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Comparative analysis of muon-capture and 0νββ-decay matrix elements
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Average matrix elements of ordinary muon capture (OMC) to the intermediate nuclei of neutrinoless double
beta (0νββ) decays of current experimental interest are computed and compared with the corresponding energy
and multipole decompositions of 0νββ-decay nuclear matrix elements (NMEs). The present OMC computations
are performed using the Morita-Fujii formalism by extending the original formalism beyond the leading order.
The 0νββ NMEs include the appropriate short-range correlations, nuclear form factors, and higher-order
nucleonic weak currents. The nuclear wave functions are obtained in extended no-core single-particle model
spaces using the spherical version of the proton-neutron quasiparticle random-phase approximation with two-
nucleon interactions based on the Bonn one-boson-exchange G matrix. Both the OMC and 0νββ processes
involve 100-MeV-range momentum exchanges and hence similarities could be expected for both processes in
the feeding of the 0νββ intermediate states. These similarities may help improve the accuracy of the 0νββ NME
calculations by using the data from the currently planned OMC experiments.
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I. INTRODUCTION

Ordinary muon capture (OMC) is a process in which a
negative muon from an atomic K orbit is captured by the
nucleus of the atom. The large mass of the captured muon
induces large momentum exchange, q ≈ 50–100 MeV, which
leads to final states that are both highly excited and of high
multipolarity. These same states are expected to contribute
as the intermediate states of neutrinoless double beta (0νββ)
decay in 0νββ decay chains. Here, we discuss cases where
the OMC happens on the daughter nucleus of a 0νββ-decay
parent and hence the OMC corresponds to the right virtual
branch (β+ type of transitions) of the 0νββ decay. This makes
OMC a promising tool to study the nuclear matrix elements
(NMEs) of the 0νββ decay [1,2].

We are interested in the ground-state–to-ground–state
0νββ decay, which can be schematically written as

A
Z−2X′(0+) ��� A

Z−1Y(Jπ ) ��� 2e− + A
ZX(0+) , (1)

where the even-even parent nucleus X′ of mass number A
and atomic number Z − 2 in its 0+ ground state emits two
electrons e− leading to the 0+ ground state of its daughter X,
an even-even isobar of atomic number Z . The transition goes
through the virtual states of multipolarity Jπ of the interme-
diate odd-odd nucleus Y of atomic number Z − 1; here, J is
the angular momentum and π the parity of the intermediate
state. The dashed arrow represents virtual transitions through
the intermediate states. Using the notation of Eq. (1) the OMC
process, which corresponds to the right branch of the 0νββ

process of Eq. (1), can be illustrated as

μ− + A
ZX(0+) → νμ + A

Z−1Y(Jπ ) , (2)

where the muon (μ−) is captured by the 0+ ground state of
the even-even nucleus X leading to the Jπ multipole states of

its odd-odd isobar Y (see the review by Measday [3]). At the
same time a muon neutrino νμ is emitted. Comparing Eqs. (1)
and (2) one can see how ordinary muon capture is linked with
neutrinoless double β decay: OMC feeds the same excited
Jπ states of Y that are involved as virtual states in the 0νββ

decay.
Through the years a number of calculations for the OMC

transitions in different nuclear-structure formalisms and for
various nuclei have been performed in order to probe the
right-leg virtual transitions of 0νββ decays as well as the
value of the particle-particle interaction parameter gpp of
the proton-neutron quasiparticle random-phase approximation
(pnQRPA) [4–6], or the in-medium renormalization of the
axial-vector coupling constant gA [7–12]. Thanks to the large
momentum exchange in the OMC, the process activates also
the induced weak currents, including the weak magnetism
and pseudoscalar contributions, quite like in the case of the
0νββ decay [13]. The magnitude of the induced pseudoscalar
term is mostly unknown in atomic nuclei [7,8,14–21]. Addi-
tional OMC experiments and calculations concerning nuclei
involved in 0νββ decays could help theories better understand
the possible connections between OMC and 0νββ NMEs as
well as the effective values of the weak couplings [22].

There have been early attempts to compare the OMC
rates against the 2νββ (two-neutrino double beta decay)
NMEs for light nuclei using the nuclear shell model [6]. In
the work of Kortelainen et al. [6] it was found that there
was a clear correlation between the energy distributions of
the OMC rates to 1+ states and the energy decomposition
of the 2νββ NMEs for the 2νββ decays of the sd-shell
nuclei 36Ar, 46Ca, and 48Ca. In this study we extend these
studies to 0νββ decays of medium-heavy and heavy nu-
clei by computing the average OMC matrix elements in the
intermediate nuclei of 0νββ decays up to some 50 MeV
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using the pnQRPA formalism and compare them with the
energy-multipole decompositions of the NMEs of 0νββ de-
cays computed using the same formalism and model spaces.
We compute the average OMC matrix elements instead of
OMC rates in order to reduce the phase-space effects. We
decompose the average OMC ME to Jπ multipole states
within MeV energy bins while for the 0νββ decay the energy-
multipole decomposition entails division of the NMEs into
multipoles and their energy distributions binned by MeV en-
ergy intervals. In [23] we computed the strength functions for
the OMC on 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe, 130Xe,
and 136Ba, leading to states in 0νββ intermediate nuclei
76As, 82Br, 96Nb, 100Tc, 116In, 128I, 130I, and 136Cs. In this
study we extend those calculations by comparing the aver-
age OMC matrix elements with the corresponding energy-
multipole decompositions of 0νββ NMEs.

Since we are interested in wide excitation-energy regions
of medium-heavy or heavy open-shell nuclei, the shell-model
framework is infeasible for our calculations due to the enor-
mous computational burden and the very restricted single-
particle model spaces allowed by the shell-model treatment.
The pnQRPA formalism allows us to study the OMC and
0νββ decay NMEs at high excitation energies, since it allows
the use of large no-core single-particle bases. Even though
the pnQRPA often fails to predict the properties of individual
states accurately, it can reproduce the gross features of a distri-
bution of nuclear states quite reasonably. In our earlier studies,
it has been shown that the pnQRPA reliably reproduces the
locations of the isovector spin-dipole giant resonances [24],
as well as the location of the newly discovered OMC giant
resonance in the case of 100Mo [25,26], and the low-energy
OMC rates in the case of 76Se [1,23].

This article is organized as follows. In Sec. II we briefly
introduce the pnQRPA formalism as well as the underlying
formalism of the ordinary muon capture and 0νββ decay. In
Sec. III we display and discuss the obtained results for the
OMC rates and 0νββ-decay matrix elements and examine
possible connections between them. The final conclusions are
drawn in Sec. IV.

II. COMPUTATIONAL SCHEME

In this section we introduce briefly our computational
scheme. All the calculations are based on the pnQRPA theory.
In the first subsection we outline the key points of the pnQRPA
theory and introduce the parameters related to the correspond-
ing Hamiltonian. In the second subsection we outline the
theoretical aspects of the OMC rate, and in the last subsection
we introduce the underlying theory of the 0νββ-decay NMEs.

A. pnQRPA and its Hamiltonian parameters

For the present calculations we adopt the spherical version
of the proton-neutron QRPA. The calculations use an even-
even nucleus as a reference and then create proton-neutron
excitations to reach the states of the adjacent odd-odd nucleus.
We find the wave functions and excitation energies for the
complete set of Jπ excitations in the odd-odd nuclei by per-
forming a pnQRPA diagonalization in the unperturbed basis

of quasiproton-quasineutron pairs coupled to Jπ [27,28]. The
resulting pnQRPA states in odd-odd nuclei are of the form∣∣Jπ

k M
〉 =

∑
pn

[
X

Jπ
k

pn A†
pn(JM ) − Y

Jπ
k

pn Ãpn(JM )
]|pnQRPA〉 ,

(3)
where k labels the states of spin-parity Jπ , the quantities X and
Y are the forward- and backward-going pnQRPA-amplitudes,
A† and Ã are the quasiproton-quasineutron creation and anni-
hilation operators, M is the z projection of J and |pnQRPA〉 is
the pnQRPA vacuum. The transition densities corresponding
to transitions between the 0+

gs ground state of the even-even
reference nucleus and a Jπ

k excited state of the corresponding
odd-odd nucleus, entering both the muon capture rates and the
0νββ NMEs, can then be written as(

0+
gs

∣∣∣∣[c†
pc̃n]J

∣∣∣∣Jπ
k

) = √
2J + 1

[
vpunX

Jπ
k

pn + upvnY
Jπ

k
pn

]
, (4)(

Jπ
k

∣∣∣∣[c†
pc̃n]J

∣∣∣∣0+
gs

) = √
2J + 1

[
upvnX

Jπ
k

pn + vpunY
Jπ

k
pn

]
, (5)

where v (u) is the BCS occupation (vacancy) amplitude in the
even-even nucleus. The formalism is explained in more detail
in Refs. [27,28].

The X and Y amplitudes in Eq. (3) are calculated by di-
agonalizing the pnQRPA matrix separately for each multipole
Jπ . We adopt as the two-body interaction the one derived from
the Bonn-A one-boson-exchange potential, introduced in [29].
We follow the partial isospin-restoration scheme introduced
in [30], and multiply the isoscalar (T = 0) and isovector
(T = 1) parts of the particle-particle G-matrix elements by
factors gT =0

pp and gT =1
pp , respectively. The isovector parameter

gT =1
pp is adjusted such that the Fermi part of the corresponding

two-neutrino double beta (2νββ) NME vanishes, leading to
partial isospin-symmetry restoration. The isoscalar parameter
gT =0

pp is subsequently varied to reproduce the 2νββ-decay
half-life. As for the particle-hole part, it was scaled by a
common factor gph, fixed, as usual, by fitting the centroid of
the Gamow-Teller giant resonance (GTGR) in the 1+ channel
of the calculations. These (particle-particle and particle-hole)
renormalization factors are adopted from [24] except for the
case A = 82, which was not included in there. For A = 82 we
adopt the values from [23].

The quasiparticle spectra for protons and neutrons, needed
in the pnQRPA diagonalization, are obtained by solving the
BCS equations for protons and neutrons in the even-even
reference nuclei. The calculated BCS pairing gaps are fitted
to the phenomenological proton and neutron pairing gaps in
a way described in detail in [31]. The values of the resulting
pairing scaling factors are listed in [24,31].

For each even-even reference nucleus involved in the com-
putations, we adopt the single-particle bases exploited suc-
cessfully in our earlier calculations [23,24,31], i.e., we employ
no-core bases with all the orbitals from the N = 0 oscillator
major shell up to at least two oscillator major shells above the
respective Fermi surfaces for both protons and neutrons. The
single-particle energies were obtained by solving the radial
Schrödinger equation for a Coulomb-corrected Woods-Saxon
(WS) potential, optimized for nuclei close to the β-stability
line [32]. As was mentioned in [24,31], this choice is justified
since the ββ-decaying nuclei are always situated rather close
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to the bottom of the valley of beta stability. Both the bound
and quasi-bound single-particle states are taken along in the
calculations. The single-particle energies close to the Fermi
surfaces were slightly modified in order to better reproduce
the low-lying spectra of the neighboring odd-mass nuclei at
the BCS-quasiparticle level.

B. Formalism of the ordinary muon capture

We compute the OMC nuclear matrix elements and rates
using the formalism that was originally developed by Morita
and Fujii in [33]. This formalism takes into account both the
genuine and induced vector and axial-vector weak nucleon
currents. The OMC rate from a Ji initial state to a Jf final
state can be written as

W = 2π〈|M.E.|2〉avq2 dq

dE f
, (6)

where

dq

dE f
=

[
1 − q

mμ + AM

]
(7)

and

〈|M.E.|2〉av = 2Jf + 1

(2 j′ + 1)(2Ji + 1)

∑
i j

∑
κu

×
[∑

ν

C(i)M(i)
νu

]∗[∑
ν ′

C( j)M( j)
ν ′u

]
, (8)

where j′ is the angular momentum of the bound muon. The
definitions of the matrix elements M(i)

νu and the corresponding
coefficients C(i) can be found in Table I of [33].

The Q value of the OMC process can be computed from

q = (mμ − W0)

(
1 − mμ − W0

2(M f + mμ)

)
, (9)

where W0 = M f − Mi + me + EX [33]. Here, M f (Mi) is the
nuclear mass of the final (initial) nucleus, me the rest mass of
an electron, and EX the excitation energy of the final Jπ state.

If we assume that the muon is initially bound on the K
atomic orbit, and use Bethe-Salpeter point-like-nucleus ap-
proximation formula [34] for the bound muon wave function,
the capture rate of Eq. (6) can be written as

W = 8P(αZm′
μ)3 2Jf + 1

2Ji + 1

(
1 − q

mμ + AM

)
q2 , (10)

where A is the mass number of the initial and final nuclei, Ji

(Jf ) the angular momentum of the initial (final) nucleus, M the
average nucleon rest mass, mμ the mass of the bound muon,
m′

μ the reduced mass of the muon in the parent μ-mesonic
atom, Z the atomic number of the initial nucleus, α the fine-
structure constant, and q the decay energy (Q value) of the
OMC.

The term P in Eq. (10) has a complex form containing the
nuclear matrix elements of the OMC, various geometric and
kinematic factors, and weak coupling constants. The P term
can be written explicitly for an nth forbidden transition. In
[33] the authors derive explicit forms for the P term for differ-
ent degrees of forbiddenness, assuming the muon being bound

on the atomic K orbit before capture, and approximating the
bound-state muon wave function as the one of a point nucleus.
All terms of the order of 1/M2 (except for terms containing the
square of the weak pseudoscalar coupling, gP, which is large
compared with the other coupling constants) were omitted.
We extend these explicit forms by including all the terms
of the order of 1/M2 in our calculations, as given explicitly
in [23].

The P term involves the usual weak vector and axial-vector
couplings gV ≡ gV(q) and gA ≡ gA(q) at finite momentum
transfer q > 0. The conserved vector current (CVC) and
partially conserved axial-vector current (PCAC) hypotheses
give the values gV(0) = 1.00 and gA(0) = 1.27 for a free
nucleon at zero momentum transfer, and for finite momentum
transfer we can use the dipole approximation [2]. For the
induced pseudoscalar coupling gP the Goldberger-Treiman
PCAC relation [35] gives gP/gA = 7.0. However, deviations
from the CVC and PCAC values have been recorded at zero
momentum transfer [7,8,22,36].

Using the notation of Eq. (10) we can write Eq. (8) in the
form

〈|M.E.|2〉av = 8(2Jf + 1)

2Ji + 1
(αZm′

μ)3P . (11)

Here, we define an average OMC matrix element as

|M (μ)|av =
√

〈|M.E.|2〉av =
√

8(2Jf + 1)

2Ji + 1
(αZm′

μ)3P . (12)

We compare this quantity, instead of OMC rate, with the 0νββ

decay nuclear matrix element in order to reduce the phase-
space effects.

In this work we choose the slightly quenched values
of gA(0) = 0.8 and gP(0) = 7.0 and keep the CVC value
gV(0) = 1.00 for all the studied cases. These values were
adopted also in our earlier works [23,26] but the (qualitative)
results of the present study are not sensitive to the exact values
of these couplings.

C. Outline of the 0νββ-decay theory

We exploit the 0νββ-decay formalism outlined, e.g., in
[37] and further processed in [24,38], assuming that the 0νββ

decay is dominated by the light-Majorana-neutrino-exchange
mechanism. Here, we are only interested in the ground-state–
to–ground-state transitions. The half-life for such a 0νββ

transition can be written as

[
t (0ν)
1/2 (0+

i → 0+
f )

]−1 = (
geff

A

)4
G0ν |M (0ν)|2

∣∣∣∣ 〈mν〉
me

∣∣∣∣
2

, (13)

where G0ν is a phase-space factor for the final-state leptons
in units of inverse years (see [39]), defined here without
including the axial-vector coupling gA. The effective light-
neutrino mass, 〈mν〉, of Eq. (13) is defined as

〈mν〉 =
∑

j

(Ue j )
2mj (14)

with mj being the mass eigenstates of light neutrinos. The
amplitudes Ue j are the components of the electron row of the
light-neutrino-mass mixing matrix.
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The 0νββ-decay NME M (0ν) in Eq. (13) is defined as

M (0ν) = M (0ν)
GT −

(
gV

geff
A

)2

M (0ν)
F + M (0ν)

T , (15)

where we adopt the CVC value gV = 1.0 for the weak
vector coupling strength. The double Fermi, Gamow-Teller,
and tensor nuclear matrix elements for 0νββ decays are
defined as

M (0ν)
F =

∑
k

(
0+

f ‖
∑
mn

hF(rmn, Ek )t−
m t−

n ‖0+
i

)
, (16)

M (0ν)
GT =

∑
k

(
0+

f ‖
∑
mn

hGT(rmn, Ek )(σm · σn)t−
m t−

n ‖0+
i

)
, (17)

M (0ν)
T =

∑
k

(
0+

f ‖
∑
mn

hT(rmn, Ek )ST
mnt−

m t−
n ‖0+

i

)
, (18)

where t−
m is the isospin lowering operator (changing a neutron

into a proton) for the nucleon m. The spin tensor operator ST
mn

is defined as

ST
mn = 3[(σm · r̂mn)(σn · r̂mn)] − σm · σn. (19)

The summation over k in Eqs. (16)–(18) runs over all the
states of the intermediate odd-odd nucleus, and Ek is the
excitation energy of a given state. Here, rmn = |rm − rn| is
the relative distance between the two decaying neutrons,
labeled m and n, and r̂mn = (rm − rn)/rmn. The ground state of
the initial (final) even-even nucleus is denoted by 0+

i (0+
f ). The

terms hK (rmn, Ek ), K = F, GT, T are the neutrino potentials
defined in [38].

In the pnQRPA framework the nuclear matrix elements can
be written as

M (0ν)
K =

∑
Jπ ,k1,k2,J ′

∑
pp′nn′

(−1) jn+ jp′ +J+J ′√
2J ′ + 1

×
{

jp jn J
jn′ jp′ J ′

}
(pp′; J ′||OK ||nn′; J ′)

× (
0+

f

∣∣∣∣[c†
p′ c̃n′ ]J

∣∣∣∣Jπ
k1

)〈
Jπ

k1

∣∣Jπ
k2

〉(
Jπ

k2

∣∣∣∣[c†
pc̃n]J

∣∣∣∣0+
i

)
,

(20)

where the summation over k1 and k2 runs over the different
pnQRPA solutions for a given multipole Jπ . The operators OK

inside the two-particle matrix element refer to Eqs. (16)–(18),
and they can be written as

OF = hF(r, Ek )[ fCD(r)]2 , (21)

OGT = hGT(r, Ek )[ fCD(r)]2σ1σ2 , (22)

OT = hT(r, Ek )[ fCD(r)]2ST
12 , (23)

where ST
12 is the tensor operator of Eq. (19) and r = |r1 − r2|

is the distance between the participating nucleons. The energy
Ek is the average of the kth pnQRPA-computed eigenvalues of
the initial and final nuclei, corresponding to a given multipole
Jπ . The term 〈Jπ

k1
|Jπ

k2
〉 is the overlap between the two sets of

FIG. 1. Multipole decompositions in terms of relative 0νββ ma-
trix elements (positive y axes) and average matrix elements of the
OMC on 76Se (negative y axes) as functions of the excitation energy
E in the intermediate nucleus 76As of the 0νββ decay of 76Ge. Here,
Jπ refer to the angular momenta and parities of the virtual states in
76As and all quantities have been summed within 1 MeV energy bins.
The scale values of the y axes have been omitted, since they are not
relevant for the current analysis. For more information see the text.

Jπ states, and it can be written as

〈
Jπ

k1

∣∣Jπ
k2

〉 =
∑

pn

[
X

Jπ
k1

pn X̄
Jπ

k2
pn − Y

Jπ
k1

pn Ȳ
Jπ

k2
pn

]
, (24)

where X and Y (X̄ and Ȳ ) are the pnQRPA amplitudes of the
final (initial) nucleus.

The factor fCD(r) in Eqs. (21)–(23) takes into account the
nucleon-nucleon short-range correlations (SRC) [40,41]. We
use the CD-Bonn form [42] with the parametrization

fCD(r) = 1 − 0.46e−(1.52/fm2 )r2
[1 − (1.88/fm2)r2] . (25)

III. RESULTS AND DISCUSSION

In this section we present and discuss the results
of our studies. We concentrate on the positive Jπ =
0+, 1+, 2+, 3+, 4+ and negative Jπ = 1−, 2−, 3−, 4− multi-
polarities of both the average OMC ME distributions and the
0νββ NME distributions. These multipoles are by far the most
important ones for the OMC rates [23] and the leading ones
for the 0νββ NMEs [24,43]. We discuss also the cumulative
average OMC MEs and 0νββ NMEs.

We computed the average OMC MEs and the 0νββ-
decay NMEs using the formalism and parameters discussed
in Sec. II A. For the values of the weak coupling constants,
involved in both the 0νββ and OMC processes, we adopt the
moderately quenched values gA = 0.8 and gP = 7.0, and the
CVC value gV = 1.0. This is in line with our earlier studies
[23,26]. As stated at the end of Sec. II B, the results are not
very sensitive to the values of these couplings.

024303-4



COMPARATIVE ANALYSIS OF MUON-CAPTURE AND … PHYSICAL REVIEW C 102, 024303 (2020)

FIG. 2. The same as in Fig. 1 for the A = 82 system.

FIG. 3. The same as in Fig. 1 for the A = 96 system.

FIG. 4. The same as in Fig. 1 for the A = 100 system.

FIG. 5. The same as in Fig. 1 for the A = 116 system.

FIG. 6. The same as in Fig. 1 for the A = 128 system.

FIG. 7. The same as in Fig. 1 for the A = 130 system.
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FIG. 8. The same as in Fig. 1 for the A = 136 system.

A. Distributions of the relative OMC MEs and 0νββ NMEs

In Figs. 1–8 we compare the computed relative OMC ME
distributions

|M (μ)|av (Jπ )(E )

/ ∑
E

|M (μ)|av (Jπ )(E )

with the multipole decompositions M (0ν)(Jπ ) of the 0νββ-
decay NMEs expressed in terms of relative contributions

|M (0ν)(Jπ )|(E )

/∑
E

|M (0ν)(Jπ )|(E ) .

The analyses have been done for each multipole Jπ separately,
and for increasing excitation energy E in the OMC daugh-
ter (the same as 0νββ-decay intermediate nucleus) using
summed average OMC MEs and 0νββ NMEs within energy
bins of 1 MeV. We have chosen to plot only absolute values of
the matrix elements since they carry the essential information
needed in the present comparison of the OMC and 0νββ

decay. Only in the case of A = 100 the Jπ = 1+ contribution
to the total 0νββ NME is negative. There are, however,
negative contributions coming from individual energy bins in
many cases (the same is of course true for the OMC matrix
element). As such, the possible different relative signs of the
contributions are not important in the context of our study,
since we are interested in the multipoles and energy regions
where notable (positive or negative) contributions appear in
both the OMC matrix element and the 0νββ NME. This
means that the nuclear states, with their wave functions, play
an important role in both processes for these particular mul-
tipoles and energy regions. In order to make the comparison
meaningful the excitation energy of the lowest Jπ state of the
pnQRPA set (for 0νββ decay the right-hand set) is fitted to
the measured excitation energy. We display the relative 0νββ

multipole NMEs on the positive and relative OMC MEs on
the negative y axes. Since the comparison is qualitative and
the quantities are relative we have omitted the scales of the y
axes.

In the following we analyze the correspondences related
to different multipoles arising from the Figs. 1–8. It should
be noted that the number of 0+ pnQRPA states is little, and
hence the similarities between the two distributions are harder
to conclude than for the other multipoles.

A = 76: The correspondence between relative OMC-rate
and 0νββ-NME distributions for the multipoles Jπ = 0+ is
weak. However, for the rest of the multipoles one can see
correspondences: in the cases of Jπ = 1+, 2+, 3+ one can see
two bumps at similar energies. The Jπ = 1− distributions both
are peaked at ≈10 MeV, and the Jπ = 3−, 4− distributions
at ≈15 MeV. On the other hand, in the case of Jπ = 2− the
0νββ decays trough the 2− ground state of 76As seem to be
enhanced.

A = 82: The Jπ = 1+, 2+, 3+ and Jπ = 1−, 3− distribu-
tions show nice correspondence. The Jπ = 0+ distributions
both show a peak at E ≈ 5 MeV, and the low-energy cor-
respondences of Jπ = 4± are also pretty good. In the case
of Jπ = 2− 0νββ seems to be more concentrated in low
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FIG. 9. Normalized cumulative average OMC MEs and normal-
ized 0νββ NMEs as functions of energy in the intermediate nuclei
76As (a) and 136Cs (b) of the A = 76 and A = 136 0νββ triplets. For
more information, see the text.
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TABLE I. Contributions (in percentages) from different multipoles to 0νββ-decay NMEs and average OMC MEs for different 0νββ-decay
triplets. The presented values are normalized ratios R(0ν ) = |M (0ν )|(Jπ )/|M (0ν )| and R(μ) = |M (μ)|av (Jπ )/|M (μ)|av .

A = 76 A = 82 A = 96 A = 100 A = 116 A = 128 A = 130 A = 136

�����Jπ

Case
R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ) R(0ν ) R(μ)

0+ 2 3 2 2 0 3 1 2 1 2 1 3 1 2 1 2
1+ 7 18 6 17 6 17 6 17 9 16 2 16 2 14 7 14
1− 16 21 16 21 18 18 20 19 23 18 13 17 13 17 9 17
2+ 13 16 14 17 13 16 12 16 9 16 12 17 12 15 14 15
2− 10 18 9 17 7 17 3 17 7 17 5 16 5 17 6 16
3+ 5 11 5 11 6 12 5 12 6 11 6 12 6 12 7 12
3− 11 6 11 6 10 7 9 8 9 8 10 8 10 9 9 9
4+ 7 2 7 2 8 2 8 2 7 3 9 3 9 4 9 4
4− 5 5 5 5 4 5 4 5 4 5 5 5 5 6 5 6∑

76 10 75 98 72 97 68 98 75 96 63 97 63 96 67 95

energies, but both distributions show three clear bumps at
similar energies.

A = 96: The Jπ = 0+ distributions show three bumps at
energies E ≈ 10, 20, 30 MeV, but there is a strong peak in
the 0νββ distribution at E ≈ 15 MeV, that is missing from
the OMC distribution. In the cases of Jπ = 1+ and Jπ = 2−
the 0νββ distributions are clearly more concentrated on lower
energies than OMC. The correspondence of Jπ = 2+, 3+, 1−,
and 3− is not too good, either. However, the Jπ = 4+ distribu-
tions show three clear bumps at similar energies.

A = 100: In this case, the situation in the cases of Jπ =
1± and 2− is similar as in Figs. 3(b) and 3(g): 0νββ is
more concentrated on lower energies. However, the Jπ = 2+
distributions both show a clear bump at E ≈ 25 MeV, and
Jπ = 3+ at E ≈ 15 MeV. The Jπ = 4+ distributions show
good correspondence at E < 30 MeV, but there is an extra
peak at E ≈ 35 MeV in the 0νββ distribution. The Jπ =
3−, 4−, on the other hand, show two clear bumps at similar
energies.

A = 116: In this case, the correspondence is best for the
Jπ = 1+, 2+, 3+ multipoles, which show three clear bumps
in both distributions. In the case of Jπ = 4+ there is some
concentration in both distributions at around 20 MeV. There
are similarities also in the cases of the Jπ = 1−, 2−, 3−, 4−:
there are two clear bumps at similar energies in both spectra.
On the other hand, the Jπ = 0+ distributions show no clear
correspondence.

A = 128: In this case, the correspondence is best for the
Jπ = 1+, 2+, 3+, 4+ and 4− multipoles, which show two clear
bumps at E ≈ 8 MeV and at E ≈ 20 MeV, and for Jπ =
1−, 2−, 3−, which show three bumps. The Jπ = 0+ distribu-
tions also have two peaks at E ≈ 5 and 20 MeV.

A = 130: In this case, the low-energy correspondence for
Jπ = 2−, 4− multipoles is great. The Jπ = 0+, 1+ distribu-
tions both show three peaks, and the Jπ = 2+, 3+, 4+ three
bumps at similar energies. The Jπ = 3− distributions also
show two bumps at E ≈ 10 and 25 MeV, but there is an
extra peak in the 0νββ distribution that is absent in the OMC
distribution. In the case of Jπ = 1− the 0νββ decay is more
concentrated on lower energies.

A = 136: In this case, the correspondence is clearest for
the Jπ = 1+, 2+ distributions, which show two bumps at
around E ≈ 3 MeV and at E ≈ 20 MeV. The Jπ = 3− distri-
butions also show two bumps at around E ≈ 10 MeV and E ≈
25 MeV. As for the Jπ = 1−, 2− multipoles, there are two
bumps in both distributions, but the second bump is situated at
slightly lower energy for in the 0νββ distribution. In the case
of Jπ = 4− the OMC distribution is more spread compared to
the 0νββ distribution, but both distributions show a bump at
around E ≈ 10 MeV.

All in all, the correspondence between the Jπ = 0+ 0νββ-
NME and OMC-ME distributions seems to be not too good,
and the overall correspondence seems to be best for the Jπ =
3± and 4± multipoles. Also for other multipoles there seems
to be a more or less clear correspondence for all the discussed
0νββ triplets. The distributions and their correspondences
vary quite much between the different 0νββ triplets indicating
that nuclear structure varies strongly with nuclear mass owing
to different mean-field properties (single-particle energies,
Fermi surfaces) and two-nucleon correlations.

B. Cumulative average OMC MEs and 0νββ NMEs

Cumulative average OMC MEs and 0νββ NMEs nicely
illustrate the build-up of these quantities as functions of the
excitation energy in the intermediate nuclei of the discussed
0νββ triplets. We choose the A = 76 and A = 136 triplets
as representative cases and plot the corresponding cumulative
matrix elements∑

Jπ

|M (0ν)(Jπ )|(E )

/ ∑
Jπ ,E

|M (0ν)(Jπ )|(E )

and ∑
Jπ

|M (μ)|av (Jπ )(E )

/ ∑
Jπ ,E

|M (μ)|av (Jπ )(E )

in Fig. 9. Thus, Fig. 9 is just an other way to present the
results of Figs. 1–8. We can see that the running sums for
the average OMC MEs and 0νββ NMEs, for both triplets,
are quite similar, but in the A = 76 case [panel (a)] the 0νββ

024303-7



L. JOKINIEMI AND J. SUHONEN PHYSICAL REVIEW C 102, 024303 (2020)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

E(MeV)

C
u
m

u
la

ti
ve

co
n
tr

ib
u
ti

on
(%

)

|M (0ν)|
|M (μ)|av

FIG. 10. The same as in Fig. 9, but only for the A = 76 0νββ-
decay triplet and containing contributions from only the leading
multipoles Jπ = 1+, 1−, 2+, 2−.

NME starts at a higher value and has thus a smaller inclination
of the cumulative curve. Both cases show that 0νββ decay is
slightly more concentrated on lower energies than OMC.

In Table I we show for the discussed 0νββ-decay triplets
the relative multipole contributions to the 0νββ NMEs and
average OMC MEs for Jπ (J � 4), which are the leading
multipoles for both the 0νββ decay and OMC (see Figs. 1
and 3 of [38], and the results of [23]). The multipole Jπ = 0−
is omitted from the table, since its contribution to both |M (0ν)|
and |M (μ)|av is negligible. First of all, one can see that basi-
cally all of the OMC strength is coming from the multipoles
with J � 4, while the 0νββ strength is more distributed to
higher multipoles, and only about 60 − 75% comes from the
multipoles with J � 4. Having a closer look at the table one
notices that the multipoles Jπ = 1+, 1−, 2+, 2− are among
the leading multipoles for both the 0νββ decay and OMC
for all the nuclei. Also multipoles Jπ = 3−, 4+ are important
for the 0νββ NMEs, but less important for the OMC. On the
other hand, Jπ = 3+ is rather important for OMC but not so
important for 0νββ decay. The Jπ = 2+ and 1− contributions
are practically the same for both quantities. On the other hand,
a considerable part of the OMC strength is coming from the
multipoles Jπ = 1+, 2−, but they are less important for the
0νββ-decay NMEs. These features of the 0νββ-decay NMEs
were also recorded in [38], the small quantitative deviations
from our results stemming from the much smaller single-
particle bases employed there.

The multipoles Jπ = 1+, 1−, 2+, 2− are, according to
Table I, the leading multipoles for both the average OMC
MEs and 0νββ NMEs in our example case of A = 76. In
Fig. 10 we plot for the A = 76 case the cumulative sums of the
OMC rate (|M (μ)|av) and 0νββ NME (|M (0ν)|) stemming only
from these multipoles. We notice that the 0νββ decay strength
is coming from lower energies than the OMC strength,
as is also the case for the total multipole contributions in
Fig. 9. Comparing Figs. 9 and 10 implies that the multipoles

Jπ = 1±, 2± not only constitute most of the 0νββ decay and
OMC strength, but also define the energy distributions of the
processes.

IV. SUMMARY AND CONCLUSIONS

In this work we computed the average matrix ele-
ments corresponding to the ordinary muon capture on the
0+ ground states of 76Se, 82Kr, 96Mo, 100Ru, 116Sn, 128Xe,
130Xe, and 136Ba, which are the daughter nuclei of the
eight 0νββ-decaying parent nuclei 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 128Te, 130Te, and 136Xe. We compared these matrix
elements with the corresponding 0νββ-decay nuclear matrix
elements. The calculations were performed using the proton-
neutron quasiparticle RPA with realistic two-body interactions
and slightly modified no-core Woods-Saxon single-particle
bases. We studied the cumulative behavior of the average
OMC MEs and 0νββ NMEs and also presented multipole
decompositions of the average OMC MEs and 0νββ-decay
NMEs.

We found that there are correspondences especially be-
tween the Jπ = 3±, 4± 0νββ NMEs and average OMC MEs,
and also for other multipoles there can be seen correspon-
dences for all the studied 0νββ-decay triplets. Furthermore,
we noticed that overall the cumulative behavior of the 0νββ

NMEs and average OMC MEs is quite similar, but for A �
128 the 0νββ NME is more evenly distributed within the
energy region of E = 0–50 MeV than the OMC ME. This
difference is related to the different behavior of these two
quantities at low excitation energies in the 0νββ-decay inter-
mediate nuclei.

When studying the multipole decompositions of the 0νββ-
decay NMEs and average OMC MEs we found that basically
all of the OMC strength is coming from the multipoles with
J � 4, while the 0νββ strength is more distributed to higher
multipoles, only approximately 60–75% coming from the
multipoles with J � 4. We also found that the multipoles
Jπ = 1+, 2+, 1−, 2− are among the leading multipoles for
both the 0νββ decay and average OMC MEs for all the
studied 0νββ-decay triplets.

According to this study, the overall behavior of the OMC
and 0νββ matrix elements is pretty similar. Therefore, mea-
surements of the OMC strength functions for the daughter
nuclei of 0νββ decays could enable a systematic study of
the involved nuclear wave functions and the sensitivity of
the OMC strength functions to the effective values of the
weak axial couplings, and hence help improve the accuracy
of calculations of the NMEs of the 0νββ decay. Experimental
studies are in progress, e.g., at RCNP Osaka for nuclei of
interest in studies of nuclear double beta decay and astroneu-
trino interactions.
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