
PHYSICAL REVIEW C 102, 024304 (2020)
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The nucleon pair shell model (NPSM) is cast into the so-called M scheme for the cases with isospin symmetry
and without isospin symmetry. The odd system and even system are treated on the same footing. The uncoupled
commutators for nucleon pairs, which are suitable for the M scheme, are given. Explicit formula of matrix
elements in M scheme for overlap, one-body operators, and two-body operators are obtained. It is found that
the CPU time used in calculating the matrix elements in M scheme is much shorter than that in the J scheme of
NPSM.
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I. INTRODUCTION

Collective motions in nuclei, such as collective vibration,
collective rotation, the backbending phenomenon, giant res-
onances, etc., of medium and heavy nuclei, are extremely
important. How to describe the collective motions of nucleus
is a fundamental problem in nuclear structure theory. Since the
nuclear shell model [1,2] includes all the degrees of freedom,
it can be used to describe the collective phenomena techni-
cally [3]. With the development of the computer, the shell
model Hamiltonian can be diagonalized in the model space
up to about 1010 [4]. But even for medium and heavy nuclei,
the shell model space is about 1014–1018 [5], and the modern
computer fails for all of these cases. Therefore, to apply the
shell model theory to medium and heavy nuclei, an efficient
truncation scheme is necessary. The interacting boson model
(IBM) [6] has had great success in nuclear structure theory
[7–12]; in the model the valence nucleons pairs are treated
as s bosons (with angular momentum J = 0) and d bosons
(with angular momentum J = 2). The vibrational spectrum,
rotational spectrum, and γ -unstable spectrum correspond to
the U(5), SU(3), and SO(6) limits in the IBM.

In 1993, a new technique, the generalized wick theory, was
proposed to calculate the commutators for coupled operators
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and fermion clusters by Chen et al. [13,14]. Based on this new
technique, a nucleon pair shell model (NPSM) was proposed
[15], in which the building blocks of the configuration space
are constructed by nucleon pairs instead of the single valence
nucleons. Because of the success of the IBM, the shell model
space was truncated to the SD-pair subspace, giving the so-
called SD-pair shell model (SDPSM). Previous works show
that the collectivity of the low-lying states can be described
very well in the SDPSM [16–18]. The quantum phase tran-
sition and the properties of the critical point symmetry can
also be reproduced very well in the SDPSM [19]. In 2000,
a new version of the NPSM was given by Zhao et al. [20],
in which the odd and even systems can be treated on the
same footing. The NPSM was extended to include isospin
symmetry in Ref. [21,22]. The formalism in the NPSM with
particle-hole coupling was also developed [23]. However, due
to the CPU time in calculating the matrix elements increasing
drastically with the number of nucleon pairs, the maximum
number of nucleon pairs that the NPSM can handle is five
for an identical nucleon system [24]. Therefore, an efficient
method to calculate the matrix element is necessary in the
NPSM.

In general, the shell model bases are constructed in the so-
called J scheme [25] or the M scheme [26]. Most of the large-
scale shell model basis are constructed in the M scheme, since
it does not need to calculate the 9 j symbols and coefficients
of fractional parentage [3]. The old versions of the NPSM is
constructed in the J scheme, and one has to recouple and sum
over all of the intermediate quantum numbers in calculating
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the matrix elements. This procedure is too time consuming.
Because of the advantage of the M scheme, it is interesting to
cast the NPSM in the M scheme, and this is the aim of this
paper.

The paper is organized as follows. In Sec. III, the NPSM
in M scheme for the case without isospin symmetry is given;
the NPSM in M scheme for the case with isospin symmetry
are presented in Sec. IV, and a brief summary and discussion
is given in Sec.VI.

II. THE HAMILTONIAN, E2 TRANSITION OPERATOR,
AND M1 TRANSITION OPERATOR

As in the J scheme, we still use a Hamiltonian consisting
of the single-particle energy term H0 and a residual interaction
containing the multipole pairing between like nucleons and
the multipole-multipole interaction between all nucleons:

H =
∑

σ=π,ν

(H0(σ ) + V (σ )) +
∑

t

κt Q
t
π · Qt

ν,

H0(σ ) =
∑

a

εan̂a,

V (σ ) =
∑

s

Gsσ As† · As +
∑

t

ktσ Qt · Qt ,

Qt =
n∑

i=1

(ri )
tYt (θiφi ), (1)

where εa and n̂a are the single-particle energy and the number
operator respectively, and the pair creation operator is

As†
ν =

∑
cd

y0(cds)(a†
c × a†

d )s
ν . (2)

Notice that the structure coefficients y0(cds) depend on the
Hamiltonian to be used and are in general different from those
in the building blocks, y(cds), in Eq. (8).

The second quantized form of Qt is given by Eq. (13) with
the coefficients q(cdt ) equal to

q(cdt ) = (−)c− 1
2

ĉd̂√
20π

Ct 0
c 1

2 ,d− 1
2

cdt 〈Nlc|rt |Nld〉,


cdt = 1

2
[1 + (−)lc+ld +t ], (3)

where N is the principal quantum number of the harmonic
oscillator wave function, such that the energy is (N + 3/2)h̄ω0

and lc and ld are the orbital angular momentum of the single-
particle (s.p.) levels c and d , respectively.

The general form of the two-body realistic interaction in
the shell model as shown in the following can also use in this
algorithm:

V =
∑
JT

∑
j1� j2, j3� j4

VJT ( j1 j2 j3 j4)√
1 + δ j1 j2

√
1 + δ j3 j4

× (AJT †( j1 j2) × AJT ( j3 j4))0. (4)

The E2 and M1 transition operators are

E2 = eπQ2
π + eνQ2

ν,

T (M1) = T (M1)π + T (M1)ν,

T (M1) =
√

3

4π
(glL + gsS), (5)

where eπ and eν are effective charges of the protons and
neutrons, while gl and gs are the orbital and spin effective
gyromagnetic ratios. The total orbital angular momentum
operator L and total spin S can be identified with collective
dipole operators,

Lσ ≡ Q1
σ =

∑
cd

q(cd1)P1
σ (cd ),

Sσ ≡ Q′1
σ =

∑
cd

q′(cd1)P1
σ (cd ) (6)

with

q(cd1) = (−1)l+1/2+d
√

l (l+1)
3 ĉd̂ l̂

{
c d 1
l l 1

2

}
,

q′(cd1) = (−1)l+1/2+c 1√
2
ĉd̂

{
c d 1
1
2

1
2 l

}
. (7)

III. NPSM IN M SCHEME WITHOUT ISOSPIN SYMMETRY

In this section, the uncoupled commutators and matrix
elements for the one-body operator and two body operator for
the case without isospin are given in the M scheme. The odd
system and even system are treated on the same footing.

A. Uncoupled commutators for nucleon pairs

As in the old version of the NPSM, the collective nucleon
pair with angular momentum r and projection m, designated
as Ar†

ν , is built from many noncollective pairs Ar
ν (cd )† in the

single-particle orbits a and b in one major shell,

Ar†
m =

∑
ab

y(abr)Ar†
m (ab), (8)

where y(abr) are structure coefficients satisfying the symme-
try

y(abr) = −(−)a+b+ry(bar). (9)

Noncollective pair Ar†
m (ab) is

Ar†
m (ab) = (aa† × ab†)r

m =
∑

ma,mb

Crm
a,ma,bmb

aa†
ma

ab†
mb

, (10)

where a j†
m is a single-particle creation operator, which creates

a nucleon in the j orbit with projection m, and Crm
a,ma,bmb

is
a Clebsch-Gordan coefficient. The time-reversed form of the
single annihilaton operator a j

m is

ã j
m = (−) j−ma j

−m. (11)

The time-reversed form of a collective pair is

Ãr
m =

∑
ab

y(abr)Ã(ab) = −
∑

ab

y(abr)(ãa × ãb)r
m. (12)
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A multipole operator or one-body operator Qt
σ is denoted

by

Qt
σ =

∑
cd

q(cdt )Pt
σ (cd ),

Pt
σ (cd ) = (ac† × ãd )t

σ ,

q(cdt ) = −(−)c+d × q(dct ). (13)

The coupled commutators between two collective pairs are
denoted as

[Ãr, As†]t
σ =

∑
αβ

Ctσ
rα,sβ [Ãr

α, As†
β ]. (14)

Some crucial coupled commutators in the NPSM, taken
from Ref. [13], are listed in the Appendix. The uncoupled
commutator for nucleons pairs, which can be used to con-
structed the NPSM in M scheme, is obtained from the coupled
commutators, and is[

Ar
μ, As†

ν

] = (−)r−μ
∑
αβ

δ−μαδνβ[Ãr
α, As†

β ]

= (−)r−μ
∑
tσ

Ctσ
r−μ,sν[Ãr, As†]t

σ (15)

Based on Eqs. (A1)–(A7), the uncoupled commutators
in M scheme can be obtained. The uncoupled commutator
between collective pair annihilation operator and collective

pair creation operator is given by[
Ar

μ, As†
ν

] = (−)r−μ
∑
tσ

Ctσ
r−μ,sν[Ãr, As†]t

σ

= 2δr,sδμ,ν

∑
ab

y(abr)y(abr) − (−)r−μ
∑
tσ

Ctσ
r−μ,sνPt

σ ,

(16)

where Pt
σ is a new one-body operator, which is given in

Eq. (A2). The uncouple commutator for the collective pair and
one-body operator would be given by[

Ar
m, Qt

σ

] = (−)r−m
∑
r′m′

Cr′m′
r −m,tσ [Ãr, Qt ]r′

m′

=
∑
r′m′

Ar′
−m′ , (17)

where Ar′
−m′ is a new collective pair, which is

Ar′
−m′ =

∑
ad

y′(dar′)Ar′
−m′ (da),

y′(dar′) = z(dar′) − (−)a+d+r′
(adr′),

z(dar′) = (−)r+r′−m−m′
r̂t̂Cr′m′

r −m,tσ

×
∑

b

y(abr)q(bdt )

{
r t r′
d a b

}
. (18)

By using Eqs. (16) and (17) the uncoupled double commutator
can be obtained:

[
Ari

mi
,
[
Ark

mk
, As†

m

]] = (−)rk+ri−mk−mi
∑
tσ

r′m′

Cr′m′
ri−mi,tσCtσ

rk−mk ,sm[Ãri , [Ãrk , As†]t ]r′
m′ =

∑
r′m′

Br′
−m′ , (19)

where Br′
−m′ is a new collective pair, which is

Br′
−m′ =

∑
aa′

y′(aa′r′
i )A

r′
−m′ (aa′), y′(aa′r′

i ) = z(aa′r′
i ) − (−)a+a′+r′

z(a′ar′
i ),

z(aa′r′
i ) = −4r̂i r̂k ŝ

∑
tσ

t̂ (−)rk+ri+r′−mCr′m′
ri−mi,tσCtσ

rk−mk ,sm

∑
bb′

y(a′b′ri )y(abrk )y(bb′s)

{
rk s t
a b′ b

}{
ri t r′
a a′ b′

}
. (20)

By using Eq. (17) recursively, the uncoupled double commutator between pair annihilation operator and multipole-multipole
interaction operator can be obtained, and is∑

σ

(−)σ [[Ar
m, Qt

σ ], Qt
−σ ] =

∑
r′

(−)r−r′ r̂′

r̂
Ar

m, (21)

where Ar
m is a new collective pair, which is given by

Ar
m =

∑
ab

y′(abr)Ar
m(ab), y′(abr) = [h(abr) − (−)a+b+rh(bar)],

h(abr) = (−)r+r′−m−m′
r̂′t̂Cr −m

r′ σ−m, t −σ

∑
d

y′′(bdr′)q(dat )

{
r′ t r
d b a

}
, (22)

where the new pair structure y′′(bdr′) is obtained from Eq. (17).
The uncoupled commutator between single nucleon annihilation operator and one-body operator can be expressed as[

a j
m0

, Qt
σ

] = −
∑
j′m′

(−)t−σC j′m′
j −m0,tσ

t̂

ĵ′
q( j j′t ) a j′

−m′ . (23)
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The uncoupled double commutator for single nucleon can also be obtained, and is[
a j

m0
,
[
Ark

mk
, As†

m

]] =
∑
tσ

r′m′

(−)rk+ j−mk+m0Ctσ
rk −mk ,smCr′m′

j −m0,tσ [a j, [Ark , As†]t ]r′
m′

= 4
∑
tσ

r′m′

(−)rk+t−mCtσ
rk −mk ,smCr′m′

j −m0,tσ

r̂k ŝt̂

r̂′
∑

b

y(r′brk )y(b js)

{
rk s t
j r′ b

}
ar′

−m′ . (24)

By recursive applications of Eq. (23), we can obtain the uncoupled double commutator between single nucleon operator and
multipole-multipole interaction operator, which is∑

σ

(−)σ
[[

a j
m0

, Qt
σ

]
, Qt

−σ

] =
∑

j′
(−) j− j′ 2t + 1

2 j + 1
q( j j′t )q( j′ jt ) a j

m0
. (25)

B. Commutators in M scheme

The odd system with 2N + 1 nucleons and the even sys-
tem with 2N nucleons are treated on the same footing. The
creation operator coupled successively to the total angular
momentum projection M is designated by

A†(r0m0, . . . , rN mN )M = Ar0†
m0

· Ar1†
m1

· · · ArN †
mN

, M =
N∑

i=0

mi

(26)

with the convention that

Ar0†
m0

=
{

1 for even system, m0 ≡ 0,

ar0†
m0

for odd system, r0 ≡ j.
(27)

The annihilation operator AM is defined as

A(r0m0, . . . , rN mN )M = Ar0
m0

· Ar1
m1

· · · ArN
mN

, M =
N∑

i=0

mi;

(28)

the convention of Ar0
m0

is similar to that of Eq. (26). Then one
can get the commutator between the annihilation operator AM

and the pair creation operator, which is

[A(r0m0, . . . , rN mN )M, As†
m ] =

N∑
k=1

[
ϕδrk ,sδmk ,mA(r0m0, . . . , rk−1mk−1, rk+1mk+1, . . . , rN mN )M−m

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

A(r0m0, . . . , r′
im

′
i, . . . , rk−1mk−1, rk+1mk+1, . . . , rN mN )M−m

+
∑
tσ

Pt
σ × A(r0m0, . . . , rk−1mk−1, rk+1mk+1, . . . , rN mN )M−mk

]
, (29)

where ϕ = 2
∑

ab y(abrk )y(abs), the summation runs over i from k − 1, to 0 or 1, corresponding to the odd system or even

system respectively, and Ar′
i

m′
i
represents a new collective pair (i �= 0) or a single nucleon (i = 0),

Ar′
i

m′
i
= [

Ari
mi

,
[
Ark

mk
, As†

m

]]
; (30)

the explicit form of the new pair has already been given in Eqs. (19) and (24), and Pt
σ has been given in Eq. (16). It is to be noted

that the last term in the right-hand side of Eq. (29) is normal ordered and it is unimportant in calculating the matrix elements,
since it gives zero when acting to the left on a vacuum state. By using Eq. (29), we have the commutation relation between the
pairing interaction and the annihilation operator AM :

[A(r0m0, . . . , rN mN )M, As† · As] =
N∑

k=1

[
ϕδrk ,sδmk ,mA(r0m0, . . . , smk, . . . , rN mN )M

+
0 or 1∑

i=k−1

∑
r′

i m
′
im

A(r0m0, . . . , r′
im

′
i, . . . , rk−1mk−1, rk+1mk+1, . . . , rN mN , sm)M

+
∑
tσm

Pt
σ × A(r0m0, . . . , rk−1mk−1, rk+1mk+1, . . . , rN mN , sm)M−mk+m

]
. (31)

It is to be noted the last term in Eq. (31) is normal ordered.
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The commutator between one body operator and the annihilation operator AM is obtained,

[A(r0m0, . . . , rN mN )M, Qt
σ ] =

0 or 1∑
k=N

∑
r′

km′
k

A(r0m0, r1m1, . . . , r′
km′

k, . . . , rN mN )M−σ , (32)

where summation runs over k from N to 0 or 1, corresponding to the odd system or even system, respectively, and A
r′

k

m′
k

represents
a new collective pair (k �= 0) or a single nucleon (k = 0):

A
r′

k

m′
k
= [

Ark
mk

, Qt
σ

]
; (33)

the explicit forms of the new pair have already been given in Eqs. (17) and (23).
The commutator between multipole-multipole operator and the annihilation operator AM is[

A(r0m0, . . . , rN mN )M,
∑

σ

(−)σ Qt
σ Qt

−σ

]
=

0 or 1∑
k=N

[
A(r0m0, r1m1, . . . , (rkmk )B, . . . , rN mN )M

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

r′
km′

k

∑
σ

(−)σ A(r0m0, r1m1, . . . , r′
im

′
i, . . . , r′

km′
k, . . . , rN mN )M

+
∑

σ

∑
r′

km′
k

(−)σ Qt
−σ × A(r0m0, r1m1, . . . , r′

km′
k, . . . , rN mN )M−σ

]
, (34)

where summation range over k(i) from N (k − 1) to 0 or 1, corresponding to the odd system or even system, respectively, and
r′

km′
k (r′

im
′
i ) represents a new collective pair (k �= 0) or a single nucleon (k = 0):

A
r′

k

m′
k
= [

Ark
mk

, Qt
σ

]
, Ar′

i

m′
i
= [

Ari
mi

, Qt
−σ

]
; (35)

the explicit forms of the new pair have already given in Eqs. (17) and (23). (rkmk )B denotes a new collective pair (k �= 0) or a
single nucleon (k = 0) obtained by uncoupled double commutators(

Ark
mk

)
B =

∑
σ

(−)σ
[[

Ar
m, Qt

σ

]
, Qt

−σ

]
,

(
Ar0

m0

)
B =

∑
σ

(−)σ
[[

a j
m0

, Qt
σ

]
, Qt

−σ

]
; (36)

the explicit results have been given in Eqs. (21) and (25). It is to be noted the last term in Eq. (34) is normal ordered.

C. Matrix elements of overlap and interactions

An N pair or N pair plus one single nucleon state in M scheme is designated as

|α, MN > = |r0m0, r1m1, . . . rN mN ; MN 〉 ≡ A†(r0m0, r1m1, . . . rN mN )|0〉, (37)

where r0m0 represents 1 in the even particle number system or a single nucleon the in odd particle number system, and α denotes
the additional quantum numbers

α = (r0m0, . . . , rN , mN ). (38)

It is interesting to note that α is redundant, since it has already been included in the total projection number M.
For proton-neutron coupled system, the basis are constructed by coupling the protons and neutrons to the state with total

projection number M,

|α, MnMp; M〉 = |αp, Mp〉|αn, Mn〉 (39)

The overlap between two states is a key quantity, since the matrix elements of one-body and two-body interaction can all be
expressed as a summation of the overlaps. From Eq. (29), we can get the overlap between two states,

〈0|AM1 A†
M2

|0〉 ≡ 〈r0μ0, r1μ1, . . . rNμN ; M1|s0ν0, s1ν1, . . . , sNνN ; M2〉

=
N∑

k=1

[
2
∑

ab

y(abrk )y(absN )δrk ,sN δμk ,νN 〈r0μ0 . . . rk−1μk−1, rk+1μk+1 . . . rNμN ; M1− νN |s0ν0 . . . sN−1νN−1; M2− νN 〉

+
0 or 1∑

i=k−1

∑
r′

iμ
′
i

〈r0μ0 . . . r′
iμ

′
i . . . rk−1μk−1, rk+1μk+1 . . . rNμN ; M1 − νN |s0ν0 . . . sN−1νN−1; M2 − νN 〉

]
. (40)
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One can see that although the overlap is still calculated recursively, the most time-consuming factor, the recoupling of the
angular momentum, is not needed. The summation over the projection μ′

i of the new pair is redundant, since it is a constant value
μi + μk − νN . The overlap for one pair state in M scheme is same as that in J scheme, which is

〈r1μ1|s1ν1〉 = 2δr1,s1δμ1,ν1

∑
ab

y(abr1)y(abs1). (41)

The overlap for one pair plus one single nucleon is given as

〈r0μ0, r1μ1|s0ν0, s1ν1〉 = 2δr1,s1δμ1,ν1δr0,s0δμ0,ν0

∑
ab

y(abr1)y(abs1)

+ 4r̂1ŝ1

∑
JM

CJM
r0μ0,r1μ1

CJM
s0ν0,s1ν1

∑
a

y(as0r1)(ar0s1)

{
s1 r0 a
r1 s0 J

}
, (42)

where r0(s0) denote the single nucleon, and the summation over projection M is redundant, and it should be μ0 + μ1.
The matrix elements of a pair creation operator As†

ν between two states differing by one pair is equal to an overlap,

〈r0μ0, . . . , rNμN |As†
ν |s0ν0, . . . , sN−1νN−1〉 = 〈r0μ0, . . . , rNμN |s0ν0, . . . , sN−1νN−1, sν〉. (43)

Using Eq. (31), the matrix elements for the pairing interaction can be written as

〈r0μ0, r1μ1, . . . rNμN ; M|As† · As|s0ν0, s1ν1, . . . , sNνN ; M〉 =
N∑

k=1

[
ϕδrk ,sδμk ,ν〈r0μ0 . . . sμk . . . rNμN ; M|s0ν0 . . . sNνN ; M〉

+
0 or 1∑

i=k−1

∑
r′

iμ
′
im

〈r0μ0 . . . r′
iμ

′
i . . . sm . . . rNμN ; M|s0ν0 . . . sNνN ; M〉

]
,

(44)

where the summation over the projection m in the second term represents the projection of pairing interacting
∑

m As†
m As

m, and
the summation over the projection μ′

i of the new pair is redundant: it should be a constant value μi + μk − m.
By using Eq. (32), the matrix element of the one-body operator can be written as

〈r0μ0, . . . , rNμN ; M1|Qt
σ |s0ν0, . . . , sNνN ; M2〉 =

0 or 1∑
k=N

∑
r′

k ,μ
′
k

〈r0μ0, . . . , r′
kμ

′
k, . . . , rNμN ; M1 − σ |s0ν0, . . . , sNνN ; M2〉, (45)

where the summation over the projection μ′
k of new pair is redundant, and it should be a constant value μk − σ .

The multipole-multipole interaction is given by

Qt · Qt =
∑

σ

(−)σ Qt
σ Qt

−σ . (46)

By using Eq. (34), the matrix elements of the multipole-multipole interaction between like nucleons are

〈r0μ0, . . . , rNμN ; M|Qt · Qt |s0ν0, . . . , sNνN ; M〉 =
0 or 1∑
k=N

[
〈r0m0, . . . , (rkmk )B, . . . , rN mN ; M|s0ν0, . . . , sNνN ; M〉

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

r′
km′

k

∑
σ

(−)σ 〈r0m0, . . . , r′
im

′
i, . . . , r′

km′
k, . . . , rN mN ;

M|s0ν0, . . . , sNνN ; M〉
]
, (47)

where the summation over the projection μ′
k (μ′

i ) of the new pair is redundant, and it should be a constant value μk − σ (μk + σ ).
The matrix elements of multipole-multipole interaction between proton and neutron can be expressed as the product of matrix

elements of the multipole operator for protons and neutrons,

〈Mn, Mp; M|Qt (ν) · Qt (π )|M ′
n, M ′

p; M〉 =
∑

σ

(−)σ 〈αp, Mp|Qt
σ (π )|α′

p, M ′
p〉〈αn, Mn|Qt

−σ (ν)|α′
n, M ′

n〉. (48)
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IV. NPSM IN M SCHEME WITH ISOSPIN SYMMETRY

In this section, the NPSM with isospin symmetry in M
scheme is presented. The uncoupled commutators, and matrix
elements of one-body operators and two body operators are
presented. The odd system and even system are treated on the
same footing.

A. Uncoupled commutators for nucleons pairs

We begin by introducing the notation for a system with
isospin. The creation operator of a nucleon in a state with
total angular momentum j, projection of angular momentum
m, isospin t , and projection of isospin τ is designated as a jt†

mτ .
Now we can build the noncollective pair creation operator,

AJT †
mτ (ab) = (aa† × ab†)JT

mτ

=
∑
mamb

τaτb

CJm
jama, jbmb

CT τ
taτa,tbτb

a jata†
maτa

× a jbtb†
mbτb

, (49)

where the superscript a represents ja and ta, and CJm
jama, jbmb

is
the Clebsch-Gordan coefficient. The single annihilation op-
erator can be introduced as a jt

mτ ≡ (a jt†
mτ )†. The time-reversed

form of the single annihilation operator is

ã jt
mτ = (−) j+t−m−τ a jt

−m−τ . (50)

The commutator between single nucleon operator in coupled
form is given by

(ãa, ab†)JT
mτ = δJ0δT 0δ ja jbδtatb

√
2 ĵa. (51)

The noncollective pair annihilation operator is given by
AJT

mτ (ab) = (AJT †
mτ (ab))†, and the corresponding time-reversed

form of the pair annihilation operator is designated as

ÃJT
mτ (ab) = (−)J+T −m−τ AJT

−m−τ (ab)

= −(ãa × ãb)JT
mτ . (52)

The collective pair creation, annihilation, and time-
reserved form operators are

AJT †
mτ =

∑
ab

y(abJT )AJT †
mτ (ab),

AJT
mτ =

∑
ab

y(abJT )AJT
mτ (ab),

ÃJT
mτ =

∑
ab

y(abJT )ÃJT
mτ (ab), (53)

where y(abJT ) are the pair structure coefficients, and have the
symmetry

y(abJT ) = (−)J+T − ja− jby(baJT ). (54)

The collective multipole operator is defined by

QJT
mτ =

∑
ab

q(abJT )QJT
mτ (ab)

=
∑

ab

q(abJT )PJT
mτ (ab),

PJT
mτ (ab) = (aa† × ãb)JT

mτ . (55)

The uncoupled commutators for collective pairs can also be
obtainde through coupled commutators. The coupled commu-
tators in the NPSM with isospin symmetry have already been
carried out in Ref. [21]. The uncoupled commutator between
two collective pairs can be given by[

Art1
μτ1

, Ast2†
ντ2

]
= (−)r+t1+μ+τ1

∑
Jm
T τ

CJm
r−μ,sνCT τ

t1−τ1,t2τ2
[Art1 , Ast2†]JT

mτ

= 2δrsδt1t2δμνδτ1τ2

∑
ab

y(abrt1)y(abst2)

+ 4(−)r+t1+μ+τ1
∑
Jm
T τ

CJm
r−μ,sνCT τ

t1−τ1,t2τ2
PJT

mτ , (56)

where the summation over projections m and τ is redundant,
since they are constant values m = ν − μ and τ = τ2 − τ1,
and PJT

mτ is a new one-body operator,

PJT
mτ =

∑
da

r̂ŝt̂1t̂2

{
1
2

1
2 t1

t2 T 1
2

}∑
b

y(abrt1)y(bdst2)

×
{

ja jb r1

s J jd

}
PJT

mτ (da). (57)

The uncoupled commutator for collective pair and multi-
pole operator is given by[

Art1
μτ1

, Qlt2
στ2

] = −
∑
JT
mτ

(−)J+T +r1+ t1−σ − τ2CJm
r1−μ,lσCT τ

t1−τ1,t2τ2

× AJT
−m−τ , (58)

where AJT
−m−τ is a new pair, which is

AJT
−m−τ =

∑
da

y′(daJT )AJT
−m−τ (da), y′(daJT ) = z(daJT ) + (−)J+T − ja− jd z(adJT ),

z(daJT ) = r̂1 l̂ t̂1t̂2

{
1
2

1
2 t1

t2 T 1
2

}∑
b

y(abr1t1)q(bdlt2)

{
ja jb r1

j J jd

}
. (59)
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By using Eq. (56) and (58) the uncoupled double commutator can be obtained:[
Ariti

μiτi
,
[
Arktk

μkτk
, Ast†

νη

]] = −4
∑
lm′

t ′τ ′

∑
Jm
T τ

(−)J+T +rk+ri+tk+ti−ν−ηClm′
rk−μk ,sνCt ′τ ′

tk−τk ,tηCJm
ri−μi,lm′CT τ

ti−τi,t ′τ ′BJT
−m−τ , (60)

where the summation over projections m′, τ ′, m, and τ is redundant, and BJT
−m−τ is a new pair,

BJT
−m−τ =

∑
aa′

y′(aa′JT )AJT
−m−τ (aa′),

y′(aa′JT ) = z(aa′JT ) + (−)J+T − ja− ja′ z(aa′JT ),

z(aa′JT ) = r̂k r̂iŝl̂ t̂k t̂it̂ t̂
′
{

1
2

1
2 tk

t t ′ 1
2

}{
1
2

1
2 ti

t ′ T 1
2

} ∑
bb′

y(ab′rktk )y(a′briti )y(b′bst )

{
ja jb′ rk

s l jb

}{
ja′ jb ri

l J ja

}
. (61)

By using Eq. (58) recursively, the uncoupled commutator between the collective pair operator and multipole-multipole
interaction operator is given as∑

στ2

(−)σ+τ2
[[

AJT
mτ , Q j2t2

στ2

]
, Q j2t2

−σ−τ2

] = −
∑
r1t1

(−)J+T +r1+t1Cr1σ−m
J −m, j2 σCt1 τ2−τ

T −τ,t2τ2
CJ −m

r1 σ−m, j2−σCT −τ
t1 τ2−τ,t2 −τ2

AJT
mτ , (62)

where AJT
mτ is a new pair:

AJT
mτ =

∑
da

y′(daJT )AJT
mτ (da), y′(daJT ) = z(daJT ) + (−)J+T − ja− jd z(adJT ),

z(daJT ) = r̂1 l̂ t̂1t̂2

{
1
2

1
2 t1

t2 T 1
2

}∑
b

y′′(abr1t1)q(bdlt2)

{
ja jb r1

j J jd

}
, (63)

where the new pair structure coefficients y′′(abr1t1) are obtained from Eq. (58).
We can also obtain the uncoupled commutator between the single nucleon operator and multipole operator,[

a j0t0
m0τ0

, Q j2t2
στ2

] = (−) j2−σ (−)t2−τ2
∑
Jm
T τ

CJm
j0−m0, j2σCT τ

t0−τ0,t2τ2

ĵ2t̂2
Ĵ T̂

q(( j0t0)(JT ) j2t2)aJT
−m−τ (64)

Base on Eq. (64), the uncoupled commutator between single nucleon operator and multipole-multipole interaction operator
is given as,∑

στ2

(−)σ+τ2
[[

a j0t0
m0τ0

, Q j2t2
στ2

]
, Q j2t2

−σ−τ2

] =
∑

lt

(−) j0−l (−)t0−t (2 j2 + 1)(2t2 + 1)

(2 j0 + 1)(2t0 + 1)
q(( j0t0)(lt ) j2t2)q((lt )( j0t0) j2t2)a j0t0

m0τ0
(65)

The uncoupled double commutator for single nucleon operator can also be obtained,[
a j0t0

m0τ0
,
[
Arktk

mkτk
, Ast†

νη

]] = 4
∑
Jm
T τ

∑
lm′

t ′τ ′

(−)l+rk−ν (−)t ′+tk−ηClm′
rk−mk ,sνCt ′τ ′

tk−τk ,tηCJm
j0−m0,lm′CT τ

t0−τ0,t ′τ ′
r̂k ŝl̂

Ĵ

t̂k t̂ t̂ ′

T̂

×
{

1
2

1
2 tk

t t ′ 1
2

}∑
b

y((JT )brktk )y(b( j0t0)st )

{
rk s l
j0 J jb

}
aJT

−m−τ , (66)

where the summation over projections m, m′, τ , and τ ′ is redundant.

B. Commutators in M scheme

In this section, the odd system with 2N + 1 nucleons and the even system with 2N nucleons are treated on the same footing.
The configuration space of the NPSM is constructed by collective pairs. The creation operator with specific total angular
momentum projection M and total isospin projection τ are

A†(r0, . . . , rN )M,τ ≡ A†(r0m0t0τ0, . . . , rN mNt0τ0)M,τ = Ar0t0†
m0τ0

· Ar1t1†
m1τ1

. . . ArN tN †
mN τN

,

M =
N∑

i=0

mi, τ =
N∑

i=0

τi, (67)
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where the r0 express all quantum numbers of this pair, and the convention used for the operator Ar0t0†
m0τ0

is given as,

Ar0t0†
m0τ0

=
{

1 for even system, m0 ≡ 0, τ0 ≡ 0,

ar0t0†
m0τ0

for odd system, r0 ≡ j.
(68)

The annihilation operator is

A(r0, . . . , rN )M,τ ≡ A(r0m0t0τ0, . . . , rN mNt0τ0)M,τ = Ar0t0
m0τ0

· Ar1t1
m1τ1

. . . ArN tN
mN τN

,

M =
N∑

i=0

mi, τ =
N∑

i=0

τi, (69)

where the convention of Ar0
m0

is similar to that of Eq. (67). The time-reversed form of A(r0, . . . , rN )M,τ is redundant in this model.
Then we can obtain the commutator between the annihilation operatorA(r0, . . . , rN )M,τ

[A(r0, r1, . . . , rN )M,τ , Ast†
νη ] =

N∑
k=1

[
ϕδrk ,sδmk ,νδtk ,tδtk ,ηA(r0, . . . , rk−1, rk+1, . . . , rN )M−ν,τ−η

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

∑
t ′
i τ

′
i

A(r0, . . . , r′
i, . . . , rk−1, rk+1, . . . , rN )M−ν,τ−η

+
∑
lm′

∑
t ′τ ′

Plt ′
m′τ ′ × A(r0, . . . , rk−1, rk+1, . . . , rN )M−mk ,τ−τk

]
. (70)

where ϕ = 2
∑

ab y(abrktk )y(abst ), the summation over i is from k − 1 to 0 or 1 corresponding to the odd system and even

system respectively, and r′
i is a new collective pair Ar′

i t
′
i

m′
iτ

′
i

(i �= 0) or a single nucleon operator C
r′

0t ′
0

m′
0τ

′
0

(i = 0), and can be obtained
from the double commutator by

Ar′
i t

′
i

m′
iτ

′
i
= [

Ariti
miτi

,
[
Arktk

mkτk
, Ast†

νη

]]
; (71)

the explicit form of the new pair has been given in Eq. (60) and (66), and Plt ′
m′τ ′ has been given in Eq. (57). It should be noted that

the last term in Eq. (70) is normal ordered.
By using Eq. (70), the commutation relation between general pairing interaction and A(r0, . . . , rN )M,τ is obtained by

[A(r0, . . . , rN )M,τ , Ast† · Ast ] =
N∑

k=1

[
ϕδrk ,sδmk ,mδtk ,tδtk ,ηA(r0, . . . , s, . . . , rN )M,τ

+
0 or 1∑

i=k−1

∑
r′

i m
′
im

∑
t ′
i τ

′
i η

A(r0, . . . , r′
i, . . . , rk−1, s, rk+1, . . . , rN )M,τ

+
∑
lm′m

∑
t ′τ ′η

Plt ′
m′τ ′ × A(r0, . . . , rk−1, s, rk+1, . . . , rN )M−mk+m,τ−τk+η

]
, (72)

where the last term in right-hand side of equation is normal ordered.
The commutator between the one body operator and A(r0, . . . , rN )M,τ is obtained, which is

[A(r0, . . . , rN )M, Q jt
ση] =

0 or 1∑
k=N

∑
r′

km′
k

∑
t ′
kτ

′
k

A(r0, r1, . . . , r′
k, . . . , rN )M−σ,τ−η, (73)

where summation over k is from N to 0 or 1 corresponding to the odd system or even system respectively. r′
k represents a new

collective pair A
r′

kt ′
k

m′
kτ

′
k

(k �= 0) or a single nucleon operator C
r′

0t ′
0

m′
0τ

′
0

(k = 0),

A
r′

kt ′
k

m′
kτ

′
k
= [

Arktk
mkτk

, Q jt
ση

]
. (74)

The explicit form of the new pair has been given in Eqs. (58) and (64).
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The commutator between the general multipole-multipole operator and A(r0, . . . , rN )M,τ is obtained by[
A(r0, . . . , rN )M,τ ,

∑
ση

(−)σ+ηQ jt
σηQ jt

−σ−η

]
=

0 or 1∑
k=N

[
A(r0, r1, . . . , (rk )B, . . . , rN )M

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

r′
km′

k

∑
t ′
i τ

′
i

t ′
kτ

′
k

∑
ση

(−)σ+ηA(r0, r1, . . . , r′
i, . . . , r′

k, . . . , rN )M,τ

+
∑
r′

km′
k

∑
t ′
kτ

′
k

∑
στ

(−)σ+ηQ jt
−σ−τ × A(r0, r1, . . . , r′

k, . . . , rN )M−σ,τ−η

]
. (75)

where summation over k(i) is from N (k − 1) to 0 or 1 corresponding to the odd system or even system respectively. r′
k (r′

i )
represents a new collective pair (k �= 0) or a single nucleon (k = 0),

A
r′

kt ′
k

m′
kτ

′
k
= [

Arktk
mkτk

, Q jt
ση

]
, Ar′

i t
′
i

m′
iτ

′
i
= [

Ariti
miτi

, Q jt
−σ−η

]
. (76)

The explicit form of the new pair has been given in Eqs. (58) and (64). (rk )B denotes a new collective pair (k �= 0) or a single
nucleon (k = 0), and can be obtained by uncoupled double commutators(

Arktk
mkτk

)
B =

∑
ση

(−)σ+η
[[

Arktk
mkτk

, Q jt
ση

]
, Q jt

−σ−η

]
,

(
Ar0t0

m0τ0

)
B =

∑
ση

(−)σ+η
[[

a j0t0
m0τ0

, Q jt
ση

]
, Q jt

−σ−η

]
. (77)

The explicit results have been carried out in Eq. (62) and (65). It should be noted that the last term in Eq. (75) is normal ordered.

C. Matrix elements of overlap and interactions

An N-pair or N-pair plus one single nucleon state in M scheme is designated as

|α, Mτ 〉 = |r0, r1, . . . , rN ; Mτ 〉
≡ A†(r0, r1, . . . , rN )|0〉, (78)

where rk represents a pair with angular momentum rk , angular momentum projection mk , isospin tk , and isospin projection τk ,
r0 denotes 1 in the even system or a single nucleon in the odd system, and α denotes the additional quantum numbers

α = (r0m0t0τ0, . . . , rN , mNtNτN ) (79)

It is interesting to note that α is redundant: it contains 4N quantum numbers and has already been included in the information of
total projection M and τ .

The overlap matrix element is a key quantity, since the one- and two-body interaction matrix elements can be expressed as a
summation of the overlaps. From Eq. (70), the overlap can be obtained by

〈0|AMl τl A
†
Mrτr

|0〉 = 〈r0, . . . , rN ; Mlτl |s0, . . . , sN ; Mrτr〉 ≡ 〈r0μ0t0τ0, . . . , rNμNtNτN ; Mlτl |s0ν0h0η0, . . . , sNνN h0η0; Mrτr〉

=
N∑

k=1

[
2

∑
ab

y(abrktk )y(absN hN )δrk ,sN δμk ,νN δtk ,hN δτk ,ηN

× 〈r0 . . . rk−1, rk+1 . . . rN ; Ml − νN , τl − ηN |s0 . . . sN−1; Mr − νN , τr − ηN 〉

+
0 or 1∑

i=k−1

∑
r′

iμ
′
i

∑
t ′
i τ

′
i

〈r0 . . . r′
i . . . rk−1, rk+1 . . . rN ; M1 − νN , τl − ηN |s0 . . . sN−1; Mr − νN , τr − ηN 〉

]
, (80)

where rk and sk denote the angular moments of the kth pair, and μk and νk denote its projection of angular moment, tk and
hk represent the isospin, and τk and ηk stand for its projection. Although the overlap matrix element formula in M scheme is
still written in a recursive way, it does not need to recouple the angular momentum and isospin. It is easy to show the total
angular momentum projection Ml should be equal to Mr , and total projection of isospin τl should be equal to τr . Notice that
the summation over the projections of the new pair, μ′

i and τ ′
i , are redundant, and should be constant values μi + μk − νN and

τi + τk − ηN , respectively, since projection is a scalar. The overlap for one pair is given by using Eq. (80), and is

〈r1|s1〉 = 2δr1,s1δμ1,ν1δt1,h1δτ1,η1

∑
ab

y(abr1t1)y(abs1h1). (81)
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Since there is only one pair, the overlap formula is equivalent to the formulas for the case of N = 1 in J scheme. The overlap for
the one pair plus one single nucleon is given as

〈r0, r1; Mτ |s0, s1; Mτ 〉 = 2δr1,s1δμ1,ν1δt1,h1δτ1,η1

∑
ab

y(abr1t1)y(abs1h1)

+ 4
∑
lm
t ′τ ′

(−)l+r1−ν1 (−)t ′+t1−η1Clm
r1−μ1,s1ν1

Ct ′τ ′
t1−τ1,h1η1

Cs0−ν0
r0−μ0,lm

Ch0−η0
t0−τ0,t ′τ ′

r̂1ŝ1 l̂

ŝ0

t̂1ĥ1t̂ ′

ĥ0

×
{

1
2

1
2 t1

h1 t ′ 1
2

} ∑
b

y
(

(s0h0)br1t1
)

y
(

b(r0t0)s1h1

){
r1 s1 l
r0 s0 jb

}
, (82)

where r0(s0) denotes the single nucleon.
It is easy to show that the matrix elements of a pair creation operator As†

ν between two states differing by one pair is equal to
an overlap,

〈r0, r1, . . . , rN |Ash†
νη |s0, s1, . . . , sN−1〉 = 〈r0, r1, . . . , rNμN |s0, s1, . . . , sN−1, s〉. (83)

Using Eq. (72), we can have the matrix elements of the pairing interaction,

〈r0, r1, . . . rN ; Mτ |Ast† · Ast |s0, s1, . . . , sN ; Mτ 〉 =
N∑

k=1

[
ϕδrk ,sδμk ,mδtk ,tδτk ,η〈r0 . . . s . . . rN ; Mτ |s0 . . . sN ; Mτ 〉

+
0 or 1∑

i=k−1

∑
r′

iμ
′
im

∑
t ′
i τ

′
i η

〈r0 . . . r′
i . . . s . . . rN ; Mτ |s0 . . . sN ; Mτ 〉

⎤⎦, (84)

where the summation over the projections m and η in the second term stand for the projection of pairing interacting
Gst

∑
mη Ast†

mηAst
mη, and the summation over the projections μ′

i and τ ′
i of the new pair is redundant: they should be constant

values μi + μk − m and τi + τk − η, respectively.
By using Eq. (73), for the one-body operator matrix element we have

〈r0 . . . rN ; M1τ1|Q jt
ση|s0 . . . sN ; M2τ2〉 =

0 or 1∑
k=N

∑
r′

k ,μ
′
k

∑
t ′
k ,τ

′
k

〈r0 . . . r′
k . . . rN ; M1 − σ, τ1 − η|s0 . . . sN ; M2〉, (85)

where the summation over the projections μ′
k and τ ′

k of the new pair is redundant: they should be constant values μk − σ and
τk − η, respectively.

By using Eq. (75), we can obtain the matrix elements of the multipole-multipole interaction between like nucleons,

〈r0, . . . , rN ; Mτ |Q jt · Q jt |s0 . . . sN ; Mτ 〉 =
0 or 1∑
k=N

[
〈r0 . . . (rk )B . . . rN ; Mτ |s0 . . . sN ; Mτ 〉

+
0 or 1∑

i=k−1

∑
r′

i m
′
i

r′
km′

k

∑
t ′
i τ

′
i

t ′
kτ

′
k

∑
ση

(−)σ+η〈r0 . . . r′
i . . . r′

k . . . rN ; Mτ |s0 . . . sN ; Mτ 〉
]
, (86)

where the summation over the projections μ′
k (μ′

i ) and τ ′
k (τ ′

i )
of the new pair is redundant, since they should be a constant
values μk − σ (μk + σ ) and τk − η (τk + η), respectively.

V. DISCUSSION

It is known that all the matrix elements in the NPSM in
J scheme can be expressed as the summation of overlaps
between two N-pair bases. The formulas to calculate the
overlaps have to sum over all the intermediate angular
momentum quantum numbers Ji and the quantum numbers

of the new pairs. Therefore, the CPU time used in calculating
the overlaps increases drastically with the number of nucleon
pairs.

From our previous discussion, it is known that the formula
in calculating matrix elements in M scheme does not contain
the summation of the intermediate quantum number; it is
interesting to see the validity of the NPSM in M scheme. To
this end the average CPU time used in computing the overlap
versus number of pairs is presented in Fig. 1, in which the
average CPU time of computing 16 overlaps between the
basis constructed by identical D(J = 2) collective pairs is
presented.
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FIG. 1. The average CPU time used in computing one overlap
matrix element against the number of pairs is presented. The overlap
in J scheme is calculated in the subspace with total angular momenta
J = 0 and J = 2. The overlap in M scheme is for the states with
M = 0.

As an example, only the results for the systems without
isospin symmetry are presented here. Since the CPU time is
too small to be obtained for the systems with the number
of the collective pairs smaller than 4, we set them all to
be equal to 10−2 s per matrix element. For the system with
N = 7, the average CPU time in calculating the overlap in J
scheme is too time consuming to be obtained; its CPU time is
estimated through the recursive formula of the overlap and the
average CPU time of the overlap for the system with N = 6.
Figure 1 shows that the average CPU time of the overlap
matrix element in M scheme is indeed much smaller that
that in J scheme. For example, the average CPU time for the
system with N = 6 is about 102 seconds in the M scheme,
while it is about 105 seconds in the J scheme.

To see the difference of the configuration space between
M scheme and J scheme, the numbers of states for the

system with N = 5 collective S(J = 0) and D(J = 2) pairs are
presented in Table I. It can be seen that the numbers of states
in J scheme are much smaller than those in the M scheme.

It is known that, to calculate the matrix elements for the
case with N = 5 in J scheme in the NPSM in the SD-pair
subspace, the CPU time is about one month. To see the validity
of the NPSM in M scheme, as an example, the property of
the low-lying states of 150Nd (five proton valence pairs and
four neutron valence pairs) are studied in SD-pair subspace.
A Hamiltonian with pairing and quadrupole-quadrupole inter-
actions is adopted:

Ĥ =
∑

σ=π,ν

Ĥσ − κQ2
π · Q2

ν,

Ĥσ = H0σ − G0σ A(0)†A(0) − G2σ A(2)†A(2)† − κσ Q2Q2,

H0σ =
∑

a

εaC
†
aCa,

A(0)† =
∑

a

â

2
(C†

a × C†
a )0,

A(2)† =
∑

ab

q(ab2)(C†
a × C†

b )2, (87)

where H0σ is the single-particle energy term, and G0, G2,
κ are the monopole pairing, the quadrupole pairing, and the
quadrupole-quadrupole interaction strength, respectively. As
an approximation, the S-pair structure coefficient is chosen
to be y(aa0) = ĵa

νa
μa

, where νa and μa are occupied and
empty amplitudes obtained by solving the BCS equation,
while the D-pair structure coefficients are obtained from the
commutator

A2† = D† = 1
2 [Q2, S†]. (88)

The single-particle energies, adopted as 133Sn and 133Sb ex-
perimental data [27–29] for neutron and proton, are listed
in Table II. By fitting the experimental E2+

1
, E4+

1
, and E0+

2

energies, the model parameters are fixed as G0π = 0.14 MeV,
G2π = 0.07 MeV/r4

0 , G0ν = 0.12 MeV, G2ν = 0.04 MeV/r4
0 ,

κπ = κν = 0, and κ = 0.17 MeV/r4
0 . As shown in the Fig. 2,

TABLE I. Number of states for 5 collective pairs in SD subspace. The left column is for the case in J scheme, while the right one is for the
case in M scheme.

J scheme M scheme

J Number of states M Number of states M Number of states

10 1 10 1 −10 1
8 2 9 1 −9 1
7 1 8 3 −8 3
6 4 7 4 −7 4
5 2 6 8 −6 8
4 6 5 10 −5 10
3 2 4 16 −4 16
2 7 3 18 −3 18
0 5 2 25 −2 25

1 25 −1 25
0 30
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TABLE II. Adopted single-particle energies εσ (σ = π or ν ) for
protons (50–82 shell) and neutrons (82-126 shell) (in MeV).

jν 1 f7/2 0h9/2 1 f5/2 2p3/2 2p1/2 0i13/2

εν 0 1.561 2.005 0.854 1.656 1.8
jπ 0g7/2 1d5/2 1d3/2 2s1/2 0h11/2

επ 0 0.963 2.69 2.99 2.76

the low-lying spectrum of 150Nd can be reproduced very well.
By fitting B(E2; 2+

1 → 0+
1 ) of the experimental value, the

effective charge is fixed as eπ = 2.3e for protons and eν =
1.5e for neutrons, respectively. Some B(E2) transition values
are listed in Table III, from which one can see that our results
are close to IBM results, and the experimental data can be
produced approximately.

From above analysis, one can see that although the num-
bers of states in M scheme are larger than those in J scheme,
and the CPU times are much smaller in M scheme than those
in J scheme. One can also see that it is a challenge to use the
M scheme to study nuclei with more valance nucleons.

VI. SUMMARY

The NPSM is cast in the M scheme for both even and
odd systems under the assumptions that all nucleon pairs
are collective and for given angular momentum r there is
only one collective pair A†

r . The cases with isospin symmetry
and without isospin symmetry are all discussed. If there are
more than one type of collective pairs with given angular
momentum s, we only need to introduce an additional label to
distinguish them. The NPSM in M scheme can also be easily
extended to include the noncollective pairs. The CPU time
used in calculating the matrix elements in M scheme is much
shorter than that used in the J scheme of NPSM, which make
it possible to study the medium-heavy nuclei in the NPSM.

FIG. 2. The low-lying spectrum of 150Nd. The experimental data
are obtained from Ref. [27].

TABLE III. B(E2) values for 150Nd.

B(E2; Ji → Jf (eb)2

Ji → Jf B(E2)expt
a B(E2)NPSM

b B(E2)sdg-IBM
c

2+
1 → 0+

1 0.563 ± 0.002 0.573 0.560
4+

1 → 2+
1 0.819 ± 0.038 0.804 0.810

6+
1 → 4+

1 0.980 ± 0.09 0.844 0.883
0+

2 → 2+
1 0.208 ± 0.009 0.016 0.071

2+
3 → 4+

1 0.095 ± 0.028 0.0 0.033
2+

2 → 2+
1 0.034 ± 0.007 0.001 0.073

2+
2 → 0+

1 0.015 ± 0.0009 0.0 0.012

aReference [27,30].
bPresent calculation.
cReference [31].
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APPENDIX: SOME CRUCIAL COUPLED COMMUTATORS
IN THE NPSM

Some crucial coupled commutators in the NPSM, taken
from Ref. [13], are listed in the following. The coupled
commutator between collective pair annihilation operator and
collective pair creation operator is given by

[Ãr, As†]t
σ = 2r̂δrsδt0

∑
ab

y(abr)y(abs) − Pt
σ , (A1)

where Pt
σ is a new one-body operator,

Pt
σ = 4r̂ŝ

∑
abd

y(abr)y(bds)

{
r s t
d a b

}
(ad† × ãa)t

σ . (A2)

The coupled commutator for collective pair and multipole
operator would be given by

[Ãr, Qt ]r′
m′ = Ãr′

m′ , (A3)

where Ãr′
m′ is a new collective pair annihilation operator,

Ãr′
m′ =

∑
ad

y′(dar′)Ãr′
m′ (da),

y′(dar′) = z(dar′) − (−)a+d+r′
z(adr′),

z(dar′) = r̂t̂
∑

b

y(abr)q(bdt )

{
r t r′
d a b

}
. (A4)

By using Eqs. (A1) and (A3) the coupled double commutator
can be obtained,

[Ari , [Ark , As†]t ]r′
i = Br′

i , (A5)
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where Br′
i is a new collective pair,

Br′
i =

∑
aa′

y′(aa′r′
i )Ã

r′
i (aa′),

y′(aa′r′
i ) = z(aa′r′

i ) − (−)a+a′+r′
z(a′ar′

i ),

z(aa′r′
i ) = −4r̂i r̂k ŝt̂

∑
bb′

y(a′b′ri )y(abrk )y(bb′s)

{
rk s t
a b′ b

}{
ri t r′
a a′ b′

}
, (A6)

where t̂ = √
2t + 1. The coupled commutator between single-particle and one-body operators was given by Eq. (2.11a) in

Ref. [20], and is

[ã j, Qt ] j′
m′ = (−)t− j− j′q( j, j′, t )

t̂

ĵ′
ãr′

m′ . (A7)
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