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Nucleus giant resonances from an improved isospin-dependent
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We have studied the isoscalar giant quadruple resonance (ISGQR) and the isovector giant dipole resonance
(IVGDR) in 208Pb based on an improved isospin-dependent Boltzmann-Uehling-Uhlenbeck transport approach
using an improved isospin- and momentum-dependent interaction. With the isoscalar nucleon effective mass
and the nucleon-nucleon cross section which reproduces respectively the excitation energy and the width of
the ISGQR strength function, the slope parameter of the symmetry energy and the neutron-proton effective-
mass splitting are constrained respectively within 36 < L < 62 MeV and 0.08δ < (m∗

n0 − m∗
p0 )/m < 0.42δ,

by comparing the resulting centroid energy of the IVGDR and the electric-dipole polarizability with the
experimental data. It is found that nucleon-nucleon collisions have considerable effects on the resulting
electric-dipole polarizability, which needs to be measured more accurately in order to pin down isovector nuclear
interactions.
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I. INTRODUCTION

Understanding the microscopic nuclear interaction as well
as the nuclear matter equation of state (EOS) is one of the
main goals of nuclear physics. Thanks to the great efforts
made by pioneering nuclear physicists, so far the uncertainties
mainly exist in the isospin-dependent part of the EOS, i.e.,
the nuclear symmetry energy Esym, whose density dependence
is generally characterized by the slope parameter L around
the saturation density. At the microscopic level, the exchange
contribution of the finite-range part of the effective nuclear in-
teraction leads to the momentum-dependent nuclear potential,
which is related to the nuclear matter EOS. The nucleon ef-
fective mass characterizing the momentum dependence of the
nuclear potential can be different for neutrons and protons in
the isospin-asymmetric nuclear matter. The isospin splitting of
the neutron and proton effective mass m∗

n − m∗
p is also related

to the symmetry energy through the Hugenholtz-Van Hove
theorem [1,2]. Both the symmetry energy and the neutron-
proton effective-mass splitting have important ramifications
in nuclear astrophysics, nuclear reactions induced by neutron-
rich nuclei, and nuclear structures. Reviews on the symmetry
energy can be found in Refs. [3–7], and a recent review on
the neutron-proton effective-mass splitting can be found in
Ref. [8].

Observables of finite nuclei are important probes of nuclear
interactions in nuclear medium at subsaturation densities.
Both the isoscalar and isovector excitations of finite nuclei
are good probes for the corresponding channels of nuclear
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interactions and EOSs (see, e.g., Ref. [9]). The pygmy dipole
resonance (PDR) and the isovector giant dipole resonance
(IVGDR) are typical isovector excitations in nuclei and good
probes of isovector nuclear interactions. The former repre-
sents the oscillation of the neutron skin against the nucleus
inert core, while the latter is an oscillation mode in which
neutrons and protons move collectively relative to each other.
The strength function of the PDR generally peaks at lower
excitation energies compared with that of the IVGDR [10,11],
while both are sensitive to the symmetry energy which pre-
vents the centers of mass of neutrons and protons from being
away from each other. Typically, various studies have shown
that the centroid energy and the electric-dipole polarizability
extracted from the strength function of the IVGDR are found
to be good probes of the symmetry energy [12–20]. On the
other hand, it is intuitively expected that the frequency of the
collective oscillation is sensitive not only to the bulk energy
but also to the microscopic nuclear interaction characterized
by the nucleon effective mass. Fortunately, the isoscalar nu-
cleon effective mass can be extracted from the excitation
energy of the isoscalar giant quadruple resonance (ISGQR)
[21–28], with the help of the available experimental results
from α-nucleus scatterings [29–31]. For a given isoscalar nu-
cleon effective mass, more recent studies have shown that the
centroid energy and the electric-dipole polarizability can be
used to extract the nuclear symmetry energy and the neutron-
proton effective-mass splitting simultaneously [26,27].

Nuclei giant resonances can be studied by both the random-
phase approximation (RPA) method and transport approaches.
Despite the succusses of the RPA method, the width of the
strength function is generally missing, unless higher-order
contributions [32], such as particle-vibration coupling [33,34],
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are taken into account. The Boltzmann transport approach,
which has previously been used to extract the EOS and
symmetry energy at both subsaturation and suprasaturation
densities from heavy-ion collisions (see, e.g., Refs. [35–37]),
is based on the Boltzmann equation, with the collision term ef-
fectively containing higher-order contributions when derived
from the von Neumann equation with the n-body density
matrix [38,39]. The collision term leads to the damping of
the collective excitation or, equivalently, the width of the
strength function [40,41]. Reproducing correctly the width
can be important in obtaining accurately observables related
to the moments of the strength function.

In the present work, we study giant resonances in
208Pb by using an improved isospin-dependent Boltzmann-
Uehling-Uhlenbeck (IBUU) transport approach. An improved
momentum-dependent interaction (ImMDI) is used in the
transport approach based on the lattice Hamiltonian frame-
work. Ground-state initializations are achieved with different
parameters used in the ImMDI model, and collisions are
also improved with the more rigourous energy conservation
condition and better Pauli blockings. These theoretical details
together with formulas related to nuclei giant resonances are
discussed in Sec. II. We first reproduce both the excitation
energy of the ISGQR and its width for 208Pb by using a proper
isoscalar nucleon effective mass and a constant isotropic cross
section. The slope parameter of the symmetry energy and
the neutron-proton effective-mass splitting are then extracted
from the centroid energy of the IVGDR and the electric-dipole
polarizability for 208Pb. These results are discussed in Sec. III,
and a summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Effective nuclear interactions

The potential-energy density of the ImMDI model, which
can be obtained from an effective two-body interaction
with a zero-range density-dependent term and a finite-range
Yukawa-type term based on the Hartree-Fock calculation [42],
has the following form in the asymmetric nuclear matter with
isospin asymmetry δ and nucleon number density ρ [43,44]:

V ImMDI(ρ, δ) = Auρnρp

ρ0
+ Al

2ρ0

(
ρ2

n + ρ2
p

) + B

σ + 1

ρσ+1

ρσ
0

× (1 − xδ2) + 1

ρ0

∑
τ,τ ′

Cτ,τ ′

×
∫∫

d3 pd3 p′ fτ (�r, �p ) fτ ′ (�r, �p ′)
1 + ( �p − �p ′)2/�2

. (1)

In the above, ρn and ρp are number densities of neutrons and
protons, respectively, ρ0 is the saturation density, δ = (ρn −
ρp)/ρ is the isospin asymmetry, and fτ (�r, �p ) is the phase-
space distribution function, with τ = 1 (−1) for neutrons
(protons) being the isospin index. The single-particle mean-
field potential for a nucleon with momentum �p and isospin τ

in the asymmetric nuclear matter with isospin asymmetry δ

and nucleon number density ρ can be obtained from Eq. (1)

through the variational principle as

U ImMDI
τ (ρ, δ, �p ) = Au

ρ−τ

ρ0
+ Al

ρτ

ρ0
+ B

(
ρ

ρ0

)σ

(1 − xδ2)

− 4τx
B

σ + 1

ρσ−1

ρσ
0

δρ−τ

+ 2Cτ,τ

ρ0

∫
d3 p′ fτ (�r, �p ′)

1 + ( �p − �p ′)2/�2

+ 2Cτ,−τ

ρ0

∫
d3 p′ f−τ (�r, �p ′)

1 + ( �p − �p ′)2/�2
,

(2)

where the four parameters Au, Al , Cτ,τ , and Cτ,−τ can be
expressed as [44]

Al (x, y) = A0 + y + x
2B

σ + 1
, (3)

Au(x, y) = A0 − y − x
2B

σ + 1
, (4)

Cτ,τ (y) = Cl0 − 2yp2
f 0

�2 ln
[(

4p2
f 0 + �2

)
/�2

] , (5)

Cτ,−τ (y) = Cu0 + 2yp2
f 0

�2 ln
[(

4p2
f 0 + �2

)
/�2

] . (6)

In the above, p f 0 = h̄(3π2ρ0/2)1/3 is the nucleon Fermi mo-
mentum in the symmetric nuclear matter at the saturation
density. The isovector parameters x and y are introduced
to mimic the density dependence of the symmetry energy,
i.e., the slope parameter L = 3ρ0(dEsym/dρ)ρ=ρ0 , and the
momentum dependence of the symmetry potential or the
neutron-proton effective-mass splitting. The values of the
parameters A0, Cu0, Cl0, B, σ , and � are adjusted to reproduce
the empirical nuclear matter properties, i.e., the saturation
density ρ0, the binding energy E0(ρ0) at the saturation density,
the incompressibility K0, the symmetry energy Esym(ρ0) at
the saturation density, the isoscalar potential U0,∞ at the
saturation density and at infinitely large momentum, and the
isoscalar nucleon effective mass m∗

s0 at the saturation density
and at the Fermi momentum. The nonrelativistic k mass in the
present study is defined as

m∗
n(p)

m
=

(
1 + m

p

∂Un(p)

∂ p

)−1

, (7)

where m is the bare nucleon mass. The isoscalar nucleon
effective mass is the same as the neutron or the proton effec-
tive mass in the symmetric nuclear matter, while the neutron-
proton effective-mass splitting in the isospin-asymmetric nu-
clear matter with isospin-asymmetry δ is related to the
isoscalar m∗

s and isovector m∗
v nucleon effective mass through

the following relation to the first-order of δ expansion:

m∗
n − m∗

p ≈ 2m∗
s

m∗
v

(m∗
s − m∗

v )δ. (8)

Note that m∗
s and m∗

v generally depend on both the nucleon
momentum and the density of the nuclear matter, but are
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FIG. 1. Momentum dependence of (a) the isoscalar potential and
(b) the isoscalar nucleon effective mass in the nuclear matter at
ρ = 0.1 fm−3.

usually represented by their values at the saturation density
and at the Fermi momentum, indicated as m∗

s0 and m∗
v0 in the

present paper.
Figure 1 displays the isoscalar potential and the isoscalar

nucleon effective mass as a function of the nucleon momen-
tum in the nuclear matter at ρ = 0.1 fm−3, i.e., the average
density of a nucleus. All the values of the parameters A0,
Cu0, Cl0, B, σ , and � need to be adjusted, in order to get
different m∗

s0 but the same ρ0, E0(ρ0), K0, Esym(ρ0), and U0,∞,
as listed in Table I. The isoscalar potential is larger (smaller)
below (above) the Fermi momentum (about 225 MeV/c at
ρ = 0.1 fm−3) for a larger m∗

s0, while it is the same at the
Fermi momentum for different m∗

s0 by the model construction.
Since the potential below the Fermi momentum is expected
to dominate the dynamics of nuclei resonances, a larger m∗

s0

TABLE I. Values of parameters and some physics quantities for
ImMDI, with ρ0 the saturation density, E0(ρ0) the binding energy
at the saturation density, K0 the incompressibility, U ∞

0 the isoscalar
potential in the nuclear matter at the saturation density and at in-
finitely large nucleon momentum, m∗

s0 the isoscalar nucleon effective
mass in the nuclear matter at the saturation density and at the Fermi
momentum, and Esym(ρ0) the symmetry energy at the saturation
density.

A0 (MeV) −66.963 92.144 100.466
B (MeV) 141.963 167.144 175.466
Cu0 (MeV) −99.70 −92.34 −87.52
Cl0 (MeV) −60.49 −52.34 −47.19
σ 1.2652 1.2646 1.2821
� (pf 0) 2.424 3.401 5.369

ρ0 (fm−3) 0.16 0.16 0.16
E0(ρ0) (MeV) −16 −16 −16
K0 (MeV) 230 230 230
U ∞

0 (MeV) 75 75 75
m∗

s0 (m) 0.7 0.8 0.9
Esym(ρ0) (MeV) 32.5 32.5 32.5

FIG. 2. Momentum dependence of the symmetry potential (left)
and the relative neutron-proton effective-mass splitting in the isospin
asymmetric nuclear matter at ρ = 0.1 fm−3 and δ = 0.2 (middle),
as well as the density dependence of the symmetry energy from
different parameter values of x and y (right).

gives an overall less attractive potential. The isoscalar nucleon
effective mass generally increases with increasing nucleon
momentum, and its value in the nuclear matter at subsaturation
densities is larger than m∗

s0.
Figure 2 displays the symmetry potential [Usym = (Un −

Up)/2δ] and the relative neutron-proton effective-mass split-
ting as a function of the nucleon momentum in the nuclear
matter at ρ = 0.1 fm−3 and δ = 0.2, as well as the density
dependence of the symmetry energy, by setting ms0 = 0.9m
and other isoscalar parameters as listed in Table I. Adjusting
the x parameter changes the momentum-independent part of
the symmetry potential and the density dependence of the
symmetry energy, while the neutron-proton effective-mass
splitting remains unaffected. It is seen that a larger symmetry
energy at subsaturation densities corresponds to a stronger
symmetry potential in this case. Adjusting the y parameter
alone changes both the momentum dependence of the sym-
metry potential and the density dependence of the symmetry
energy [44]. By adjusting both values of x and y, it is possible
to get very similar symmetry energies but different symme-
try potentials and neutron-proton effective-mass splittings.
Again, since the low-momentum part dominates the dynamics
in the simulation of nuclei resonances, a larger neutron-proton
effective-mass splitting generally leads to an overall stronger
symmetry potential. The corresponding slope parameters L
of the symmetry energy and the isovector nucleon effective
masses m∗

v0 from these x and y values are listed in Table II.
Besides the bulk ImMDI interaction, we have also in-

corporated the density gradient interaction and the Coulomb
interaction. The potential-energy contribution of the density
gradient interaction is

V grad = GS

2
(∇ρ)2 − GV

2
[∇(ρn − ρp)]2, (9)
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TABLE II. Values of x and y parameters for ImMDI, and the
corresponding slope parameters L of the symmetry energy and the
isovector nucleon effective masses m∗

v0.

x 0.3 0.5 0.1 0.15 0.45
y (MeV) −200 −200 −200 −350 −50

L (MeV) 53 66 40 54 53
m∗

v0 (m) 0.79 0.79 0.79 0.73 0.86

where GS and GV are the isoscalar and the isovector density
gradient coefficients, respectively. Although the Fock con-
tribution of the finite-range term in the ImMDI interaction
leads to the density-dependent density gradient coefficients
in the density-matrix expansion framework [42], these coef-

ficients are generally very different from the empirical val-
ues. In the present work we adopt GS = 132 MeV fm5 and
GV = 5 MeV fm5 as in Ref. [45]. The potential-energy con-
tribution of the Coulomb interaction is

V coul(�r ) = e2

2

∫
ρp(�r )ρp

(
�r ′)

|�r − �r ′| d3r′ − 3

4
e2

[
3ρp(�r )

π

]4/3

,

(10)
with the first term representing the direct contribution and the
second term being the exchange contribution.

B. An improved isospin-dependent
Boltzmann-Uehling-Uhlenbeck transport approach

The IBUU transport model originating from Ref. [46]
basically solves numerically the isospin-dependent BUU
equation:

∂ f̃τ ( �p1)

∂t
+ �∇pUτ · �∇r f̃τ ( �p1) − �∇rUτ · �∇p f̃τ ( �p1)

= −
(

d − 1

2

) ∫
d3 p2

(2π )3

d3 p′
1

(2π )3

d3 p′
2

(2π )3

dστ,τ

d

vrel[ f̃τ ( �p1) f̃τ ( �p2)(1 − f̃τ ( �p ′

1))(1 − f̃τ ( �p ′
2))

− f̃τ ( �p ′
1) f̃τ ( �p ′

2)(1 − f̃τ ( �p1))(1 − f̃τ ( �p2))](2π )3δ(3)( �p1 + �p2 − �p ′
1 − �p ′

2)

− d
∫

d3 p2

(2π )3

d3 p′
1

(2π )3

d3 p′
2

(2π )3

dστ,−τ

d

vrel[ f̃τ ( �p1) f̃−τ ( �p2)(1 − f̃τ ( �p ′

1))(1 − f̃−τ ( �p ′
2))

− f̃τ ( �p ′
1) f̃−τ ( �p ′

2)(1 − f̃τ ( �p1))(1 − f̃−τ ( �p2))](2π )3δ(3)( �p1 + �p2 − �p ′
1 − �p ′

2). (11)

In the above, f̃ is the occupation probability with 1 − f̃
representing the Pauli blocking effect, dσ

d

is the nucleon-

nucleon differential cross section, and vrel is the relative
velocity of the two nucleons before the collision. The rela-
tion between the phase-space distribution function f and the
occupation probability f̃ is f = d f̃ , with d = 2 being the spin
degeneracy.

The left-hand side of the above BUU equation describes
the time evolution of the phase-space distribution function
fτ (�r, �p ) in the mean-field potential, and this can be approx-
imately realized by solving the canonical equations of motion
for test particles [46,47]. In this approach, the phase-space dis-
tribution fτ (�r, �p ) as well as the local density can be obtained
by averaging NT P parallel collision events, i.e.,

fτ (�r, �p ) = 1

NT P

ANT P∑
i∈τ

h(�r − �ri )δ( �p − �pi ), (12)

ρτ (�r ) = 1

NT P

ANT P∑
i∈τ

h(�r − �ri ), (13)

where h is a smooth function in coordinate space, and A
is the number of real particles, with each represented by
NT P test particles. The form of the smooth function h is
taken from that in the lattice Hamiltonian framework [48],
i.e., the phase-space distribution function fL and the den-
sity ρL at the sites of a three-dimensional cubic lattice are

expressed as

fL,τ (�rα, �p ) =
ANT P∑
i∈τ

S(�rα − �ri)δ( �p − �pi ), (14)

ρL,τ (�rα ) =
ANT P∑
i∈τ

S(�rα − �ri). (15)

In the above, α is the site index, �rα is the position of the site
α, and S is the shape function describing the contribution of a
test particle at �ri to the value of the quantity at �rα , i.e.,

S(�r ) = 1

NT P(nl )6 g(x)g(y)g(z), (16)

with

g(q) = (nl − |q|)�(nl − |q|). (17)

l is the lattice spacing, n determines the range of S, and � is
the Heaviside function. We adopt the values of l = 1 fm and
n = 2 in the present study.

After using the above smooth function for fL,τ (�rα, �p ) and
ρL(�rα ), the Hamiltonian of the system can be expressed as

H =
ANT P∑

i

√
�p2

i + m2 + NT PṼ , (18)
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with the total potential energy expressed as

Ṽ = l3
∑

α

(
V ImMDI

α + V grad
α + V coul

α

)
, (19)

where

V ImMDI
α = AuρL,n(�rα )ρL,p(�rα )

ρ0
+ Al

2ρ0

[
ρ2

L,n(�rα ) + ρ2
L,p(�rα )

]
+ B

σ + 1

ρσ+1
L (�rα )

ρσ
0

[
1 − xδ2

L(�rα )
]

+ 1

ρ0

∑
i, j

∑
τi,τ j

Cτi,τ j

S(�rα − �ri )S(�rα − �r j )

1 + ( �pi − �p j )2/�2
, (20)

V grad
α = GS

2
[∇ρL(�rα )]2 − GV

2
{∇[ρL,n(�rα ) − ρL,p(�rα )]}2,

(21)

V coul
α = e2

2
l3

∑
α′

ρL,p(�rα )ρL,p(�rα′ )

|�rα − �rα′ | − 3

4
e2

[
3ρL,p(�rα )

π

]4/3

−e2

2
l3

∑
α′

∑
i∈p

S(�rα − �ri )S(�rα′ − �ri )

|�rα − �rα′ | (22)

are the corresponding contributions of the ImMDI interaction,
the density gradient interaction, and the Coulomb interac-
tion, respectively. δL(�rα ) = [ρL,n(�rα ) − ρL,p(�rα )]/[ρL,n(�rα ) +
ρL,p(�rα )] is the isospin asymmetry at �rα with ρL,n(�rα ) and
ρL,p(�rα ) being respectively the number density of neutrons
and protons there, and the third term in Eq. (22) subtracts
the self-contribution of the Coulomb interaction from the
same proton due to its finite size in the lattice Hamiltonian
framework. The canonical equations of motion for the ith test
particle from the above Hamiltonian can thus be written as

d�ri

dt
= ∂H

∂ �pi
= �pi√

�p2
i + m2

+ NT P
∂Ṽ

∂ �pi
, (23)

d �pi

dt
= −∂H

∂�ri
= −NT P

∂Ṽ

∂�ri
. (24)

Further improvements have been incorporated into the
IBUU transport approach. The coordinates of initial neutrons
and protons are sampled uniformly within a sphere of the
radius Rn and Rp, respectively. The initial momenta are sam-
pled within the local isospin-dependent Fermi sphere. The
values of Rn and Rp are adjusted to reproduce the minimum
total energy of the system calculated according to Eq. (18),
so that the ground state of the system can be achieved as
in Ref. [48]. In addition, a special treatment is applied in
nucleon-nucleon collisions in order to guarantee that the
energy conservation condition is satisfied in each collision
within numerical errors even with the momentum-dependent
potential, and this is detailed in the Appendix. We have also
improved the Pauli blocking treatment by calculating the
isospin-dependent occupation probability in the local frame
rather than in the collisional frame, and this, together with
the previous interpolation method, helps to enhance the Pauli
blocking rate.

C. Nuclei giant resonances

In the present study, we mainly focus on the ISGQR and
the IVGDR in 208Pb. Their corresponding operators can be
written respectively as

Q̂ISGQR = 1

A

A∑
i=1

√
5

16π

(
2ẑ2

i − x̂2
i − ŷ2

i

)
, (25)

Q̂IVGDR = N

A

Z∑
i=1

ẑi − Z

A

N∑
i=1

ẑi, (26)

where N , Z , and A are respectively the neutron, proton,
and nucleon numbers in a nucleus. In the linear-response
region, the oscillation frequency of the nucleus resonance is
independent of the way the nucleus is initially excited. For the
ISGQR, nucleons in the nucleus are initially excited as

xi → xi/λ, yi → yi/λ, zi → ziλ
2, (27)

(px )i → (px )iλ, (py)i → (py)iλ, (pz )i → (pz )i/λ
2,

(28)

where λ = 1.1 is the small perturbation parameter. For the
IVGDR, we adopt the standard way of the initial excitation
[11],

�ri → �ri + η
∂q(�ri, �pi )

∂ �pi
, (29)

�pi → �pi − η
∂q(�ri, �pi )

∂�ri
, (30)

where η = 25 MeV/c is the small perturbation constant, and

qIVGDR(�ri, �pi ) =
{

N
A zi (protons)

− Z
A zi (neutrons)

(31)

can be obtained from Eq. (26).
With the time evolution of the corresponding moment Q(t )

from IBUU transport simulations, the strength function of the
IVGDR can be obtained from

S(E ) = − 1

πη

∫ ∞

0
dtQ(t ) sin (Et ). (32)

By calculating the moments of the strength function

mk =
∫ ∞

0
dEEkS(E ), (33)

one can compare the transport simulation results with the
available experimental data. For example, the centroid energy
E−1 and the electric-dipole polarizability αD can be obtained
respectively from

E−1 =
√

m1/m−1, (34)

αD = 2e2m−1. (35)

III. RESULTS AND DISCUSSION

In the present study, we reproduce both the excitation
energy and the decay width of the ISGQR in 208Pb mea-
sured experimentally by adjusting the isoscalar nucleon effec-
tive mass m∗

s0 and a constant and isotropic nucleon-nucleon
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FIG. 3. (a) Time evolution of the ISGQR moment and (b) the
decay width of the ISGQR from different nucleon-nucleon cross
sections. The experimentally measured width [25] is plotted as a
band for comparison.

scattering cross section. Using the same m∗
s0 and the cross

section, we further constrain the symmetry energy and the
neutron-proton effective-mass splitting by using the centroid
energy and the electric-dipole polarizability extracted from
the IVGDR in 208Pb, by comparing results from the IBUU
transport approach with the experimental data. We use several
IBUU runs for each scenario, and 200 test particles are used
for each run. The statistical errors are calculated based on
results of different IBUU runs. The moments of the ISGQR
and the IVGDR are calculated from bound nucleons with their
local densities higher than ρ0/20.

A. Isoscalar giant quadruple resonance

With the initial 208Pb nucleus excited according to
Eqs. (27) and (28), the time evolutions of the ISGQR mo-
ment using different nucleon-nucleon cross sections are com-
pared in Fig. 3(a) by using the parameter set with m∗

s0 =
0.9m, as listed in Table I. It is obviously seen that a larger
nucleon-nucleon cross section leads to a stronger damping of
the ISGQR oscillation, since more attempted and successful
nucleon-nucleon collisions occur. Even in the Vlasov calcula-
tion with σ = 0 mb, the oscillation mode damps very slowly
due to the Landau damping mechanism. On the other hand,
the oscillation frequency is seen to be not much affected by
the nucleon-nucleon cross section. It is interesting to see that
the moment does not return to zero especially with larger cross
sections. From the observation, the ISGQR moment generally
shows a periodical oscillation behavior with an exponential
decay, so it can be fit with the following function [41]:

QISGQR(t ) = a sin [b(t − t0)] exp (−ct ) + d, (36)

where a represents the oscillation magnitude, b represents
the oscillation frequency, t0 represents the initial oscillation
phase, c represents the decay width, and d represents some
possible average displacement. The resulting decay widths
� ≈ c for different nucleon-nucleon cross sections are shown
in Fig. 3(b). The larger decay width from the larger cross

FIG. 4. (a) Time evolution of the ISGQR moment and (b) the
excitation energy of the ISGQR from different isoscalar nucleon
effective masses. The experimentally measured excitation energy
[25] is plotted as a band for comparison.

section is intuitively understandable. Even in the Vlasov sce-
nario, the decay width is nonzero. In the present study, we
invoke the experimental results of the ISGQR extracted in
Ref. [25], where the decay width is 3.0 ± 0.1 MeV shown as
the band in Fig. 3(b). The cross section σ = 40 mb reproduces
this decay width reasonably well, and the collision effect is
seen to be similar to that from the particle-vibration coupling
[25].

Using different isoscalar nucleon effective masses m∗
s0,

the time evolutions of the ISGQR moment are compared in
Fig. 4(a), where the nucleon-nucleon cross section σ = 40 mb
is used in each scenario. The different oscillation frequencies
from different m∗

s0 can already be seen from the time evolution
of the ISGQR moment. Fitting the ISGQR moment with
Eq. (36), the excitation energies Ex ≈ b from different m∗

s0
are shown in Fig. 4(b). It is seen that a larger m∗

s0 leads to a
smaller Ex. This is understandable from Fig. 1, since a smaller
m∗

s0 leads to a more attractive isoscalar potential below the
Fermi momentum, serving as a stronger restoring force of
the ISGQR and increasing the oscillation frequency. The ex-
perimental measured excitation energy Ex = 10.9 ± 0.1 [25]
is represented by the band in Fig. 4(b), which is reproduced
reasonably well with the parametrization m∗

s0 = 0.9m.

B. Isovector giant dipole resonance

Using the same nucleon-nucleon cross section σ = 40 mb
and the initial excitation as Eqs. (29)–(31), we have stimulated
the IVGDR in 208Pb, and the time evolutions of the moment
from different scenarios are displayed in Figs. 5(a) and 5(c).
The periodic oscillation and decay behavior of the IVGDR
moment in all scenarios can be fit with the following form:

QIVGDR(t ) = a sin (bt ) exp (−ct ). (37)

The advantage of the fitting is that the same oscillation behav-
ior is extrapolated to infinity time and the integral in Eq. (32)
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FIG. 5. Time evolution of the IVGDR moment (left) and the
strength function of the IVGDR (right) from different scenarios.

can be carried out analytically, i.e.,

S(E ) = ac

2πη

[
1

c2 + (b + E )2 − 1

c2 + (b − E )2

]
. (38)

The resulting strength functions from different scenarios are
shown in Figs. 5(b) and 5(d). The different x and y values
correspond to different symmetry energies and neutron-proton
effective-mass splittings, essentially different symmetry po-
tentials, as shown in Fig. 2 and Table II. Results with different
symmetry energies but the same neutron-proton effective-
mass splitting are thus compared in the upper panels of Fig. 5,
while results with the same symmetry energy but different
neutron-proton effective-mass splittings are compared in the
lower panels of Fig. 5. The effects can all be understood from
the low-momentum part of the symmetry potential, which is
the dominating restoring force of the IVGDR. Since the cases
(x = 0.5, y = −200 MeV) and (x = 0.15, y = −350 MeV)
have a stronger symmetry potential at low momenta com-
pared respectively with (x = 0.1, y = −200 MeV) and (x =
0.45, y = −50 MeV), the former ones have a higher peak
frequency of the IVGDR, as shown in their strength functions.
Again, the Vlasov mode without nucleon-nucleon collisions
shows an oscillation with a larger magnitude and a weak
damping, leading to a very sharp strength function with a
small width. The shape of the strength function extracted
experimentally [49] is similar to those with nucleon-nucleon
collisions rather than that from the Vlasov mode.

With the analytical formula of the strength function
Eq. (38), the moments as well as other observables can also
be expressed analytically as

m−1 = −ab

2η(b2 + c2)
, (39)

m1 = −ab

2η
, (40)

E−1 =
√

b2 + c2, (41)

αD = −e2ab

η(b2 + c2)
. (42)

FIG. 6. The resulting centroid energies E−1 and the electric-
dipole polarizability αD from different scenarios compared with the
experimental results [18,49,50] shown as bands.

Figure 6 displays the resulting centroid energies E−1 and
the electric-dipole polarizabilities αD for the correspond-
ing scenarios as in Fig. 5. The experimental results of
E−1 = 13.46 MeV from photoabsorption reactions [50], and
αD = 19.6 ± 0.6 fm3, which is measured from photoabsorp-
tion cross sections as well as polarized proton inelastic scatter-
ings [49] and further corrected by subtracting the contribution
of quasideuteron excitations [18], are also plotted for compar-
ison. It is seen that the electric-dipole polarizability can gen-
erally be reproduced with the parametrization adopted here,
while the centroid energy gives a very stringent constraints
on the x and y parameters. Comparing the results with and
without nucleon-nucleon collisions, it is seen that the cen-
troid energies are very similar within statistical errors, while
a considerable effect on the electric-dipole polarizability is
observed, as a result of the different shapes of the strength
function shown in Fig. 5.

The favored x and y values can be obtained by comparing
the resulting E−1 and αD with the experimental data, in the
way as shown in Fig. 6. Using the same isoscalar parametriza-
tion with m∗

s0 = 0.9m as shown in Table I, the favored x
and y values can be mapped in the two-dimensional plane
of the slope parameter L of the symmetry energy and the
isovector nucleon effective mass m∗

v0, as displayed in Fig. 7.
The anticorrelation relation between L and m∗

v0 is observed. It
is seen that the favored values of L and m∗

v0 are within an area
of about 36 < L < 62 MeV and 0.73 < m∗

v0/m < 0.86. The
latter corresponds to the range of the neutron-proton effective-
mass splitting 0.08δ < (m∗

n0 − m∗
p0)/m < 0.42δ at the satura-

tion density and at the Fermi momentum. The constraint on
L further narrows down the recent constraint of L = 58.7 ±
28.1 MeV [2,51], and the constraint on the neutron-proton
effective-mass splitting is consistent with those obtained from
various approaches in the literature [2,26,27,52–55].
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FIG. 7. Favored and disfavored values of the slope parameter L
of the symmetry energy and the isovector nucleon effective mass m∗

v0

from the experimental data of E−1 and αD.

IV. SUMMARY

Based on an improved isospin-dependent Boltzmann-
Uehling-Uhlenbeck transport approach and by using an
improved isospin- and momentum-dependent interaction,
we have studied the isoscalar giant quadrupole resonance
(ISGQR) and the isovector giant dipole resonance (IVGDR)
in 208Pb. The width of the strength function and the excitation
energy of the ISGQR are reproduced respectively by choosing
a proper nucleon-nucleon cross section σ = 40 mb and
isoscalar nucleon effective mass m∗

s0 = 0.9m. With the same
σ and m0

s0, we have further constrained the slope parameter
L of the symmetry energy and the isovector nucleon effective
mass m∗

v0, by comparing the resulting centroid energy and
the electric-dipole polarizability, extracted from the strength
function of the IVGDR, with the corresponding experimental
data. The isoscalar potential and the symmetry potential
below the Fermi momentum dominate the restoring force
of the ISGQR and IVGDR, respectively. Incorporating
the nucleon-nucleon collisions leads to almost the same
peak energy of the strength function but broadens it by
damping the collective oscillation of the IVGDR, and thus
has considerable effects on the resulting electric-dipole
polarizability. The favored values of L and m∗

v0 are within an
area of about 36 < L < 62 MeV and 0.73 < m∗

v0/m < 0.86,
where they are anticorrelated with each other. The
latter leads to the neutron-proton effective-mass splitting
0.08δ < (m∗

n0 − m∗
p0)/m < 0.42δ. Although the experimental

measured centroid energy of the IVGDR gives a stringent
constraint on L and m∗

v0, further efforts on measuring more
accurately the electric-dipole polarizability is encouraged to
pin down nuclear interactions in the isovector channel.
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APPENDIX: ENERGY CONSERVATION IN
NUCLEON-NUCLEON COLLISIONS WITH A

MOMENTUM-DEPENDENT POTENTIAL

Although Bertsch’s prescription [46] conserves the energy
in each nucleon-nucleon (NN) collision in free space, this
is not the case in the presence of the momentum-dependent
potential. This is because the contribution of the momentum-
dependent part in Eq. (20) generally changes after a NN col-
lision, due to their different final nucleon momenta compared
with those before the NN collision. As a remedy, we modified
Bertsch’s prescription in the following way:

The collision between nucleon 1 and nucleon 2 happens in
their center-of-mass (C.M.) frame. In the original Bertsch’s
prescription, the momentum in the C.M. frame changes its
direction while keeping its magnitude after a successful NN
collision, and their final momenta �p1 and �p2 and kinetic
energies E1 =

√
�p2

1 + m2 and E2 =
√

�p2
2 + m2 are from the

Lorentz transformation back to the collisional frame accord-
ing to

�p1,2 = γ (±�pC.M. + �βEC.M.), (A1)

E1,2 = γ (EC.M. ∓ �β · �pC.M.). (A2)

In the above, EC.M. =
√

�p2
C.M. + m2 is the kinetic energy in

the C.M. frame with �pC.M. being the momentum after the

collision, γ = 1/
√

1 − β2 is the Lorentz factor with �β being
the velocity of the C.M. frame with respect to the collisional
frame. The upper (lower) signs in the above equations are for
nucleon 1 (2). As mentioned before, this prescription con-
serves the total momentum and kinetic energy. To conserve
both the total momentum and total energy in the presence of
the momentum-dependent potential, we modify the prescrip-
tion by changing the magnitudes of �pC.M. and �β while keeping
their directions, i.e., �p ′

C.M. = c1 �pC.M. and �β ′ = c2 �β where
c1 and c2 are constants to be determined, and the Lorentz
transformation from the C.M. frame back to the collisional
frame is now expressed as

�p ′
1,2 = γ ′(±�p ′

C.M. + �β ′E ′
C.M.), (A3)

E ′
1,2 = γ ′(E ′

C.M. ∓ �β ′ · �p ′
C.M.), (A4)

with γ ′ = 1/
√

1 − β ′2. To satisfy the momentum and energy
conservation conditions, we need to solve the following equa-
tions

�p1 + �p2 = �p ′
1 + �p ′

2, (A5)

E1 + E2 + v12 = E ′
1 + E ′

2 + v′
12, (A6)

where

v
(′)
12 = 2l3NT P

ρ0

⎡⎣∑
j

∑
τ j

Cτ1,τ j

S(�rα − �r1)S(�rα − �r j )

1 + ( �p(′)
1 − �p j )2/�2

+
∑

i

∑
τi

Cτi,τ2

S(�rα − �ri)S(�rα − �r2)

1 + ( �pi − �p(′)
2 )2/�2

]
(A7)
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is the contribution of nucleon 1 and nucleon 2 to the
momentum-dependent part of the potential energy in Eq. (20).
Equations (A5) and (A6) can be solved numerically by using
the iteration method by starting from c1 = c2 = 1. The above

method guarantees the momentum and energy conservation
in each NN collision in the presence of the momentum-
dependent potential and can be easily generalized to the case
of inelastic collisions.
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