken from Ref. [33]. They are compared to
the GSM values EGSM.

Nucleus State Eexp (MeV) EGSM (MeV)

1+ −3.70 −3.72
6Li

0+ −0.14 −0.10

3/2− −10.95 −11.02
7Li

1/2− −10.47 −10.14

2+ −12.98 −13.14
8Li

1+ −12.00 −11.93

3/2− −17.05 −16.90
9Li

1/2− −14.35 −14.50

11Li 3/2− −17.41 −17.48

3/2− −9.30 −9.36
7Be

1/2− −8.88 −8.53

2+ −9.44 −9.60
8B

1+ −8.67 −8.50

3/2− −10.74 −10.85
9C

1/2− −8.52 −8.59

To calculate resonance’s width, one has to generate a basis
based on a shallower basis-generating WS potential, in which
the 0p3/2 and 0p1/2 poles are decaying resonances. In this
case, a complex contour defined by a complex value of kpeak

is employed. It is to be noted that calculation of the width is
more demanding than that of energy. A higher discretization
with 20 points for each segment was used for this purpose.
Due to the Coulomb repulsion, the mean field used to generate
the s.p. basis for proton rich nuclei varies with proton number.
The contour is adjusted separately for each system to assure
that the Berggren completeness relation is met. To ensure the
numerical stability, the chosen contour should neither lie too
close to the Gamow poles nor lie too far from the real-k axis.
In this work, kpeak is chosen to lie slightly below the position
of the 0p3/2, 0p1/2 poles, but with the imaginary part greater
than −0.2 fm−1. The calculations were repeated with several
slightly different values of kpeak to assure the full convergence.

D. Computational details

In this study, we used a newly developed GSM code that is
based on the two-dimensional partitioning of the Hamiltonian
matrix [61]. First, we computed natural orbitals from a calcu-
lation with at most two particles in the continuum space. The
s.p. basis was further truncated by keeping the natural orbitals
with occupations greater than 10−6. The GSM problem was
then solved in a model space with at most four particles in the
continuum shells. We checked the accuracy of this truncation
by performing full DMRG calculations for the systems with
A = 9–11.

TABLE II. Central and spin-orbit strengths of the core-nucleon
WS potential optimized in this work. The statistical uncertainties are
given in parentheses.

Parameter Neutrons Protons

V0 (MeV) 39.5 (2) 42.1 (4)
V�s (MeV fm2) 10.7 (2) 11.1 (5)

The DMRG allows the computations of energies without
truncation in the s.p. basis and without restriction on the
number of particles in the continuum. In the first stage of the
DMRG procedure, the set of shells is split into two subsets
H and P: the pole subspace H consists of the Gamow poles
considered (for instance, in the DMRG computations of the
9Li g.s., H contains the 0p3/2 and 0p1/2 Gamow states) and
the remaining shells form the subspace P. The resolution of
the Schrödinger equation is then performed in an increasing
set of shells, by gradually including the shells of P, one at a
time. After having considered a given shell of P, the model
space is truncated by keeping Nkept many-body states that
correspond to the eigenstates of the density matrix with the
largest eigenvalues wi (in modulus). The number of states kept
is defined by the control parameter ε so that the condition
|1 − �(

∑Nkept

i=1 )wi| < ε is fullfilled. The first DMRG stage
ends when all shells in P have been included. At that point,
natural orbitals are computed and new subsets H and P are
defined. The new subset H contains NH natural orbitals. The
calculation continues in a similar fashion, by adding shells
from the new subset P, one by one, until all shells have been
considered, and then a new set of natural orbitals is computed.
NH is increased and ε decreased, until convergence (few
keV), is achieved. For instance, in the case of the 9,11Li g.s.,
computations were carried out by increasing NH up to 12 and
ε was decreased down to 5 × 10−9 (a typical DMRG accuracy
[45]). For both nuclei, the GSM energies turned out to be less
than 10 keV above the DMRG results. For more details about
our DMRG implementation, see Refs. [37,39,40].

III. RESULTS

A. Optimized interaction

As one can see in Table I, a very good consistency between
theoretical and experimental energies has been achieved.
The rms deviation from experimental values is 160 keV. The
largest discrepancy is obtained for the 1/2− states of 7Li and
7Be, where the deviation from the data is ∼340 keV.

The values of the parameters for the WS potentials and the
two-body interaction are displayed, along with their statistical
uncertainties, in Tables II and III, respectively. As one can

TABLE III. Strengths V ST
η of the two-body interaction optimized

in this work. The statistical uncertainties are given in parentheses.

V 01
c (MeV) −9.425 (70)

V 10
c (MeV) −8.309 (90)

V 00
c (MeV) −8.895 (1130)

V 10
T (MeV fm−2) −22.418 (970)
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TABLE IV. Ground-state energies (in MeV) and widths (in keV)
of 5He and 5Li obtained from the optimized core-nucleon potential
and compared to experiment [64,65].

Nucleus EGSM Eexp 
GSM 
exp

5He 0.74 0.798 640 648
5Li 1.6 1.69 1300 1230

judge from the small parameter uncertainties in Tables II
and III, the GSM Hamiltonian fit is well constrained. As
expected [31], the central term V 00

c has the largest uncertainty
of ∼12%.

It is to be noted that the core-nucleon potential devel-
oped in the present study, optimized simultaneously with
the two-body interaction, is slightly shallower than the WS
field optimized in Ref. [31] to the experimental s and p
nucleon-4He scattering phase shifts. To assess the quality of
the WS potential obtained in this work, Table IV shows the
predicted energies and widths of the 3/2− g.s. of 5He and 5Li.
These values are indeed very close to predictions of Ref. [31]
for 5He and 5Li.

Figure 1 shows the energies calculated in the GSM for the
g.s. and selected excited states in lithium isotopes. Table V
lists the energy levels for states not entering the optimization
with the corresponding statistical uncertainties. As one can
see, the optimized interaction allows for a good reproduction
of experimental energies. It is to be noted that the results for
higher-excited states not included in the fit are also very sat-

TABLE V. Energy levels for states not entering the optimization.
The experimental values Eexp are taken from Ref. [33]. The GSM
values EGSM are shown with the uncertainties in the parenthesis.

Nucleus State Eexp (MeV) EGSM (MeV)

6Li 3+ −1.51 −1.57(2)
7Li 7/2− −6.3 −6.04(2)
8Li 3+ −10.73 −10.59(2)
9Li 5/2− −12.75 −12.64(2)

2+ −16.78 −16.55(5)
10Li

1+ −16.54 −16.22(5)
7Be 7/2− −4.73 −4.47(2)
8B 3+ −7.12 −7.11(2)
9C 5/2− −7.14 −7.12(5)

1− −8.84 −8.93(6)
10N

2− −7.94 −8.46(6)

isfactory. For instance, the calculated 3+ state in 6Li at −1.57
MeV is only 60 keV below the experimental energy. The
experimental widths for the second 5/2− state in 7Li (89 keV)
and 5/2− state in 9Li (88 keV) are very reasonable: the GSM
values are, respectively, 22 keV and 62 keV. In general, we do
not expect the same quality of data reproduction for all excited
states due to the fact that the higher partial waves with � � 2,
which may contribute to the wave functions of these states,
are not included in the model space. The estimated statistical
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FIG. 1. Level schemes of 6−11Li calculated in GSM and compared to experiment. Energies are given with respect to 4He core. The
resonance widths are marked by shaded boxes. The levels used in the GSM Hamiltonian optimization are marked by stars; their energies
are listed in Table I. Theoretical uncertainties for states not entering the optimization are given in Table V. The inset shows the predicted levels
of 10Li compared to experimental data from 1999 [62] and 2015 [63]. Uncertainties on these levels are marked by arrows. See text for more
discussion.
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TABLE VI. Squared amplitudes of dominant configuration of
valence neutrons and protons for low-lying levels of 10Li and 10N,
respectively. The odd proton in 10Li and the odd neutron in 10N
occupy the 0p3/2 Gamow state. The tilde sign labels nonresonant
continuum components.

Configuration 10Li 10N

2+ 1+ 2+ 1+

(0p3/2)4(0p1/2)1 0.84 0.81 0.81 0.78

(0p3/2)3(0p1/2)2 0.10 0.06 0.10 0.05

1− 2− 1− 2−

(0p3/2)4(1s1/2)1 0.72 0.73 0.44 0.37

(0p3/2)4(s̃1/2)1 0.29 0.35

(0p3/2)3(0p1/2)1(1s1/2)1 0.14 0.14 0.09 0.07

(0p3/2)3(0p1/2)1(s̃1/2)1 0.06 0.07

(0p3/2)2(0p1/2)2(1s1/2)1 0.07 0.07 0.04 0.03

(0p3/2)2(0p1/2)2(s̃1/2)1 0.03 0.03

uncertainties on the predicted energies are small: in most cases
they are in the range of 20–60 keV.

B. Structure of 10Li

Several experiments [66–69] and theoretical studies
[25,70] have indicated that the structure of the g.s. in 10Li may
correspond to a valence neutron in a virtual s-state. In a recent
experiment [71], the presence of an appreciable low-energy
� = 0 strength has not been confirmed. Their conclusion was,
however, challenged in theoretical studies [72,73].

We wish to note, however, that a virtual state in 10Li
cannot be associated with an energy level of the system; the
appearance of such a state in the complex-momentum plane
manifests itself through a low-energy enhancement of the
n + 9Li cross section, see Refs. [25,76,77] for more discussion
of this point in the context of the GSM description of 10,11Li.
For that reason, we limited our calculations to resonant states
in 10Li that can be interpreted as experimentally observable
resonances.

The computed g.s. 2+ and the first excited state 1+ are
predicted, respectively, at 0.35 MeV and 0.68 MeV above the
n + 9Li threshold. As seen in Fig. 1, the practically degenerate
1− and 2− states are calculated at 1.05 MeV. A comment is in
order here. To achieve the numerical stability, the calculation
of the resonances in 10Li had to be performed by employing
a basis-generating WS potential that is deeper than the opti-
mized core-nucleon potential. We have checked that in this
way we could obtain very stable results for the energies, with
accuracy below 1 keV. However, the computed widths, of the
order of few hundreds keV, are not stable. For that reason, we
do not show them in Fig. 1.

Table VI lists the squared amplitudes of the dominant
neutron configurations for the four low-lying states of 10Li.
The positive parity states are primarily made from the 0p3/2

and 0p1/2 resonant shells. The negative parity states contain
one neutron in the 1s1/2 shell. The contribution from the

nonresonant continuum space to the low-lying states is very
small.

In Ref. [62] they observed two positive-parity states at 0.24
and 0.53 MeV above the n + 9Li threshold. The Jπ = 1+ as-
signment for the lower state was questioned in Ref. [63] who
suggested a Jπ = 2+ assignment, see the inset in Fig. 1. Con-
sidering the large experimental widths of the 1+/2+ doublet,
0.10/0.4 MeV [62] or 0.8/0.2 MeV [63], both experimental
results are consistent with the GSM results. The computed po-
sition of the negative-parity 1−, 2− doublet is consistent with
the observation of a negative-parity state at ∼1.5 MeV [71].

C. Mirror partners of lithium isotopes

The level schemes for the mirror partners of lithium iso-
topes are shown in Fig. 2. As in the Li case, we obtain a
very reasonable agreement with experiment. The 5/2− and
7/2− excited states in 7Be are slightly (<300 keV) above the
corresponding experimental values, whereas the position of
the resonant 3+ states in 8B and 5/2− state in 9C are well
reproduced, as well as the weakly-bound g.s. of 8B and 9C.

In the following we focus on the unbound nuclei 10N and
11O. Due to the presence of the Coulomb barrier, the 1s1/2

single-proton state is a resonance rather than a virtual state
[75,77]. To capture this state, a complex contour is used with
a kpeak = (0.25 − 0.05i) fm−1.

The spectrum of 10N is not experimentally known with
certainty. In Fig. 2, we show the tentative level assignments
used in Ref. [33]. According to Refs. [78,79], the g.s. of
10N is most likely a 1− state of energy in the range from
1.81 to 1.94 MeV. In a more recent work [80], they observed
two low-lying negative-parity states but they were not able to
assign Jπ values.

Our calculations for 10N predict the g.s. to be a 1− state
with (E , 
) = (−8.93, 0.9) MeV that lies 1.92 MeV above the
one-proton threshold. The first excited state is predicted to be
a 2− state with 
 = 0.3 MeV slightly below the value quoted
in Ref. [80]. This result is consistent with the recent Gamow
coupled-channel analysis of Ref. [77]. We also predict an
excited 1+ state with 
 = 0.3 MeV, lying 2.9 MeV above the
9C +p threshold, as well as a second positive-parity 2+ state
with a width of 0.36 MeV.

Table VI shows the squared amplitudes of the dominant
proton configurations for the four low-lying states of 10N.
Similar to 10Li, the positive parity states are primarily made
from the 0p3/2 and 0p1/2 resonant shells. The dominant con-
figurations of negative parity states contain one � = 0 proton,
which can either be in the 1s1/2 shell or in a nonresonant
continuum state.

The unbound 11O is the mirror partner of the 2n-halo
nucleus 11Li. The first observation of 11O was achieved re-
cently [75]. A broad peak with a width of 3.4 MeV was
observed which was interpreted in terms of four overlapping
3/2− and 5/2+ resonances. Our GSM calculations predict
a 3/2−

1 g.s. with a width of 0.13 MeV and the first excited
5/2+

1 state with 
 ≈ 1 MeV; see Fig. 2. These predictions are
consistent with the Gamow coupled-channel calculations of
Ref. [77].
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FIG. 2. Similar to Fig. 1 but for the mirror partners of the Li isotopes. Experimental energy of the 5/2− resonance in 9C was taken from
Ref. [74] and the data for 11O from Ref. [75].

To study the effect of particle continuum due to differ-
ent positions of particle thresholds in mirror partners, or
Thomas-Ehrman effect [81,82], in Fig. 3 we compare the level
schemes of Li isotopes and their mirror partners. (For the early
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FIG. 3. Level schemes of Li isotopes with (a) A = 7, (b) A = 8,
(c) A = 9, (d) A = 10, and their mirror partner predicted in our GSM
calculations. The energies are plotted with respect to the g.s. energy
(at zero). The one-nucleon emission thresholds are marked.

GSM study of the Thomas-Ehrman shifts in light nuclei, see
Ref. [28].) As expected, the proton-unbound states in proton-
rich mirror nuclei are shifted down in energy as compared to
the states in neutron-rich partners, which lie below, or slightly
above the one-neutron threshold.

The 10Li - 10N mirror pair is the most interesting one as
both nuclei lie above the particle-emission thresholds. As seen
in Table VI, the effect of the very low 9C +p threshold in 10N
on the negative-parity states 1− and 2− containing the s-wave
proton is huge: it results in a rather dramatic shift of both
negative parity states when going from 10Li to 10N that gives
rise to a different structure of low-lying resonances in these
nuclei.

IV. CONCLUSIONS

In this work, we studied level schemes of 6−11Li and
their mirror partners in the framework of the complex-energy
Gamow shell model assuming the rigid 4He core. The effec-
tive interaction between valence nucleons is constructed based
on a simplified version of the FHT potential.

By fitting four FHT coupling constants and four parameters
of the core-nucleon potential, to the experimental energies
of 15 states in 6−9,11Li, 7Be, 8B, and 9C, we managed to
construct a well constrained interaction. A rms deviation from
experiment of 160 keV was reached for energy levels used
in the GSM Hamiltonian optimization, with the statistical
errors of the GSM Hamiltonian parameters not exceeding
12%. This result suggests that the “complex-made-simple”
scenario proposed in Ref. [32] for the He chain also works for
heavier nuclei involving valence protons. Namely, a param-
eter reduction guided by effective-scale arguments provides
a practical alternative to full-fledged A-body calculations for
drip-line nuclei.
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We assessed the predictive power of the optimized Hamil-
tonian by making predictions for excited states not included
in the fit. In general, a very reasonable agreement with testing
data was obtained; see Table V.

Predictions were also made for the particle-unstable nuclei
10Li, 10N, and 11O. The computed 3/2− g.s. of 11O is con-
sistent with the recent Gamow coupled-channel calculations
[75,77]. The g.s. of 10Li is predicted to be a 2+ state about 0.35
MeV above the neutron-emission threshold, in accordance
with Ref. [63] while the lowest negative-parity state 1− is
expected to lie ∼1.0 MeV higher, in agreement with Ref. [71].
Due to a spectacularly strong Thomas-Ehrman effect, for 10N
we predict the 1− g.s. and 2− first excited state.

By successfully reproducing the structure of lithium iso-
topes and their mirror partners with an optimized interaction,
we demonstrated that the quantified GSM is capable of quality
predictions for exotic light nuclei with several valence protons

and neutrons. Our future efforts will focus on Be and B
isotopes, which exhibit complex structure due to the intricate
effects of continuum coupling and clustering [83–87].
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