
PHYSICAL REVIEW C 102, 024302 (2020)

Mass relations of mirror nuclei

Y. Y. Zong ,1 C. Ma,1 Y. M. Zhao,1,2,* and A. Arima 1,3

1Shanghai Key Laboratory of Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai Jiao Tong University,
Shanghai 200240, China

2Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China
3Musashi Gakuen, 1-26-1 Toyotamakami Nerima-ku, Tokyo 176-8533, Japan

(Received 5 February 2020; revised 4 May 2020; accepted 15 July 2020; published 3 August 2020)

In this paper we revisit mass relations of mirror nuclei by considering the odd-even feature in Coulomb
energy. A substantial improvement and competitive accuracy of mass relations is achieved, with root-mean-
squared deviations (RMSD) of only 93 keV; for the first time one is able to construct simple mass formulas for
mirror nuclei with the RMSD below 100 keV in light- and medium-mass regions (mass number A = 20–90)
by using only four parameters. As a by-product we tabulate our predictions of masses excesses unaccessible
experimentally in the Supplemental Material of this paper.
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Nuclear mass M, neutron separation energy Sn, and pro-
ton separation energy Sp are fundamental quantities in nu-
clear physics and astrophysics [throughout this paper we use
M(N, Z ) to denote the mass of nucleus with neutron number
N and proton number Z]. There are many theoretical models
and methods to describe the atomic-mass evaluation database
and to predict unknown masses [1,2]. Here we mention a few
theoretical models, such as the Duflo-Zuker model [3], the
finite-range droplet model (FRDM) [4,5], the Skyrme Hartree-
Fock-Bogoliubov theory [6], and Weizsäcker-Skyrme (WS)
model [7,8]. From another perspective, various mass relations
have been proved to be useful in local mass regions, such as
the Audi-Wapstra extrapolation method [9–11], the Garvey-
Kelson mass relations [12,13], the mass relations based on
neutron-proton interactions [14,15], and mass relations asso-
ciated with mirror nuclei [16,17].

The mass relations of mirror nuclei are based on the isospin
symmetry of interactions between nucleons. The empirical
neutron-proton interaction of mirror nuclei was studied many
years ago, with the focus of the isospin symmetry conser-
vation [18,19]. This symmetry was exemplified recently by
Zhang et al. [20] by the latest mass measurements. A num-
ber of generalized Garvey-Kelson mass relations of mirror
nuclei were constructed by Tian et al., with the resultant
root-mean-square deviation (RMSD) being 0.398 MeV for
31 proton-rich nuclei [21]. By using an empirical Coulomb
energy and phenomenological shell corrections, a number of
simple relations between two mirror nuclei were constructed
in Ref. [16], with the RMSD from 120 to 290 keV. The idea of
Ref. [16] was further exploited by replacing mass differences
by one-nucleon separation energies of two corresponding mir-
ror nuclei in Ref. [17], where the RMSD were reduced to 110–
130 keV. In this paper we revisit mass relations of Ref. [17] by
further considering the odd-even feature in Coulomb energy.

*Corresponding author: ymzhao@sjtu.edu.cn

Simple mass formulas for mirror nuclei are constructed with
the RMSD 93 keV for nuclei mass number A between 20 to
90, with a total of four parameters.

Let us begin with the simple Weizsäcker formula, viz.,

M(N, Z ) ≡ NMn + ZMp − B(N, Z )

= NMn + ZMp − avA + asA
2/3 + acZ2A−1/3

+ aa(N − Z )2A−1 − δpair, (1)

where A = N + Z , Mn, and Mp represent masses of a free
neutron and a free proton, respectively; av , as, ac, aa are
the volume term, surface term, Coulomb term, and symmetry
term coefficient, respectively (here we use the convention that
Coulomb energy, surface energy, and symmetry energy are
positive, and the volume energy and the pairing term δpair

are negative). From the above Weizsäcker formula, one easily
derives a simple formula of mass differences between two
corresponding mirror nuclei with neutron and proton numbers
(N, Z ) = (K − k, K ) and (K, K − k) as follows [16]:

�m(K − k, K ) ≡ M(K − k, K ) − M(K, K − k)

= ackA2/3 + k(Mp − Mn) , (2)

where A = 2K − k is the mass number of corresponding
mirror nuclei. In the above formula, the first term results
from the Coulomb energy difference between mirror nuclei,
and the second term correspond to the proton-neutron mass
difference. We note that the parameter (Mp − Mn) should be
close to the mass difference of a free proton and a free neutron
but meanwhile subtracted by the mass of an electron (i.e.,
1.293–0.511 MeV = 0.782 MeV), if one adopts the mass
database from the atomic mass evaluation (AME) in calcu-
lations, and this is the case in this paper. We also note here
that if one further considers the parity of neutrons and protons
of δpair in the Weizsäcker formula, then the mass formulas of
Ref. [16] are improved: Our present numerical experiments
by using the AME2016 database show that, for an even value
of k (k = 2, 4, i.e., proton number and neutron numbers of

2469-9985/2020/102(2)/024302(5) 024302-1 ©2020 American Physical Society

https://orcid.org/0000-0002-4471-2371
https://orcid.org/0000-0002-6129-057X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.024302&domain=pdf&date_stamp=2020-08-03
https://doi.org/10.1103/PhysRevC.102.024302


ZONG, MA, ZHAO, AND ARIMA PHYSICAL REVIEW C 102, 024302 (2020)

the mirror nuclei have the same parity), the improvement by
discriminating the parity of k is relatively small (the RMSD
value is reduced by about 20 keV), while for an odd value of
k (i.e., k = 1 and 3, in these cases the parity of K − k and that
of K are different), the reduction of the RMSD value is large
(by about 90 keV).

In this paper we report an odd-even staggering for devia-
tions of the formulas in Ref. [17] from experimental values
and make use of this feature to improve our mass formulas.
According to Eqs. (15) and (16) in Ref. [17],

�n(K − k, K ) ≡ M(K − 1 − k, K ) − M(K − k, K )

− M(K, K − k − 1) + M(K, K − k)

= acδ
n
c + (Mp − Mn) = acδ

n
c − C, (3)

�p(K − k, K ) ≡ M(K − k, K − 1) − M(K − k, K )

− M(K − 1, K − k) + M(K, K − k)

= acδ
p
c + (Mn − Mp) = acδ

p
c + C, (4)

where �n is the difference of one-neutron separation en-
ergy between the nucleus with (N, Z ) = (K − k, K ) and
one-proton separation energy of the nucleus with (N, Z ) =
(K, K − k), and �p is the difference of one-proton sepa-
ration energy of the nucleus with (N, Z ) = (K − k, K ) and
one-neutron separation energy of the nucleus with (N, Z ) =
(K, K − k). δn

c and δ
p
c is given by the simple Coulomb-energy

term in Eq. (1). According to Eqs. (17) and (18) of Ref. [17],

δn
c = (k + 1)(A − 1)2/3 − kA2/3, (5)

δp
c = (k − 1)(A − 1)2/3 − kA2/3, (6)

with A = 2K − k = N + Z . The �n-δn
c formula of Eq. (3)

and the �p-δp
c relation of Eq. (4) have been exemplified

to the AME2016 database, with their RMSD equal to 113
keV and 132 keV, respectively. Clearly, both �n and �p are
double mass differences for two successive mirror nuclei. If
the isospin symmetry is conserved, then the mass difference
of mirror nuclei should be interpreted in terms of Coulomb
energy and neutron-proton mass difference. Yet the ambiguity
in Coulomb energies of two mirror nuclei leads to an RMSD
of 100–200 keV, even if one adopts pairing term individually
for protons and neutrons, as discussed above. The key of the
substantial improvement of mass formulas in Ref. [17] is that
the difference between Coulomb energies of two successive
nuclei is small; thus the effect of this ambiguity becomes much
smaller, even if there is considerably large uncertainty in our
theoretical Coulomb energy.

Let us proceed our discussion with rewriting Eqs. (3) and
(4) in terms of �m of Eq. (2),

�n(K − k, K ) = �m(K − k − 1, K ) − �m(K − k, K ),

�p(K − k, K ) = �m(K − k, K − 1) − �m(K − k, K ).

From these two relations, one immediately sees that the
RMSD values for both �n and �p are expected to exhibit
an odd-even staggering. For example, �n(K − k, K ) involves
two �m(N, Z ) with the same proton number Z = K , while the
difference of their neutron numbers is 1, and therefore one of
the neutron number of �m involved in �n(K − k, K ) is odd
and the other is even. The situation is similar to �p(K − k, K ).

FIG. 1. Deviations (in unit of MeV) of theoretical values of
mirror nuclei mass relations, i.e., Eqs. (3) and (4), from experimental
data in the AME2016 [11] for 10 � Z, N � 40. Solid squares in
black, circles in red, triangles in blue, and stars in olive correspond
to k = 1, 2, 3, 4, respectively. Panel (a) plots the �n-δn

c relation of
Eq. (3) and panel (b) plots the �p-δp

c relation of Eq. (4). One clearly
sees odd-even staggering of deviation around zero for all values of k.
The results extracted from the mass excess of 44V in the AME2016
database are denoted with shadows, and results of the same nuclei by
recent measurement [20] are shown by solid circles in orange. One
sees those large deviations are reduced substantially with results of
the recent experimental measurements.

In Figs. 1(a) and 1(b), we plot the deviations of theoretical
values by using Eqs. (3) and (4) from experimental data in
the AME2016 database [11], where odd-even staggerings are
easily seen, despite a few “anomalous” results which are
denoted with open squares in shadow. These anomalies are all
related to proton-rich nucleus 44V whose experimental uncer-
tainty is very large (182 keV) in the AME2016 database. As
Eqs. (3) and (4) are very accurate, it is tempting to predict the
mass of this nucleus by these formulas. The predicted result
of the mass excess for this nucleus was −23825 (44) keV,
−23716 (214) keV, and −23707 (132) keV, −23709 (113)
keV, respectively (see the Supplemental Material of Ref. [17]),
in comparison with −24116 (182) keV in the AME2016
database. Very interestingly, new mass measurements of this
nucleus were performed recently: Its experimental mass ex-
cess was reported to be −23827 (20) keV in Ref. [20] and
−23805 (80) keV in Ref. [22], both of which are very close to
our predicted results enclosed in the Supplemental Material of
Ref. [17]. We now replace the mass excess of the 44V nucleus
in the AME2016 database by the experimental mass excess
reported in Ref. [20] and replot those corresponding results
by using solid circles in orange. Here one sees that those
anomalies almost disappear.
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TABLE I. The RMSD (in keV) of Eqs. (3) and (4), the pair number of mirror nuclei involved (denoted by N ), and the values of our
parameters ac and C (in unit of keV) in Eqs. (3) and (4) optimized by using the AME2016 database [11], for nuclei with N and Z � 10, and
with the result of 44V replaced by using the result of a recent measurement [20]. The results in the last row, labeled �, are obtained by using
the same ac and C for different parity in Eqs. (3) and (4). RMSD′, a′

c, and C′ are the same results of Eqs. (3) and (4) but replacing the Coulomb
term in Eq. (1) with Eq. (8). ac and C are discriminated by their parity of proton and neutron numbers. For �p with odd proton numbers and
for �n with odd neutron numbers, we denote the ac and C by “odd”; for �p with even proton numbers and for �n with even neutron numbers,
we denote the ac and C by “even.”

� N RMSD ac(even, odd) C(even, odd) RMSD′ a′
c(even, odd) C′(even, odd)

�n 43 82 701 ± 8, 733 ± 9 1599 ± 84, 2043 ± 99 82 690 ± 7, 723 ± 9 716 ± 74, 1124 ± 87
�p 68 94 692 ± 7, 713 ± 7 1457 ± 83, 1843 ± 82 94 684 ± 7, 704 ± 7 607 ± 74, 962 ± 74
� 111 93 696 ± 5, 719 ± 5 1527 ± 60, 1905 ± 63 92 688 ± 5, 710 ± 5 664 ± 54, 1011 ± 56

Now we make use of Eqs. (3) and (4), but with discrimina-
tion for parity of neutron number N for the �n-δn

c formula and
for parity of proton number Z in the �p-δp

c formula, and with
updated mass excess of 44V by experimental data in Ref. [20].
In the first two rows of Table I we present the optimized
parameters ac and C in Eq. (3) and (4), and corresponding
RMSD values and the number (denoted by N ) of mirror pairs
in our calculations. There are in total eight parameters for
�n-δn

c and �p-δp
c formulas. The resultant RMSD values are

82 keV and 94 keV for �n-δn
c and �p-δp

c , respectively.
From Table I, one sees that the two set of parameters, one

set for �n and the other set for �p, well overlap with each
other. Thus, unlike Ref. [17], here we assume the same values
of ac and C in Eq. (3) and (4) and present them in the third
row of Table I. This unification leads minor changes of the
resultant RMSD values, but the total number of parameters is
reduced from 8 to 4.

By these unified notations of � and δc, we have

� = acδc ∓ C, (7)

where we take a − sign for �n and a + sign for �p. The
�-δc plot is presented in Fig. 2, where the results for �p with
odd proton numbers and for �n with odd neutron numbers are
denoted by solid circles in red and by solid squares in black
otherwise. To be compact and convenient in our figure, the
plot for �p is presented by using |�p| = −�p and |δp

c | = −δ
p
c

(both �p and δ
p
c are negative). One sees a clear odd-even

feature of �n and �p for small |δn
c | and |δp

c |. The resultant
RMSD value of �-δc relation is 93 keV for 111 pairs of mirror
nuclei.

In Table I, the values of parameters ac ∼ 0.7 MeV and are
close to the value of treating an atomic nucleus as a uniformed
charged sphere, which is equal to

ac = 3

5

e2

4πε0r0
,

where r0 is usually taken to be 1.2 fm, correspondingly ac �
0.72 MeV. On the other hand, the parameter C is around 1.5
MeV for the “even” type and around 1.9 MeV for the “odd”
type, both of which are much larger than the expected value of
C [0.782 MeV, see the discussion below Eq. (2)]. Furthermore,
the difference of parameter C between these two cases is about
0.4 MeV. Below we discuss these two issues.

Let us first come to the question why the value of C devi-
ates from its expected value. This issue could be explained by

an oversimplification of the Coulomb energy term in Eq. (1).
If one assumes a more sophisticated form [23–25] instead,

Ec = Ed
c + Ee

c + Es
c

= ac
Z2

A1/3
− 5

4

(
3

2π

)2/3

ac
Z4/3

A1/3
− ac

Z

A1/3
, (8)

then one obtains much complicated formulas of δn
c and δ

p
c ,

denoted by δn′
c and δ

p′
c . In the above formula, the second term

Ee
c is called the exchange term in the Fermi gas model, and the

third term Es
c is called the self-energy term which equals the

total Coulomb energy of Z protons moving individually in a
sphere with the same size of the nucleus in consideration. For
convenience and to be compact in our discussion, we present
the formulas of δn′

c and δ
p′
c in the Appendix.

Assuming the Coulomb energy of Eq. (8), similarly to
Eqs. (3) and (4) and Eq. (7), we have

�n(K − k, K ) = a′
cδ

n′
c − C′, (9)

�p(K − k, K ) = a′
cδ

p′
c + C′, (10)

FIG. 2. �n-δn
c and �p-δp

c correlations for nuclei with N, Z � 10.
Both �p and δp

c are multiplied by −1 (see the text for details).
Solid squares in black corresponds to �n (�p) with even neutron
(proton) numbers, and circles in red corresponds to those with odd
neutron (proton) numbers. The results are extracted based on the
AME2016, except that the mass excess of the 44V nucleus is replaced
by that measured in Ref. [20]. The straight lines are plotted by using
optimized parameters ac and C listed in the last row of Table I.
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The resultant values of a′
c and C′ are listed in the last three

columns of Table I. The average value of parameter C′ in
the last row is 0.838 keV, which is reasonably close to its
expected value (0.782 MeV). We note that the assumption of
a sophisticated Coulomb energy of Eq. (8) does account for
the agreement between the average value of parameter C′ and
its expected value; on the other hand, the δ′

c in Eqs. (9) and
(10) is more complex and the resultant RMSD values remain
essentially unchanged in comparison with those in Eqs. (3)
and (4) which are more favorable and convenient in numerical
practices due to their simplicities.

The second issue related to the parameter C is the large
difference (about 0.4 MeV) of the even and odd type of
�-δc or �-δ′

c formulas. This puzzle is interpreted in terms
of an odd-even feature in the Coulomb energy, namely a
so-called pairing effect. This effect is not new and was
studied extensively more than half a century ago, e.g., in
Refs. [23,24,26,27]. See Ref. [25] for a comprehensive review.
The general explanation is as follows. This odd-even feature in
Coulomb energy results from the pairing correlation of iden-
tical protons, namely two protons have a larger probability
of being found close together if their spins are oppositely
directed. The Coulomb interactions between protons are far
too weak to prevent pairing; on the other hand, the Coulomb
energy depends on the spatial distribution of protons, and
therefore its odd-even alternation is a rough measure of the
pairing correlation.

It is interesting to investigate the odd-even gap of C value
extracted from experimental data and present a comparison
with the result in this paper (about 0.4 MeV) and previous the-
oretical studies. Toward that goal, we first define the empirical
odd-even gap in Coulomb energy,

δpair (K − k, K )

≡ 1
2 [�m(K − k, K ) + �m(K − k − 2, K − 2)

− 2�m(K − k − 1, K − 1)], (11)

with an assumption that �m(K − k, K ) is given dominantly
by the Coulomb energy difference and a parameter denoted
by (Mp − Mn) in Eq. (2). Here the values of �m(K − k, K )
are evaluated by using the AME2016 database. The δpair (K −
k, K ) values such extracted are plotted in Fig. 3 by using solid
circles in black.

The theoretical odd-even gap in Coulomb energy that we
extract in this paper is based on systematics demonstrated in
this work. Here we rewrite Eq. (7) as follows:

�(odd) = a(odd)
c δ(odd) + C(odd),

�(even) = a(even)
c δ(even) − C(even),

where �(odd) and δ(odd) correspond to �n and δn
c with odd

neutron numbers or �
p
c and δ

p
c with odd proton numbers

and �(even) and δ(even) correspond to �n and δn
c with even

neutron numbers or �
p
c and δ

p
c with even proton numbers. Our

odd-even gap is then the difference between �(odd) and �(even),

δpair = (a(odd)
c − a(even)

c )|δc| + (Codd − Ceven ). (12)

The results of δpair such obtained are plotted by using a solid
line in red in Fig. 3.

FIG. 3. The pairing gap of Coulomb energy δpair for mirror
nuclei, with k = 1 and Z � 10. The solid circles in black correspond
to empirical values of δpair defined in Eq. (11) and extracted by
using the AME2016 database with experimental uncertainty less than
50 keV. The solid line in red correspond to δpair values defined in
Eq. (12), and the dotted lines in blue and green correspond to δpair

taken from Refs. [24,25] and Ref. [26], respectively.

In Refs. [23–27], the odd-even fluctuation of Coulomb
energy is treated as an additional term in �m(K − k, K ),

�m(K − k, K ) ≡ M(K − k, K ) − M(K, K − k)

= ackA2/3 + δc
pair + k(Mp − Mn). (13)

δc
pair = (−1)K ac/(2A1/3) keV in Refs. [24,25] and δc

pair =
60[1 + (−1)K ] keV in Ref. [26] for k = 1. Thus theoretical
odd-even gap of Coulomb energy is δpair = ac/A1/3 keV ac-
cording to Refs. [24,25] and δpair = 120 keV according to
Ref. [26]. These two δpair are plotted in Fig. 3 by using dotted
lines in blue and green, respectively.

In general the four odd-even gaps in Coulomb energy, sum-
marized in Fig. 3, are reasonably consistent, except that the
values of δpair used in Refs. [24,25] are systematically larger
than empirical values which are extracted from experimental
data of atomic masses. The large fluctuations of empirical
values of δpair might result from various underlying physics
(for example, the shell effect). The picture based on pairing
correlation between like particles [26] yields a rather constant
value of δpair. The odd-even gap from systematics studied in
this paper exhibits a tendency of decrease with proton number.
The difference of these three results is warranted for further
studies in future.

Finally, the nice agreement of �-δc relations encourage
us to predict nuclear mass excesses which are not accessible
experimentally. We make use of Eq. (7) and the parameters
in the last row in Table I in our predictions. For cases with
two predicted results for a given nucleus, our predicted results
are taken to be their average, with the weight of uncertainty,
as in Ref. [17]. We predict 68 unknown mass excesses of
proton-rich nuclei with A from 26 to 90 and Z − N � 4. Our
predicted results are tabulated in the Supplemental Material
[28] of this paper.
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To summarize, in this paper we revisit mass relations
of mirror nuclei and focus on an odd-even feature of the
Coulomb energy, with which we construct new (and simple)
mass formulas, with the resultant RMSD value 93 keV. For
the first time one has simple mass formulas for mirror nuclei
with the RMSD below 100 keV for light- and medium-mass
nuclei in a considerably large region. The values of parameters
in these formulas are discussed in considerable detail. In the
Supplemental Material [28] we present our predictions of 68
mass excesses which are not yet accessible in the atomic mass
evaluation database, with A from 26 to 90 and Z − N � 4.
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APPENDIX: FORMULAS OF δ′
c

We begin our discussion with the form of Eq. (8) for
Coulomb energy of atomic nuclei. The difference of the direct
term in Eq. (8) for mirror nuclei is given by the first term on
the right hand side of Eq. (2). The difference of Coulomb en-
ergy relate to the exchange term for mirror nuclei is given by

5

4

(
3

2π

)2/3

ac
(K − k)4/3

A1/3
− 5

4

(
3

2π

)2/3

ac
K4/3

A1/3

� −5

2

(
1

3π2

)1/3

ack ∼ −0.808ack,

where we make the approximation k � K . The difference of
Coulomb energy related to the self-energy term for mirror
nuclei is given by

−ac
K − k

A1/3
+ ac

K

A1/3
= −ackA−1/3.

From the above results, we obtain

�m(K − k, K ) ≡ M(K − k, K ) − M(K, K − k)

= ack(A2/3 − A−1/3 − 0.808) + k(Mp − Mn).

(A1)

We substitute this result into the definition of �n(K − k, K )
and �p(K − k, K ) and obtain

�n(K − k, K ) = a′
cδ

n′
c − C′, �p(K − k, K ) = a′

cδ
p′
c + C′,

where

δn′
c = (k + 1)(A − 2)(A − 1)−1/3 − k(A − 1)A−1/3 − 0.808,

(A2)

δp′
c = (k − 1)(A − 2)(A − 1)−1/3 − k(A − 1)A−1/3 + 0.808.

(A3)
We note that a′

c and C′ are the same for �n(K − k, K ) with
odd (even) numbers of (K − k) and �p(K − k, K ) with odd
(even) numbers of K , in the last row of Table I.
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