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Nonparametric Bayesian approach to extrapolation problems in configuration interaction methods
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The configuration interaction methods are powerful tools for exploring various properties of nuclei. However,
in practice, it is often necessary to truncate the model space and then to extrapolate the results to very large model
space to obtain the best estimations of the exact eigenvalues under a given nuclear interaction. In this study, a non-
parametric extrapolation method based on constrained Gaussian processes for configuration interaction methods
is presented. The proposed method has many advantages: (i) applicability to small data sets such as results of
ab initio methods, (ii) flexibility to incorporate constraints, which are guided by physics, into the extrapolation
model, (iii) providing predictions with quantified extrapolation uncertainty, etc. An application to the extrapola-
tion problem of ground-state energies in the full configuration interaction method is discussed as an example.
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I. INTRODUCTION

Recent developments in nuclear potentials based on chiral
effective field theory (chiral EFT) [1,2] and ab initio methods
[3–7] have provided deep insights into nuclear many-body
problems starting from the fundamental interaction between
nucleons, see very recent works [8–11] and references therein.

The full configuration interaction (FCI) method, which is
also known as no-core full configuration (NCFC)/no-core
shell model (NCSM) [12,13], is one of the successful ab
initio methods. In FCI, wave functions are represented in a
truncated subspace, and the truncation is typically specified
by the parameter Nmax, which defines the maximum number
of harmonic oscillator quanta allowed in the many-body states
above the lowest configuration for a target nucleus.

Despite enormous efforts for developing efficient codes
[14–18] and advances in computing power, the currently
available Nmax for upper p-shell nuclei is around 10 (see, e.g.,
Ref. [19]) and this is still far from Nmax = ∞ corresponding
to exact calculations. One usually extrapolates the sequence of
results with different Nmax to Nmax = ∞ to estimate the exact
value. In previous studies, several extrapolation methods were
proposed and the dependence on them was analyzed [18–24].
The most intuitive example is one based on an exponential
function [19].

In addition to FCI, such extrapolation techniques are also
required in CI calculations for a valence space, which is the
so-called shell model, using additional truncations. Represen-
tative examples of the truncations are importance truncation
scheme [25,26] and Monte Carlo shell model [27,28]. In
those calculations, the rapid growth of many-body basis for
a valence space is alleviated by selecting a small subset of
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the many-body basis states, which is physically more relevant.
These truncation schemes have been successfully applied to
valence CI and also FCI calculations in previous works such
as Refs. [29–34].

In these studies, the extrapolation is performed with some
specific functions such as an exponential or polynomials, and
the coefficients are determined so as to minimize the χ2

deviation from the given calculated data points. While any of
these offers intuitively reasonable extrapolated results, there
is a risk of overfitting, i.e., lack of predictive power for true
exact values. This overfitting is because χ2 minimization of a
parametric model and point estimation of the parameters leads
to too deterministic predictions due to the limited expression
power of the model. This is a problematic situation if one
intends to discuss quantitative issues such as a level ordering
of states with small energy differences, the positions of proton
and neutron drip lines, and so on.

In the present study, a novel nonparametric extrapolation
method for CI calculations using constrained Gaussian pro-
cesses (GPs) is proposed. The method gives extrapolated
results with quantified uncertainty in a systematic manner.

Evaluating extrapolation uncertainties are helpful for
breaking down possible origins of discrepancy between FCI
results and experimental data, though the major source of
uncertainty is, at the moment, from the input potentials: the
low-energy constants and the truncated expansion in chiral
EFT. Although GPs are also not free from overfitting, GPs
allow the consideration of a wider class of functions, and
then it is expected to alleviate underestimating extrapolation
uncertainties due to the specific choice of the extrapolation
function.

It should also be noted that extrapolation techniques using
an artificial neural network (ANN) are proposed recently
[35,36]. To train networks, one usually requires large data sets.
However, it is still tough to achieve an enormous number of
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ab initio calculations while varying their inputs such as Nmax

and harmonic oscillator parameter h̄�. In future applications
of full CI and also valence CI methods with importance
truncation to heavier systems, it is strongly desired to develop
an extrapolation technique applicable even to sparse data. The
proposed method is applicable to small data sets too.

The validity of the model is demonstrated by taking the
extrapolation problem for ground-state energies in FCI calcu-
lations as an example. The code is available on the author’s
GitHub page [37].

II. FORMULATION OF CONSTRAINED
GAUSSIAN PROCESS

Gaussian process (GP) is a popular statistical method as a
nonparametric regression model [38]. It is also becoming pop-
ular in physics due to its flexibility (see, e.g., recent applica-
tions published in APS journals [39–45]). The GP regression
can be interpreted as a method to describe distribution over a
function space and to perform inference of the probability for
each function. This is just what is needed because this enables
us to consider an ensemble of many possible functions for
the extrapolation, infer probability of each sample function,
and then quantify uncertainties in the extrapolated value in a
statistical manner.

Interestingly, GPs are mathematically equivalent or related
to many other models such as ANN, support vector machines,
spline models, and so on. The interested reader is referred to,
e.g., Refs. [38,46,47].

Here let us introduce some notations. As in statistics
literature, P(a|b) denotes the probability distribution of a
under the condition b, and N (μ,�) denotes the multivari-
ate Gaussian distribution with mean vector μ and covari-
ance matrix �. In what follows, two variable sets, data and
prediction, are considered. The terminology data, which is
distinguished from experimental data, is used to express a set
of X = {xi|i = 1, . . . , D} and Y = {yi|i = 1, . . . , D}. Here it
is assumed that D input points are available. The prediction
represents positions X ∗ = {x∗

i |i = 1, . . . , P} and values Y ∗ =
{y∗

i |i = 1, . . . , P} for P points where the target values are not
known. Especially in the following application, X denotes
currently computable Nmax, and X ∗ is a set of Nmax at which
FCI calculations have not done (e.g., larger Nmax).

In Gaussian processes, it is assumed that the two target
values at the two arbitrary points in the vicinity must be simi-
lar, and the so-called kernel functions express the similarities.
Then the data values Y and prediction values Y ∗ are assumed
to be generated from the multivariate Gaussian distribution
N (μ,�) whose covariance matrix � is given as

� =
[

KXX KXX ∗

KT
XX ∗ KX ∗X ∗

]
. (1)

Here KXX , KXX ∗ , and KX ∗X ∗ are, respectively, D × D, D × P,
and P × P matrices, and these elements are evaluated with
a kernel function. It is a common practice to choose this
kernel function as the radial basis function (RBF) or the
Matérn kernel with ν = 3/2 (Mat32) or ν = 5/2 (Mat52) (see
Appendix A).

In this work, the logMat52 kernel function is used for the
reasons described in Appendix A. The logMat52 kernel is
defined for, e.g., two data points xi and x j , as follows:

klogMat52(xi, x j ) = τ

(
1 +

√
5η

�
+ 5η2

3�2

)
exp

(
−

√
5η

�

)
, (2)

where η ≡ | ln xi − ln x j |, and the global strength τ and the
correlation length � are the hyperparameters. Let θ denote
the vector of hyperparameters. I will revisit the issue of
hyperparameters later.

Once the kernel function and its hyperparameters are fixed,
one can define the joint covariance matrix � in Eq. (1) for
data/prediction as a function of θ. Then, the joint distribution
of data y and predictions y∗ under the hyperparameters is given
as

P(y, y∗|θ) = N
([

μ

μ∗

]
, �(θ)

)
. (3)

It is a common practice for mean vectors to be normalized,
i.e., μ and μ∗ are fixed as zero vectors and the data is scaled
to have zero mean and unit variance. The dependence on the
choice of mean vectors is also discussed later.

By definition of conditional probabilities, the left-hand side
of Eq. (3) can be rewritten as

P(y, y∗|θ) = P(y∗|y, θ)P(y|θ). (4)

Under given θ, one can write down P(y∗|y, θ) and P(y|θ) in a
closed form:

P(y∗|y, θ) = N (μy∗|y, �y∗|y), (5)

μy∗|y(θ) = μ∗ + KT
XX ∗K−1

XX (y − μ), (6)

�y∗|y(θ) = KX ∗X ∗ − KT
XX ∗K−1

XX KXX ∗ , (7)

P(y|θ) = N (μ, KXX ). (8)

Regarding the hyperparameters, the so-called maximum a
posteriori (MAP), i.e., one to maximize the hyperparameter
posterior P(θ|y), is often used. However, I do not use a
single value for the hyperparameters to receive benefit of
GPs; a broader class of sample functions can be obtained
by considering various hyperparameters. Their probability
distributions are inferred by a sampling scheme to integrate
out the hyperparameter dependence. In this case, the posterior
distribution of y∗ for unobserved input x∗ is written as

P(y∗|y) ∝
∫

P(y∗|y, θ)P(y|θ)P(θ)dθ. (9)

In addition to this, the formulation above is extended to more
general one to incorporate physics information into GPs. In
many practical situations, the target function is known to
have shape constraints (e.g., monotonicity or convexity) or
inequality constraints. That is also the case with problems
of interest, i.e., energy eigenvalues in FCI are monotonic and
(almost) convex with respect to Nmax. In general, the accuracy
of a statistical model such as GP is improved by including
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such physics information. To this end, Eq. (9) is extended to

P(y∗|y, α, β, . . .) ∝
∫

P(y∗|y, θ)P(y|θ)P(θ)

× P(α, β, . . . |y∗, y)dθ, (10)

where P(α, β, . . . |y∗, y) is the probability that the constraints
α, β, . . . are satisfied under the given y∗ and y. The contri-
bution to the integral is determined by the balance among
the posterior for the prediction, the likelihood for the hy-
perparameters, the hyperparameter prior, and the fidelity to
the constraints. This expression is justified when the θ is
independent of the constraints (see Appendix B. This is a
rather general expression, i.e., constraints can be introduced
independently for each problem of interest.

In general, the integration in Eq. (10) cannot be evalu-
ated analytically. Therefore, some approximation or sampling
scheme is required. In what follows, the integration in Eq. (10)
is evaluated by weighted Np samples as follows:

P(y∗|y, α, β, . . .) �
Np∑
i=1

w(i)P(y∗(i)|y, θ(i) ), (11)

w(i) ≡ P(y, θ(i) )P(α, β, . . . |y∗(i), y)∑Np

j=1 P(y, θ( j) )P(y∗( j)|y, θ( j) )P(α, β, . . . |y∗( j), y)
.

(12)

In the present study, the particle filtering method [48] (also
known as sequential Monte Carlo) is employed as a sampling
scheme to evaluate the summation in Eq. (11). In the particle
filtering algorithm, states {θ(i), y∗(i)} are assigned to particles
labeled by i = 1, 2, . . . , Np, and those particles are evolved
independently according to the Metropolis-Hastings method
with the so-called resampling scheme; at a certain step of
the algorithm, the particles that do not respect the physics
constraints are discarded.

III. PROBLEMS OF INTEREST

A. FCI results

In what follows, the constrained GP model is applied to
extrapolation problems in FCI calculations; I analyze pub-
lished FCI results of the ground-state energy of 6Li using
JISP16/NNLOopt interaction with h̄� = 17.5 MeV [49] and
N3LO interaction with h̄� = 16.0 MeV, which is softened by
similarity renormalization group (SRG) method with a flow
parameter λ = 2.02 fm−1 [50]. The results are summarized in
Fig. 1 as a function of Nmax.

Let {(x1, y1), (x2, y2), . . . , (xD, yD)|x1 < x2 < · · · < xD}
denote the data, i.e., (x1, y1) = (6,−28.602), . . .,
(xD, yD) = (14,−31.977) in the case of N3LO results.
Unlike least-squares fitting of parametric models in which
one should remove outliers from data, there is no reason to
reduce data in the GP model and all Nmax results are used as
data unless otherwise mentioned.

The extrapolation problem addressed below is to esti-
mate the ground-state energies at Nmax > xD, and these are
expressed as {(x∗

1, y∗
1 ), (x∗

2, y∗
2 ), . . . , (x∗

P, y∗
P )|x∗

1 < x∗
2 < · · · <

x∗
P}; Here x∗

1 = xD + 2 and P is a large even integer. For the
sake of simplicity, let us consider only the ground state of

FIG. 1. The FCI results of g.s. energy of 6Li using
JISP16/NNLOopt [49] and N3LO [50].

6Li with natural parity, i.e., only even Nmax. In practice, one
needs to truncate at certain finite P value where predictions are
converged with respect to Nmax. A detailed discussion about
this P will be given later.

B. Constraints on extrapolation function

As minimal constraints on the extrapolation function to
capture the asymptotic behavior of FCI results, the following
two constraints, α and β are imposed. The first constraint α

is the variational property, i.e., the monotonicity of energy
eigenvalues with respect to Nmax:

P(α|y∗, y) = �(yD − y∗
1 ) × �(y∗

1 − y∗
2 )

× �(y∗
P−1 − y∗

P ), (13)

where �(·) is the cumulative distribution function

�(z) ≡
∫ zκ

−∞

1√
2π

exp

(
− t2

2

)
dt, (14)

with the controlling parameter of the strictness of constraints
κ . This �(z) approaches the step function at z = 0 when
κ → ∞. This κ is set as about 106 in the code, which is large
enough to impose the constraints with satisfactory accuracy
less than 0.01 keV. More precisely, κ is gradually increased
in the code to ≈106 so as to avoid possible localization at the
early steps of the Monte Carlo sampling. I confirmed that the
form of this κ as a function of the Monte Carlo step does
not affect the extrapolation results other than the sampling
efficiency.

The second constraint β is about the convergence pattern.
A ratio of the absolute value of energy gains is used as a
measure of convergence of ground-state (g.s.) energy in FCI.
This ratio r at a certain point x j is defined as follows:

r(x j ) ≡
∣∣∣∣y j − y j+1

y j−1 − y j

∣∣∣∣. (15)

The {r(x j )} for the given data is shown in Fig. 2. For the
energy eigenvalues by the FCI method, the denominator and
numerator in Eq. (15) are both positive. If the calculated
results of the g.s. energy exactly obey an exponential function,
it means r is a constant, which is not the case as shown in
Fig. 2.
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FIG. 2. The ratios of energy gains associated with 10% fluc-
tuation (error bar). The symbols for FCI results are the same as
Fig. 1. For the visibility of the figure, NNLOopt and N3LO results
are slightly shifted to the left and right, respectively. See the text for
more details.

This r can be extended to include predictions {y∗
j }:

r(x∗
1 ) =

∣∣∣∣ y∗
1 − y∗

2

yD − y∗
1

∣∣∣∣, r(x∗
2 ) =

∣∣∣∣y∗
2 − y∗

3

y∗
1 − y∗

2

∣∣∣∣, . . . ,
r(x∗

P−1) =
∣∣∣∣ y∗

P−1 − y∗
P

y∗
P−2 − y∗

P−1

∣∣∣∣. (16)

In the present work, the constraint on {r} is imposed as
follows:

P(β|y∗, y) = �(RE − r(x∗
1 )) × �(RE − r(x∗

2 ))

× · · · × �(RE − r(x∗
P−1)), (17)

where RE is an upper threshold determined as follows:

RE = rmean + rstd, (18)

rmean ≡
∣∣∣∣ yD−1 − yD

yD−2 − yD−1

∣∣∣∣, (19)

rstd ≡ σrrmean. (20)

The σr is fixed as 0.1 throughout this work for simplicity.
As can be expected from Fig. 2, this is a rather moderate
constraint on the convergence pattern. When σr is large
enough, results agree with ones with only the constraint α.

In what follows, the GP extrapolation model using constraints
is referred to as constrained Gaussian process (cGP) model.

C. Choice of the mean function

Here let us introduce two different mean functions μ(∗)

needed in Eqs. (3)–(8):

(i) (case a) zero mean: μ = 0D,μ∗ = 0P;
(ii) (case b) B3 fit: mean of data and prediction are both

determined by B3 fit [19], i.e., minimizing χ2 devia-
tion between the largest three Nmax data and the expo-
nential function in the form of E∞ + c0 exp (−c1Nmax)
with three free parameters (E∞, c0, c1). In this choice,
it can be said that preliminary knowledge on the be-
havior of the quantity is included in terms of the mean
function of GPs.

In the following, these are referred to as cGP-a and cGP-b,
respectively, and I analyze both cases below.

IV. RESULTS AND DISCUSSIONS

A. Extrapolation of g.s. energies

The cGP predictions for the ground-state energies of 6Li
are shown in Fig. 3. Now the extrapolated values at a certain
Nmax are represented by the histograms. The cGP-a results are
shown by the transparent histograms colored in green, and the
hatched histograms colored in pink are for the cGP-b results.

It should be noted that the prediction is truncated up to a
certain Nmax where the mean value is converged within 0.2
keV. This means that possible differences between predic-
tions at the finite Nmax and one at Nmax = ∞ are suppressed
below 1 keV because of the constraint β. The Nmax giving
converged results are 44,38 and 34 for NNLOopt, JISP16, and
N3LO, respectively. These numbers are consistent with the
intuition that harder interaction requires larger Nmax to obtain
converged results, while it should be noted that these results
are for different h̄�. In addition to the mean values, the 68%
and 99% credible intervals are shown and plotted below the
histograms. In this work, the 68% interval is determined from
the 16th and 84th percentile of the distribution, and the 99%

FIG. 3. Posterior distributions of extrapolated value at certain Nmax are shown by histograms with 5 keV width. The B3 (dotted lines) denote
the extrapolated values with exponential function and dashed lines are associated with extrapolated values in Refs. [49,50] with/without error
bar.
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FIG. 4. The plot showing the impact of the constraints α (monotonicity) and β (convexitylike). The bands colored in red, orange (hatched),
and green (with dashed dotted line), show the 68% credible intervals of GP predictions with α and β, only α, and without constraints,
respectively. The red bands are cut at a certain Nmax, which gives converged results.

interval is defined in a similar manner. As a whole, the cGP-b
gives smaller credible intervals than the cGP-a.

Other extrapolated values are also shown. The B3 denotes
the exponential fit using the largest three Nmax data. The
conventional B3 extrapolation is always included as a special
case of two cGP results. The values for literature are from
Refs. [49,50]. Here I note that the literature value for N3LO
[50] might be obtained by an exponential fit using all five data,
while it is not explicitly stated. It must also be noted that it
is a highly nontrivial task to fairly compare the results with
different extrapolation techniques, because data is truncated
in parametric models and some use data with multiple h̄� as
in the A5 extrapolation [49].

In the present case, the sampling scheme with the particle
filtering gives converged results within a few keV in case of
20000 particles after 2000 times Metropolis-Hastings updates
for each particle, and independent runs reproduce the same
results within the Monte Carlo error.

B. Impact of the constraints

Here let us see how extrapolation results are influenced
by the two constraints imposed. In Fig. 4, the impact of the

constraints is shown. All symbols are the same as in Fig. 1,
and the cGP-a and cGP-b results are summarized in the left
and right regions, respectively. The bands correspond to the
68% credible intervals of GP predictions with α and β (red),
with the only α (hatched orange), and without constraints
(green), respectively. Since the 68% errors for the cGP-b
prediction is an order of ten keV, the red lines in the right
panel are very narrow.

As shown in the textbook [38], predictions of uncon-
strained zero-mean GP at points far from the data domain
converge to zero with a fixed standard error. The case of cGP-a
without α and β, which is obviously not appropriate for the
current purpose, is omitted for this reason. When one assumes
that the wave function is dominated by relatively lower Nmax

configurations, predictions with both constraints α and β are
expected to be more reliable than the others.

C. Data dependence

I have used all Nmax results as data so far. Next, let us
explore the dependence of extrapolated values on the used
data to test the potential predictive power of the proposed
method. In Fig. 5, extrapolated values for both cGP-a and

FIG. 5. Extrapolated ground-state energies as a function of maximum Nmax used as data. The mean values by the cGP models are shown
by horizontal line in white. Shaded areas are obtained by a kernel density estimation of the posterior distribution. The two types of vertical
solid lines, thick and thin ones, show 68% and 99% credible intervals, respectively. For the visibility, the results for NNLOopt and N3LO are
slightly shifted to left and right, respectively.
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cGP-b are shown as a function of the maximum Nmax used
as data, i.e., xD = max(Nmax).

The mean predictions by the cGP models are shown by
horizontal line in white, and the shaded areas show the pos-
terior distributions obtained by 20000 particles. The 68% and
99% credible intervals, respectively, are shown by the thick
and thin vertical lines, respectively. To improve the readability
of the figure, the width of the shaded area is scaled to be the
same for each area, and NNLOopt (N3LO) results are slightly
shifted to left (right).

As a whole, the size of credible intervals for the cGP-a
is larger than that for the cGP-b, and the credible intervals
become smaller as higher Nmax data is added with only one
exception, i.e., the cGP-b result for N3LO with max(Nmax =
10). This exception can be understood from Eqs. (4)–(8).
In this case, the exponential function exactly fits the given
three data and then μy∗|y in Eq. (6) is identical with μ∗. Any
fluctuation of the joint mean value μy∗|y is not allowed, and
this significantly reduces probability weights for functions
other than the B3 fit.

These plots with quantified uncertainties tell us one crite-
rion of where to stop the massive FCI calculations under the
given extrapolation model; It is inadvisable to carry out FCI
calculations while increasing Nmax forever, whereas the point
to stop must depend on the desired accuracy. In the rest of this
section, let us regard the mean values at rightmost max(Nmax)
in Fig. 5, i.e., max(Nmax) = 18 for NNLOopt and JISP16, and
max(Nmax) = 14 for N3LO, as the tentative exact values.

For NNLOopt and JISP16, an important remark is that
the exact values are covered by the cGP-a predictions with
a relatively lower max(Nmax). The sign of convergence can
be seen around max(Nmax) = 10–12, i.e., one can choose
these as points to stop the calculation. From the behavior of
the credible intervals, the cGP-b seems to underestimate the
uncertainties than the cGP-a. In other words, the cGP-b takes
account of fluctuation of the functional form only around the
exponential function, while the cGP-a would include a wider
class of functions.

For N3LO, any predictions by cGP-a, cGP-b, and B3
fit with lower max(Nmax) have almost no overlap with the
tentative exact value. This means that all the models fail to
estimate the extrapolation uncertainty, while the cGP-a could
be better than the others. The extrapolated values are much
more sensitive to the max(Nmax) than the results with other
interactions; the extrapolation for the N3LO results seems to
be a more nontrivial problem than the others. This can be
understood from the behavior of the ratio of energy gains r.
Especially in the N3LO case, the r is unstable with respect to
Nmax, as seen in Fig. 2. One possibility to cause this nonflat
behavior of r is that the calculation have not yet converged,
i.e., the additional bindings by increasing Nmax cannot be
regarded as a simple asymptotic behavior. However, there
is not yet enough open data to conclude the origin of the
nonflat behavior of r. If one could figure out an additional
constraint on the behavior of extrapolated values as a function
of max(Nmax), such a difficulty in extrapolation, which could
be observed in particular nuclei and/or particular interactions,
would be alleviated.

V. SUMMARY AND OUTLOOK

In this work, an extrapolation method for CI-type cal-
culations using constrained Gaussian processes is proposed.
This method has the following advantages that are required
for future generations of ab initio studies to achieve more
quantitative discussions on observables of interest and on the
quality of adopted nuclear interactions.

First, this method does not need to remove outliers and has
applicability to sparse data sets, which are strongly needed
for future FCI calculations. Second, one can naturally incor-
porate domain knowledge into the model. It is often the case
especially in physics that one knows in advance the behavior
of the target quantity at a certain level, which is ranging
from empirical laws to physical principles. One can expect
that imposing such information into the extrapolation model
improves the accuracy of the predictions. This flexibility
might be useful to alleviate difficulties in the extrapolation
for some particular cases. Third, uncertainty in extrapolation
can be quantified in a systematic manner. Although the main
source of uncertainties in FCI calculations is the input nuclear
potential, evaluating extrapolation uncertainties are helpful for
further understandings about the nuclear observables.

Regarding uncertainties from input parameters in nuclear
many-body methods, the tremendous efforts to propagate
input uncertainty to the observables have been made in the
last decade, see, e.g., Refs. [51–65]. In addition to these, it
has been shown that eigenvector continuation (EC), which is
introduced in Ref. [66], can be used as an efficient emulator of
ab initio methods, then used for uncertainty quantification and
sensitivity analyses on input parameters such as low-energy
constants in the chiral EFT potentials [67,68]. It is expected
that EC (and some other method) facilitates comprehensive
studies of uncertainty propagation in ab initio methods com-
bined with an extrapolation method with quantified uncertain-
ties.

FIG. 6. The BIC for six kernel functions, Mat32 (Matérn kernel
with ν = 3/2), Mat52 (Matérn kernel with ν = 5/2), RBF (radial
basis function), and their counterparts with logarithm distances.
Results for NNLOopt (N3LO) are slightly shifted to left (right).
Symbols drawn by solid and dashed lines are for cGP-a (zero mean)
and cGP-b (exponential mean), respectively.
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FIG. 7. The summary of PSD properties for the three kernel functions. The covariance matrices having PSD are shown by the filled circle
(green). The diamond symbols (red) mean that both KX X and �y∗|y are non-PSD, and the cross symbols (blue) are assigned if only the �y∗|y is
non-PSD.

The benefits of the uncertainty quantification are not lim-
ited to putting error bars in predictions. If one properly
propagates uncertainties from the input interaction and also
quantifies uncertainties such as that due to the extrapolation,
it enables us to visualize nonlinear relation between input
and output of many-body calculations and capability of the
many-body method. Then it would provide us with footholds
to understand some missing contributions, if there were any.

In the present work, the extrapolation method is applied to
only the ground-state energies obtained by FCI calculations.
When it comes to the extrapolation problem of other quantities
or in other systems, the main problem is to find minimal con-
straints to capture the asymptotic behavior of the quantities
well. It is a possible future direction along this line to extend
the cGP model to a higher dimension. In case of FCI calcu-
lations, for example, one can impose the following additional
constraint on GP by extending the formulation to (Nmax, h̄�)
space: extrapolated values with different h̄� should converge
to the same value to some extent. The extension of the formu-
lation to a multidimensional space is rather straightforward,
while it is expected that one needs more technical analyses
in numerical studies such as positive semidefiniteness of

covariance matrices. Our model can also be applied to valence
CI techniques using an importance truncation in which the
extrapolation function is much more nontrivial than the FCI
case. It would also be interesting to apply this kind of cGP to
finite-size scaling analyses in other systems.
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APPENDIX A: KERNEL SELECTION

In this section, I explore the technical details to choose
the kernel function. As mentioned in the main text, popular
choices are RBF kernel:

kRBF(xi, x j ) = τ exp

(
− (xi − x j )2

2�2

)
, (A1)

FIG. 8. The plot showing the impact of the ε prescription to avoid non-PSD. The color map shows the � in Eq. (A9). The hatched region
with dots show the points at which the two codes gives the exactly the same result. The region where the code does not give answer is colored
in white.
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FIG. 9. Projection of the particles to hyperparameter space. The colors show relative contribution of P(θ|y) for cGP-a.

and Matérn kernel:

kMatrn(xi, x j ; ν) = τ
21−ν

�(ν)
ξνKν (ξ ), (A2)

ξ ≡
√

2ν|xi − x j |
�

, (A3)

where � is the gamma function and Kν is the modified Bessel
function of the second kind. Especially, Matérn kernels with
ν = 3/2 and ν = 5/2 are commonly used. The RBF kernel
corresponds to the special case of the Matérn kernel with
ν = ∞. For the Matérn kernel, a sample function is k-times
mean-square differentiable if and only if ν > k [38]. For that
reason, the Matérn kernels with ν > 3/2 are thought to be
appropriate for the purpose, i.e., extrapolation of FCI results,
but the analysis below includes the ν = 3/2 case too.

In what follows, let us consider these Mat32 (Matérn kernel
with ν = 3/2), Mat52 (Matérn kernel with ν = 5/2), RBF
(radial basis function), and their counterparts with logarithm
distances:

klogRBF = τ exp

(
− η2

2�2

)
, (A4)

klogMat52 = τ

(
1 +

√
5η

�
+ 5η2

3�2

)
exp

(
−

√
5η

�

)
, (A5)

klogMat32 = τ

(
1 +

√
3η

�

)
exp

(
−

√
3η

�

)
, (A6)

where η ≡ | ln xi − ln x j |. Taking the logarithm distance, i.e.,
replacing |xi − x j | in, e.g., Eq. (A1) by | ln xi − ln x j |, makes
results independent of the scale of the x axis, and allows

the capture of the nonstationary nature of FCI results (results
rapidly converge to certain values as functions of Nmax) [69].

To compare the six kernels, the Bayesian information
criterion (BIC) is used:

BIC = ln P(y|θML) − 1
2 M ln n, (A7)

where θML is the maximum likelihood estimation under the
given data, M is the dimension of the hyperparameter θ, and
n is the number of data. In this case, the values of the latter
term are common among the results with the given interaction.
In Fig. 6, the BIC for the six kernels is summarized. Colors
and symbols for three interactions are the same as Fig. 1. The
θML is obtained through updates of 2000 independent particles
by the Metropolis-Hastings method, and the θML is converged
less than 0.1% accuracy. As a whole, taking the logarithm of
the distance increases the maximum log-likelihood, which is
now equivalent to the maximum BIC.

As stated in the main text, the logMat52 kernel is used
throughout this work. This is partly because the logMat52
gives the highest BIC in total. The other reason is its numerical
stability over the (log)RBF kernel. The RBF is one of the
most popular choices for the kernel. However, its smoothness
of the sample functions is often regarded as too high [70],
and, in practice, this too smooth nature sometimes breaks
down the positive semidefiniteness of covariant matrices
in numerical calculations due to rounding errors. That is
demonstrated in the following.

In applications of GPs, one needs to obtain conditional
mean vectors Eq. (6) and covariance matrices Eq. (7). The
covariance matrices such as KXX and � must be positive
semidefinite (PSD) to achieve, e.g., the Cholesky decompo-
sition for K−1

XX and to generate samples from the posterior

FIG. 10. Projection of the particles to the hyperparameter space. The colors show relative contributions to Eq. (11) in cGP-a.
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FIG. 11. Projection of the particles to hyperparameter space. The colors show relative contribution of P(θ|y) for cGP-b.

distribution. In some cases (e.g., points are located too close
to each other), covariance matrices become non-PSD due to
rounding errors, although it must be PSD mathematically.
This is also true for the extrapolation method in the present
study. The typical prescription to this non-PSD is to add an
infinitesimal diagonal matrix to the KXX and/or �. Let us call
this the ε prescription in the following. This ε prescription is
mathematically equivalent to assume the observation and/or
prediction to have noise. In the current case the target quantity
is the calculated energies of light nuclei by ab initio full
configuration interaction method, i.e., in the order of a few
tens of MeV. On the other hand, the typical convergence
tolerance of the Lanczos method in shell-model codes on the
market is 1.e-5 MeV or better [16,17], i.e., the problems of
interest are almost noiseless.

Let A denote a symmetric PSD matrix. If A is perturbed to
A + δA then A−1 becomes A−1 + X where

||X || � ||A−1||2||δA|| (A8)

for any matrix norm || · || (e.g., Ref. [71]). The upper bound
of norm of ||X || is not tight when the condition number of A
is large, which corresponds to a numerically non-PSD covari-
ance. This error induced by the ε prescription is propagated
to mean vectors and covariances through Eq. (6) and Eq. (7),
and affect generated samples and evaluation of posteriors.

In Fig. 7, the positive semidefiniteness of the covariance
matrices are summarized; the conditional mean vector and
covariance matrix for the N3LO data are calculated while
varying the hyperparameters τ and � in Eq. (A4)–(A6). The
diamond symbols (red) correspond to the case that both

KXX and �y∗|y are non-PSD, and the cross symbols (blue)
are assigned if only the �y∗|y is non-PSD. In terms of the
length scale �, the logRBF gives non-PSD matrices easier than
logMat52 by one or two orders of magnitude.

In Fig. 8, the following quantity is shown:

� ≡ log10

(
max

(∣∣μw/

y∗|y − μ
w/o
y∗|y

∣∣)), (A9)

where the superscripts, w/ and w/o, mean the conditional
mean vectors calculated with and without ε prescription,
respectively. It is noted that the mean vectors are now given
in a unit of MeV and that ε = 1.e-12 is used, which is much
smaller than that used in common libraries such as scikit-learn
[72] and GaussianProcesses.jl [73]. The hatched regions with
dots for smaller � means that the results of the two codes
are exactly the same. The white regions appearing in Fig. 8
correspond to the diamond symbols in Fig. 7, i.e., the mean
vectors cannot be evaluated without the ε prescription. As
the length scale � increased, the posterior covariance becomes
non-PSD (cross symbols in Fig. 7), then the � becomes larger.
In some cases, the deviations in mean vectors reach a few
MeV, which are obviously non-negligible.

One should be careful as to how the PSD and the observa-
tion noise are treated in the codes or libraries and the possible
impact of the ε prescriptions on the predictions, especially
when one would like to integrate out the hyperparameter de-
pendence. The codes to reproduce Figs. 7 and 8 are provided
in Ref. [74]. From the analyses above, I concluded that the
logMat52 is the most appropriate choice for the extrapolation
method.

FIG. 12. Projection of the particles to the hyperparameter space. The colors show relative contributions to Eq. (11) in cGP-b.

024305-9



SOTA YOSHIDA PHYSICAL REVIEW C 102, 024305 (2020)

APPENDIX B: EXTENSION OF THE POSTERIOR
DISTRIBUTION UNDER THE CONSTRAINTS

Equation (10) is derived in the following. Let the c denote
the physics constraints to be imposed.

P(y∗, y, c) =
∫

P(y∗, y, c, θ)dθ, (B1)

P(y∗|y, c) =
∫

P(y∗, y, c, θ)

P(y, c)
dθ, (B2)

=
∫

P(c|y∗, y, θ)P(y∗, y, θ)

P(y, c)
dθ, (B3)

∝
∫

P(c|y∗, y)P(y∗|y, θ)P(y|θ)P(θ)dθ. (B4)

In the last line, the constraints and the hyperparameters are
assumed to be independent of each other.

APPENDIX C: CONTRIBUTIONS TO THE
POSTERIOR DISTRIBUTION

In Figs. 9–12, the hyperparameter distributions are shown.
Colors of each dot show the relative size of contributions to
P(θ|y) and to the right-hand side of Eq. (11). In the sampling
method, particles are evolved according to the random walk
Metropolis-Hastings method. One can see from Figs. 10 and
12 that particles distribute like an ellipse in hyperparameter
space. The particles do not distribute over the non-PSD region
discussed in Appendix A, and the relatively longer correlation
length is favored so as to make sampled function obeying the
monotonicity and convexitylike conditions. This is reflected
as asymmetric color distributions of P(θ|y) in Figs. 9 and 11.
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