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Centrifugal effects in N� states
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Recently it has been pointed out that in the two-baryon N� or �� system the width of the state is greatly
diminished due to the relative kinetic energy of the two baryons, because the internal energy of the particles,
available for pionic decay, is smaller. For nonzero orbital angular momenta this effect becomes state dependent.
Also, the real part of the N� energy can get contributions from the centrifugal barrier, leading to a rotational
series of diffuse states. Obviously, these states may have an interpretation as isospin one dibaryons. Direct and
explicit calculations for this are presented with some details of the coupled-state wave functions displayed.
With finite expectation values of these repulsive effects, it may be possible to define state-dependent effective
thresholds for N� states and these, in turn, can show resonantlike behavior.

DOI: 10.1103/PhysRevC.102.024002

I. INTRODUCTION

The role of the �(1232) resonance has a long and es-
tablished history in the pion-nucleon interaction and also in
the NN interaction and plays an outstanding part in their
inelasticities [1,2]. Pionic inelasticities are even idiomatic for
probing intermediate N� components arising from incident
NN states above the πNN threshold. Isovector meson, pion,
exchange (and also ρ exchange) can excite an N� state, which
in turn decays. The process is inseparable from elastic NN
scattering and their strong interaction.

As the simplest such reaction, pp → dπ+ was intensely
studied in the late 1970s and 1980s at the “meson factories”
SIN, LAMPF, and TRIUMF. For a modern review see, e.g.,
Ref. [3]. Experiments indicate univocally the � peaking in the
total cross section at about 580-MeV laboratory energy [4,5],
which, along with the differential cross section and transverse
analyzing power, was also reasonably predicted by a coupled-
channel N� calculation without virtually any free parameters
[6].1 Further, spin-correlation and deuteron-polarization pre-
dictions were made [7,8], which were promptly confirmed
[9,10]. The success of the calculations was mainly due to
two N� admixtures generated from the initial nucleons:
1D2(NN ) → 5S2(N�) and 3F3(NN ) → 5P3(N�), sometimes
dubbed as “dibaryons.”2 The latter was probably the first
appearance of such a high partial wave appearing as important
[6]. It may be noted that the coupled-channel N� agreement
with experiment was actually better than a six-parameter
dibaryon fit [11].

*jouni.niskanen@helsinki.fi
1A form factor to account for the nucleon and � size could be

considered as a free parameter, though it was taken from one-boson-
exchange potentials.

2A third essential ingredient was the axial charge and s-wave pion
rescattering in the 3P1(NN ) and associated N� waves.

Later an improvement [12] was made, which decreased
the widths of the N� states, so far normally considered as
the free � width with just appropriate kinematic adjustment
[13,14]. Namely, there is relative kinetic energy in the N�

intermediate state whose role should be considered in more
detail. Obviously this kinetic portion is not usable for the
(internal) pionic decay of the �’s. The width in turn is used
as a uniform imaginary potential in the coupled N� system.
Further, because the N� wave function becomes now neces-
sarily spatially constrained (must vanish asymptotically) both
below and also above the N� threshold, this kinetic energy
is not arbitrary. Its average is finite and can be calculated
from the Fourier transform of the wave function. The resulting
kinematic suppression of the width was taken into account
in the calculations of Ref. [12] for pp → dπ+, but explicit
width results were only published recently [15]. Also, rather
strong sensitivity of the width was seen on the relative orbital
angular momenta of the baryons. In addition to the improved
agreement in the old reaction pp → dπ+, the reduction of
the width has great renewed relevance for interpretations
of the I (JP ) = 0(3+) resonance recently discovered at the
WASA@COSY detector of the Forschungszentrum Jülich and
labeled as d ′(2380) dibaryon [16,17]. Its nominal mass of
2380 MeV is 80 MeV below the �� threshold and its width
is only 70 MeV, less than that of a free �. A calculation
[15], similar to that briefly described above, gives just such
a decreased value for the 7S3(��) state coupled to 3D3(NN ).
A similar drastic suppression of the double-� system width
is also found by Gal and Garcilazo [18,19] from coupled
pion-baryon Faddeev calculations.

Further, in these reactions and NN scattering in different
partial waves also the N� centrifugal barrier directly dimin-
ishes the wave functions. Although this suppression is ex-
pected to be naturally sensitive to LN�, also the orbital angular
momentum of the initial nucleons may even favor transitions
into N� in some sense. Namely, within the interaction range
the reduction of the centrifugal barrier can compensate the
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N� mass difference in the excitation if LN� < LNN , as seen in
Ref. [20] as an explanation for T = 1 enhancements (T = 1
“dibaryons”). From the above considerations it is clear that
just a single number cannot account for the effective two-
baryon pole position in different partial waves.

Because the internal kinematics of the N� system has
been seen to have a significant effect on its width, i.e., the
imaginary part of the interaction [15], it is also of interest to
see the effect on the real part of the energetics. Due to the
confinement of the N� wave function, similar to bound sys-
tems in quantum mechanics, one might expect some kind of
imitated quantization of the energy to appear—as noted above
about the finite distribution of kinetic energy. In this kind
of situation the angular momentum is directly related to the
energy and this aspect of the kinetic energy is the central point
now. Thus, if the expectation value of the centrifugal barrier
h̄2/2mr2 is well defined and reasonably constant over various
N� configurations and NN energies, one might expect also a
reasonably well-defined rotational series ∝LN�(LN� + 1) to
appear as effective channel thresholds. This is the direction in
which to proceed now.

In fact, a very phenomenological calculation [20] has
given some hints for this possibility. The work compared a
phenomenological phase-fitted potential [21] and the same
potential supplemented by an N� channel. To remove the
double counting of attraction due to the extra N� component,
the repulsion [V2(r)]2/�E was added to mimic the second
order � effect in a closure approximation. Here V2(r) is the
NN ↔ N� transition potential and �E is an average energy
denominator adjusted for phase equivalence of the coupled
and uncoupled calculations. It was seen that �E followed
quite well such a rotational series with h̄2/2mr2 ≈ 40 MeV in-
dicating about 1 fm as the effective channel radius. A remark-
able thing was that this pattern actually corresponded well
with the series of isospin 1 dibaryons reported in Refs. [22].
An additional criterion for a “dibaryon” to appear in the N�

series was that LN� < LNN , meaning that in the NN → N�

transition the orbital angular momentum decreases. For short-
range energetics this is a natural expectation, because then
the � − N mass barrier is partly compensated by massive
reduction of the centrifugal barrier, favoring the tunneling into
the N� channel.

The aim of this paper is to study in a simple transparent
way some phenomenological aspects of how the relative
kinetic energy between the two intermediate baryons influ-
ences the overall dynamics of the two-baryon system and,
in particular, to calculate explicitly the expectation value of
the centrifugal barrier for realistic coupled-channel N� wave
functions. First, in Sec. II a brief review is given about the
formalism before proceeding to calculations and results in
Sec. III.

II. FORMALISM

Pionic excitation of the N� (and ��) components into
NN configurations was already suggested in an early pa-
per by Sugawara and von Hippel [23]. The coupled-channel
formalism is generally described in Refs. [1,2] and relevant
details of the interactions are provided in Ref. [6]. Also,

essential updates and improvements are given in Ref. [12]
that are mainly intended for the reaction pp → dπ+, but that
extend relevantly to V2 and to the width for more general
N� dynamics. In particular, the peak of this reaction may
be the best constraint on its dominant transition potential V2.
The structure can be presented routinely by the coupled radial
Schrödinger equations:[

h̄2

2m

(
d2

dr2
− L(L + 1)

r2

)
− V1(r) + E

]
u(r)

= V2w(r), (1)

[
h̄2

2m′

(
d2

dr2
− L′(L′ + 1)

r2

)
− V3(r) + (E − �)

]
w(r)

= V2u(r), (2)

for the NN and N� wave functions u(r) and w(r), respec-
tively. Here the generic channel potentials are denoted by
Vi(r), and L (L′) and m (m′) present the angular momen-
tum and the reduced mass of the NN (N�) system. The
� − N mass difference M� − MN is abbreviated as �, with
M� taken as the position of the pole 1310 MeV rather
than the nominal mass [24]. Above the pion production
threshold it is complemented by the state-dependent width
[15] in the form � − i�/2. Thus, effectively the width acts
as a constant imaginary part in the potential, making the
N�-channel wave function w(r) asymptotically vanish. The
asymptotically free-radial NN wave function with momen-
tum k can be presented and normalized with the descriptive
form uNN (r) ∼ kr exp(iδL ) jL(kr + δL ), where the phase shift
may now be complex. For real interactions and below open
channels it is common to the total wave function (with all
channels). As a numerical comment, one should remem-
ber the rather slow asymptotic convergence of the regular
and irregular Bessel function combination [25] uNN (r) ∼
kr exp(iδL ) [cos δL jL(kr) − sin δL nL(kr)] to this form for
L �= 0. The inclusion of more possible channels in the system
of Eqs. (1) and (2) is obvious.

Also it is interesting to note the emergence of inelastic-
ity above the � − N threshold even without any imaginary
potential. With the opening of the N� channel, unitarity in
the NN sector is lost. Similar to the case with the tensor
force, then the single parameter, the NN phase shift, is
not sufficient any more to describe the asymptotics, and a
transition amplitude (analogous to εJ ) and scattering of N
and � would be necessary. Below this threshold it is still
possible to describe the scattering wave functions as real [by
switching off the common overall phase exp (iδL )]. In this
case the still closed N�-channel wave function w(r) behaves
asymptotically like exp (−κr), with κ = √

2m′(� − E )/h̄.
Apparently at the N� threshold the extension of the wave
function becomes very large, producing a cusp in the NN
phase shift. Also, the overlap integral of the amplitude in,
e.g., pp → dπ+ would maximize grossly overestimating the
cross section. Above threshold the phases (arguments) of both
wave functions u(r) and w(r) depend on the channels and
even on the radius r. In this case the N� wave function
w(r) behaves like an outgoing spherical wave ∝ exp (ik′r)
or more accurately k′r h+

L′ (k′r), with k′ = √
2m′(E − �)/h̄.
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The oscillatory behavior decreases overlap integrals from the
cusp peak values. Probably in this case it would be possible
to define scattering eigenfunctions and corresponding phase
shifts like those of Blatt and Biedenharn [26]. However, in
the presence of the constant imaginary potential −i�/2 this
parametrization is not useful. In this case complexity appears
already below the nominal channel threshold, adding to the
damping and bringing in some oscillatory behavior. Just at
threshold the asymptotic suppression from the width should
behave like ∼ exp(−γ r) and include also corresponding os-
cillation with the wave number γ =

√
m′�/(2h̄2) [interfering

with the effect of V2(r)u(r)]. The width moderates and rounds
the cusp peak down. Above threshold this damping effect
is sustained along with oscillations having the natural wave
number k′ given above.

Among the interactions the most important is the transition
potential V2(r), based on one-pion exchange supplemented
with ρ exchange. Heavy-meson exchanges to describe short-
range interactions may not be favored in present-day effective-
field theories, but the main point is that this potential is
thoroughly tested in the reaction pp → dπ+ [12] and is now
used only to imply the form of the associated N� component
in detail. The diagonal V1(r) in the NN sector is taken as the
old phenomenological Reid potential [21] modified to give
the correct phase shifts in the presence of the N� excitation
[6,12,27]. The N� potential V3(r) is not of primary interest
presently and is neglected. In NN scattering it would only
appear hindered behind iterated V2. The width is calculated
along the lines of Ref. [15], exhibited there for the most
important and interesting states. In addition to the fact of
giving rise to inelasticities and making also the NN wave
function u(r) complex, it causes also rather strong repulsion
[28,29] decreasing the attractive effect due to N� excitation.
And it is state dependent as expressed in the Introduction.

To see the effect of the centrifugal barrier and the possible
appearance of the rotational series one needs the straightfor-
ward expectation value

〈
1

r2

〉
=

∫ ∞
0 |w(r)|2/r2dr∫ ∞

0 |w(r)|2dr
. (3)

Apparently this is simpler than the calculation [12,15]

�3 = 2

π

∫ pmax

0 |
N�(p)|2�(q)p2d p∫ ∞
0 |
N�(r)|2r2dr

(4)

for the width, requiring the Fourier transform of the wave
function and relevant restraints for the kinematically al-
lowed momenta p and q(p). The series 〈h̄2/(2m′r2)〉L′(L′ +
1) should be built on top of the mass difference �. In
fact, one can also calculate the still missing kinetic energy
〈−h̄2/2m′ ∂2/∂r2 〉, associated with the radial degree of free-
dom, to be added to the nominal threshold �. Most naturally
this can be calculated as the expectation value of p2/2m′ in
the momentum representation as in Eq. (4).
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FIG. 1. Absolute values of the N� wave functions for the best
“dibaryon” NN initial states at three laboratory energies. The curves
are explained in the text.

III. RESULTS

A. N� component magnitudes

This section concerns first some details of the N� compo-
nents connected to isospin 1 NN wave functions for various
angular momentum configurations, and then consequent en-
ergy expectation values, relevant as effective channel thresh-
olds, are calculated.

Figure 1 presents the radial dependence of the absolute
values of the N� wave function components as described
in the previous section. The uppermost functions present
the 5S2(N�) (solid curve), 5D2(N�) (long-dashed curve),
and 5G2(N�) (short-dashed curve) states associated with the
incident 1D2(NN ) partial wave at three laboratory energies.
This is the lowest-lying “dibaryon” from NN phase shifts
(apart from the deuteron and the sharp low-energy maximum
in the quasibound NN 1S0 wave). The position of the peak is
practically independent of energy, for high energies at slightly
smaller distance. Even up to 700 MeV the dominant S-wave
maximum remains at about 1.1–1.2 fm, and the D- and G-
wave variations from this distance are also negligible.3 Such
weak energy dependence was also observed in Ref. [20] in the
energy denominator �E of the second-order effective repul-
sion V 2

2 /�E to cancel the attraction due to the N� coupling
and to keep the phase equivalence of the pure single-channel
NN scattering and the coupled model. The repulsive influence
of the centrifugal barrier is clear in the ordering of sizes, even
more notably considering that the relative strengths of the
(radially identical tensor type) transition potentials would be
in opposite ordering 20 : (−23) : 31 for 5S2(N�), 5D2(N�),
and 5G2(N�), respectively [6]. However, in spite of this, the

3The odd-looking energy 578 MeV is chosen here, because about
at this energy the maximum of the experimental total cross section of
the reaction pp → dπ+ is reached, which can be used for fixing the
NN ↔ N� transition potential strength [5,12].
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position of the maximum is remarkably independent of L′.
The shoulders in r dependence are due to either the real or
the imaginary part passing through 0. It might be reminded
that the present 578 MeV result is related to the one in Fig. 1
of Ref. [15], where just the real part of the wave function was
presented.

The second clear “dibaryon” candidate in NN scattering
[22] and pion production [6] appears in the 3F3(NN ) initial
state shown in the second row of Fig. 1. Again the lowest
L′ = L − 2 coupled-channel angular momentum 5P3 (solid
curve) is clearly favored and the position of its maximum is
also fairly constant at ≈1.6 fm over a wide range of ener-
gies. The long-dashed and short-dashed curves correspond to
the much smaller 5F3(N�) and 3F3(N�) states, respectively.
Remarkably, also in this case the effect of the N� angular
momentum L′ has only minuscule influence on the position of
the maximum, whereas in comparison to the above 1D2(NN )
case, the initial NN wave being different with L = 3 has a
larger effect. Again at the highest energies the position of
the maximum tends towards smaller distances, which is a
behavior to be discussed later. It is also worth noting that
in the case of 3F3(N�) the tensor and spin-spin-like parts of
the transition potential act mutually destructively, making the
3F3(N�) wave negligible. The high 5H3(N�) component is
not included.

A third possible candidate satisfying the “dibaryon” con-
ditions discussed in the previous sections has already quite a
high angular momentum 1G4(NN ). The preferred N� angular
momentum state is now 5D4(N�), about as distinct as the
previous 5D2(N�) as seen in the lowest L series of Fig. 1
(solid curve). The 5G4(N�) and 5I3(N�) waves (long-dashed
and short-dashed curves) are smaller but not negligible. Again
the position of the maximum depends on the energy and L′
only rather weakly, whereas the initial L = 4 of the initial
nucleons has pushed the maxima to about 2 fm. The 5D4(N�)
maximum levels to ≈0.37 around 1100 and 1200 MeV. So the
possible peaking of the energy distribution would be rather
wide in this region.

A common systematic feature in the different states is that
with increasing energy, above 600 MeV, there is a common
(albeit weak) tendency for the maximum to creep towards
smaller distances, because then also the incident particles get
closer to each other through their centrifugal barrier. Another
is that one may well speculate about some effective threshold,
appearing as a cusp peak which in the case of 1D2(NN ) is
passed around 600 MeV [in 5S2(N�)] and may be reached
for 3F3(NN ) at about 800 MeV [in 5P3(N�)], whereas for
1G4(NN ) it is still ahead. This expectation is confirmed by
actual calculations as noted above. It is also worth noting that
the formally calculated widths [15] are about 100 MeV at the
relevant energies of maximal wave functions in full agreement
with Yokosawa [22].

Now it may be of interest to have a look at states that
do not satisfy the optimal conditions for “dibaryons” dis-
cussed earlier. The first such study may well come from
the lowest L state, 1S0(NN ) + 5D0(N�), shown in the first
row of Fig. 2. The magnitude of the wave function is
quite considerable, though it remains practically indepen-
dent of energy. Therefore, it is not likely to produce such
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FIG. 2. Absolute values of the N� wave functions for the “bad”
dibaryon NN initial states. The curves are explained in the text.

energy-dependent behavior as resonances. In fact, the inclu-
sion of the 5D0(N�) component into the wave function in-
troduces very strong attraction—even tens of degrees into the
phase shift δ0. At the lowest energy of 400 MeV, the maximum
is just at 1 fm and with increasing energy creeps to a slightly
closer radius, to about 0.8 fm at 800 MeV. With its magnitude
it looks quite strange that this state contributes very little to
the reaction pp → dπ+. A partial reason is that the NN and
N� contributions tend to cancel rather completely in the 1S0

amplitude to this reaction. Also, in overlap integrals this N�

component mainly requires the smaller D-wave component of
the deuteron.

The 3P1(NN ) wave has three N� mixing states, 5P1(N�),
5F1(N�), and 3P1(N�), shown next in Fig. 2 by solid, long-
dashed, and short-dashed curves, respectively. In this case
there is a strong energy dependence in the P-wave N� compo-
nents, with 5P1(N�) reaching 0.6 at 800 MeV. The maximum
(in r variable) levels to this value at 900 MeV and turns then
slowly down, so slowly that the r-maximum remains within
2% from this value from 800 to 1000 MeV. One might imagine
a resonance at this energy, but the background 3P1 phase shift
is going down so fast with increasing energy that perhaps it is
not possible to see any “dibaryon” in this wave, in particular
because the energy dependence of the very wide peak may be
too slow. In the reaction pp → dπ+ this wave gives rise to
s-wave pions, and pion-nucleon s-wave rescattering interferes
destructively so that basically the corresponding amplitude
is quite flat and very small rather soon above threshold, say
above 400 MeV [6]. The short-dashed curve, 3P1(N�), devi-
ates slightly from the behavior of others, because it has also
a moderate contribution from the spin-spin-type transition
potential [6], whereas the others arise purely from the tensor
type. This coupling stresses typically shorter ranges.

The N� components in the tensor coupled 3P2 −3F 2 NN
initial states are somewhat smaller. The lowest row of Fig. 2
shows those arising from the state with the initial asymptotic
wave 3P2(NN ) boundary condition, although by the earlier
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arguments the initial 3F2(NN ) might be presumed to be dom-
inant. The solid curve shows the 3P2(N�) component and the
dashed curve shows the 5P2(N�) component. The former now
arises dominantly from the spin-spin coupling, which clearly
tends to emphasize smaller ranges than the tensor. Despite its
formally two times stronger transition potential [6], 5F2(N�)
(short-dashed curves) is clearly smaller than the P waves and
3F2(N�) (not shown) again is roughly one half of this. The
minima reflect the nodes of the initial partial wave. Lacking
these nodes at small distances, the N� admixtures in 3F2(NN )
are smoother but also smaller than those in 3P2(NN ), about
half of these in height with their maxima ≈0.2 situated at
1.5 fm, again showing the effect of the initial L to the N�

wave function.

B. Phase considerations

In some approaches to N� effects (e.g., Refs. [30,31] for
pion production) the mixing wave functions are considered
more or less implicitly in the factorization approximation
w(r) ≈ V2(r)u(r)/(E − � + i�/2). Therefore, it may also be
of interest to compare this approach by plotting the phase
of the coupled wave function relative to the NN wave func-
tion. Namely, because differential observables, in particular,
polarization phenomena, are sensitive to the phases of the
amplitudes, this phase may also matter in reactions where
N� components are active participants. Further, it should
be noted that the L′ dependence of the width, generated by
the wave-function structure [12,15], is not often included.

This kind of treatment may give the total cross section
peaking by construction relatively trivially [30]. However,
as shown, e.g., in Ref. [32], due to the different centrifu-
gal barriers even the relative sizes of the N� components
5S2 +5D2 + 5G2 coupled to 1D2(NN ) would come out wrong
as pointed out also in Sec. III A. This kind of effect and also
phase interferences lead to incorrect differential cross sections
[33,34] and spin observables [35] in pp ↔ dπ+. Differential
observables are not tested at all in, e.g., the “hidden dibaryon”
approach to pp → dπ+ of Ref. [31]. It is doubtful that this
test would be passed.

Clearly, in this approximation division of w(r) by u(r)
should rid the wave function from the overall nucleonic phase
shift eiδ , so that the resulting function should only have a
phase from the propagator, independent of r, and from the sign
of V2(r). Figure 3 for 5S2(N�) and 5D2(N�) admixtures in
the 1D2(NN ) state at 578 MeV shows this simple assumption
to be problematic. This energy is chosen very close to the
threshold cusp to maximize the presence of the resonant
cusp effect. Obviously 0◦ and 180◦ phases (modulo 360◦)
would correspond to the same or opposite signs between the
wave functions, which, in turn, is connected to the sign of
the transition potential V2(r). Below and close to the pionic
threshold, naturally, this remaining relative phase alternates
between ±180◦ and 0◦. In the presence of strong inelasticity
this behavior is more blurred, and Fig. 3 should be understood
analogously in terms of the complex wave function “changing
signs.” So in Fig. 3 the solid curve below 2 fm corresponds
to positive V2(r) and positive vs negative NN and N� wave
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FIG. 3. Relative phase between N� and NN wave functions
for the best dibaryon NN initial state, 1D2, at 578 MeV labora-
tory energy. The solid and dashed curves represent 5S2(N�) and
5D2(N�), respectively. The horizontal lines show the phase of the
N� propagator, independent of r, as explained in the text.

functions, and oppositely the dashed curve corresponds to
negative V2(r) and positive NN and N� wave functions, until,
at 2 fm, the NN wave function changes sign [or more literally
e−iδu(r) changes sign; with stronger inelasticity even this
would have a significant imaginary component in addition to
the one generated in N�]. Of course, in actual amplitudes r
dependence is integrated over.

The phase from the propagator (E − � − i�/2)−1 can
be easily compared. In the comparison one should also be
aware that, as stated previously, the width is state dependent
[15]. The straight horizontal lines show the phases arising
from the propagator of the factorization with three different
widths. First, the thick line presents the result without state
dependence, calculated as in Ref. [30], associated with pp →
dπ+ using the width

� = 2

3

f ∗2

4π

q3

μ2
, (5)

with μ and q being the pion mass and momentum, respec-
tively. Reference [30] adopted f ∗ = 2 f from the Chew-Low
theory and the πNN coupling f 2/4π = 0.08, giving � =
114 MeV at this energy. For the � mass the real part of the
position of the pole 20 MeV below the nominal � mass is used
in the present calculations. The normal solid line, actually
indistinguishable from the thick one, is the result using the
5S2(N�) width of 78 MeV from Ref. [15]. Because in the
proximity of the � threshold the widths are much larger than
|E − �|, the thick line and the normal solid line are both very
close to 90◦. Further from the � − N mass difference the lines
would be distinguishable. The dashed line has a much smaller
width of 11.5 MeV for 5D2(N�) and also the negative sign of
V2(r) is included.
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TABLE I. Expectation values of centrifugal (left columns) and
internal radial kinetic energies (right columns) for three intermediate
NN laboratory energies in N� states (MeV). These should be added
to the N� mass to get the corresponding effective threshold masses.

NN N� 400 MeV 578 MeV 800 MeV

1D2
5S2 0 44 0 45 0 88

5D2 133 192 147 209 112 186
5G2 398 457 484 578 499 616

3F3
5P3 33 67 36 68 39 113
5F3 157 198 189 237 165 222

1G4
5D4 59 89 65 94 64 131
5G4 173 207 214 257 214 264

1S0
5D1 298 438 331 509 365 580

3P1
5P1 53 111 52 100 47 133
3P1 100 178 77 100 59 147
5F1 262 340 308 408 288 382

3F2
5P2 38 72 36 66 33 110
3P2 50 76 43 70 41 113
5F2 172 212 188 234 151 212
3F2 124 177 151 215 146 214

3P2
5P2 102 184 104 181 92 206
3P2 430 561 293 388 147 249
5F2 484 532 595 686 548 686
3F2 425 509 518 657 589 791

C. Effective thresholds

Finally, the expectation values of the centrifugal barrier
h̄2/(2m′r2) are calculated for the three energies discussed and
several N� states. From the results shown in Figs. 1 and 2,
apart from the factor L′(L′ + 1), one would anticipate these
to be rather similar within each NN state. One can deduce
the average centrifugal energies in each state explicitly, as
presented in Table I, to be added to the mass difference � − M
to get an effective threshold. And really, for the N�’s coupled
to 1D2(NN ) at 578 MeV the expectation value 〈1/r2〉 is 0.67
fm−2 for 5D2(N�), while for 5G2(N�) it is 0.68 fm−2, the
same within 2%. (The reduced mass to give h̄2/(2m′) = 36.54
MeV fm2 has been used.)

However, there is a slight but larger dependence on energy
as can be seen following the horizontal rows, but this is not
particularly systematic. The most systematic dependence of
the centrifugal energy [apart from the factor L′(L′ + 1)] is on
the angular momentum L of the initial NN state calculated
for a fixed N� angular momentum L′: the larger L is, the
smaller Ecent is. This resembles the trend quoted earlier and
seen in Ref. [20]: decrease of the orbital angular momentum in
the transition NN → N� is favored. The effective threshold
is then clearly lower than that for L′ � L. One can perhaps
recognize the likeness of the behavior with a soft rotator: the
larger angular momentum stretches the rotator, increasing its
moment of inertia and decreasing the related energy quanta.
However, here the “stretching” angular momentum is mainly
associated with the external NN state, not the internal N�.
For higher angular momenta the incident nucleons remain
further away and the transition is more peripheral leading also
to a larger average distance between the nucleon and the �.

M
A

S
S

 (G
eV

)

2.10 2.15 2.20 2.25 2.30
s (GeV)

2.20

2.25

2.30

2.35

2.40

FIG. 4. The N� mass combined with the expectation value of
the kinetic energy components (centrifugal and radial) for 5S2 (solid
curve), 5P3 (long dashed curve), 5D4 (dash-dot curve), 5P2 from
3F2(NN ) (dotted curve), and 5P1 (short dashed curve). The thick line
shows the total energy

√
s also on the mass scale. The points indicate

three dibaryon masses suggested in Ref. [22].

In contrast, within the N� configuration the short-range r−2

repulsion is also counteracted by a higher barrier at larger dis-
tances deepening the classically forbidden region and damp-
ing the tunneling into asymptotic ranges. The r−2 dependence
has longer range than the strong interaction or the extent of the
confined wave function. The situation may be compared with,
e.g., hydrogen atom states, where the electron probability
density is not strongly pushed to asymptotic regions by the
centrifugal barrier—only rather the short-range behavior is
affected. So, e.g., in the 5D4(N�) state [coupled to 1G4(NN )]
the above expectation value 〈1/r2〉 is 0.27 fm−2, while in the
5G4(N�) state it is nearly the same 0.24 fm−2 but nevertheless
≈10% smaller. However, in comparison with the 1D2(NN )
initial state the difference is towards even qualitatively smaller
centrifugal energies, i.e., towards larger r2, with a factor of ≈2
between the two.

The expectation value of the kinetic energy associated with
the radial degree of freedom also increases with angular mo-
mentum L′ but most strongly with energy above the nominal
N� threshold. However, below, say E (lab) ≈ 600 MeV, this
is relatively constant and, added together with the centrifugal
energy to the N� mass difference, might be considered to
imply some kind of an effective threshold. Its nearly linear
dependence above the nominal threshold apparently means
that much of the excess NN energy can be seen to emerge in
this way within the N� system. The increasing kinetic energy
means more curvature of the wave function and the nodes (and
maxima) coming closer to 0 as was seen in Figs. 1 and 2 after
600 MeV.

Figure 4 represents the effective thresholds thus calculated
for the lowest-energy N� admixture components, shown in
Table I, as functions of the total center-of-mass energy

√
s.

The lowest, solid line would be the lightest one, 5S2(N�),
associated with the 1D2(NN ) initial state. Compared with the
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lowest-energy dibaryon suggested by Yokosawa [22] (open
square) this threshold would need some 20–40 MeV attrac-
tion. However, this requirement would conform very well with
the early estimates for the N� binding energy of Arenhövel
[36] (actually calculated for isospin 2 to avoid coupling to
the always open NN decay channels with isospin 1). A
downward shift of the N� peak by about 20 MeV is also
found in photodisintegration of deuterons in Ref. [37], if pion
exchange interaction is added between the nucleon and the
�. Therefore, N� attraction might allow the solid line to be
accommodated with the mass range 2.14–2.17 MeV. The long
dashes represent the threshold of the 5P3(N�) component
arising from 3F3(NN ). This is quite well established and the
shoulder in its NN phase shift is very well described by the
isobar coupling [15]. Also its important role in the successful
description of the polarization phenomena as well as the
differential cross section in pp → dπ+ was first stressed in
Ref. [6]. Now, its energy conforms rather well with the sug-
gestion of Yokosawa as the possible 3F3 dibaryon resonance
at 2.20–2.25 MeV [22] (solid circle). Both of these points
also agree well with Hoshizaki’s 1D2(2.17) and 3F3(2.22)
diproton resonances [38,39]. The solid square indicates also
Yokosawa’s [22] suggestion for a further possible triplet P
dibaryon (with a question mark) at 2.18–2.20 MeV. For this
kind of low threshold the present calculation would indicate
rather as the starting NN state 3F2 (dotted curve), but this is
still significantly higher than Ref. [22] (by ≈60 MeV). The
3P1 initial state (short dashes), in turn, would yield still about
50 MeV more overestimate and 3P2 still much more as seen
from Table I.

Also indicated by the thick line in Fig. 4 is the center-
of-mass (c.m.) energy itself on the mass axis. Namely for a
resonance this line should cross the threshold or resonance
mass curve. This does happen for the 5S2(N�) case, actually
at the same energy as the calculated 1D2(NN ) Argand diagram
line crosses the y axis in Fig. 5 of Ref. [15]. Therefore, in
this respect the 5S2(N�) threshold effect resembles a true
resonance. However, in other cases the excess energy above
threshold in the N� states causes the crossing point to escape.
Consequently, the Argand diagram of the 3F3(NN ) “dibaryon”
stays on the left side of the y axis in that figure, although the
corresponding shoulder of the phase shift in Fig. 6 of Ref. [15]
mimics well a resonance. Both diagrams have exactly the
same behavior as found in energy-dependent and energy-
independent phase shift analyses by Arndt et al. [40].

There are two higher-energy dibaryon suggestions by
Yokosawa [22], both at 2.43–2.50 GeV (1G4 and a triplet
state). The dash-dot curve of Fig. 4 shows the described
calculation for the former as too low by over 100 MeV as well
as a candidate 3P1(NN ) also for the latter one (short-dashed
curve). However, due to the energy dependence of the cal-
culated expectation values the low-end threshold results may
not be totally relevant in the case of higher energies where the
effective threshold is also larger and rapidly increasing.

Though it seems from Fig. 4 that in the 5D4(N�) state the
threshold cannot be reached and crossed, it may still be of
some interest to study the behavior of the wave functions more
directly for qualitative insights. In the context of Figs. 1 and 2
it was seen that the maxima of the wave functions for L′ > 0
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FIG. 5. Circles: 5D4(N�) wave function at 1.5 fm for different
c.m. energies (in GeV) imitating an Argand plot (left and bottom
scale). The overlap integral discussed in the text (in fm1/2) shown by
squares in the top and right scale. The imaginary axis (real part zero
point) is given for the former. The unessential overall minus sign is
omitted.

could still continue growing beyond 800 MeV laboratory
energy (beyond 2.25 GeV mass). So even if this crossing
does not take place, some wide resonance-like peaking might
appear. Figure 5 shows this N� wave function at r = 1.5 fm
as an Argand diagram arrangement (circles). At this distance
the absolute value of the wave function at 1100 MeV energy
has its maximum. This is also the energy at which the peak
(outside Fig. 1) levels to a very wide global maximum of
≈0.37. The idea is that the weighted wave function at some
optimized distance would be qualitatively representative for
the behavior of the corresponding amplitude. The archetypal
circle is featured, which crosses the imaginary axis (drawn for
this quantity) approximately for 2.39 GeV. So, even though
the c.m. energy does not formally reach the escaping effective
threshold (2.45 GeV at this incident energy) from Fig. 4, the
corresponding amplitude can still have some resonancelike
behavior reasonably close to Yokosawa’s [22] experimental
suggestion of 2.43 MeV. Further, shown by the squares is the
overlap integral

I
[5

D4(N�)
] =

∫ ∞

0
wD(r) j0(qr/2)wN�(r)dr, (6)

appearing in f -wave pion production in the reaction pp →
dπ+ [here wD(r) is the D-wave component of the deuteron
and q is the center-of-mass momentum of the pion]. A sim-
ilar resonance circle emerges. However, the spherical Bessel
function stresses the shorter ranges and so this overlap crosses
the imaginary axis at a lower energy than the representative
fixed-point value of the wave function.
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IV. CONCLUSION

In this work the effect of the centrifugal barrier in the
N� configurations coupled to the initial NN states has been
considered from different angles. First the effect on the mag-
nitude of the wave function as a function of r was studied
for different angular momentum situations. It was seen that,
contrary to the first expectation, the angular momentum L′ of
the N� system itself has very little effect on the shape of the
wave function, only on the overall magnitude with higher re-
pulsions decreasing the probability of high L′ N� admixtures.
This agrees with the finding of a more phenomenological
calculation [20]. However, the initial NN angular momentum
L has a more significant influence in pushing the N� system
apart.

Next the association of the state-dependent width as a
uniform imaginary potential with the phase of the N� ad-
mixture was studied comparing the coupled-channel results
with simpler models of separable wave functions. Signif-
icant differences are seen especially considering that nor-
mally such models do not include angular momentum depen-
dence of the width implied in self-consistent coupled-channel
calculations [15].

It is also suggested that, due to the fact that in the complex
potential now the N� wave function is confined producing
finite expectation values for the centrifugal barrier and kinetic
energy, it is possible to define effective thresholds higher
than the nominal mass barrier M� − MN for different N�

components. This explains some parts of the wave function
behavior seen above. Due to kinetic energy being assimilated
in the configurations, these thresholds have strong energy
dependence above the nominal mass difference. Despite the
thresholds escaping higher and higher with increasing energy,
it was possible to see some resemblance to resonant behavior

in the N� wave functions and the transition amplitudes as
exemplified in Fig. 5 for the 5D4(N�) component originating
from 1G4(NN ). It may be noted that these results can be
regarded as kinematic consequences. Any strong interaction
model between the nucleon and the � is not attempted here.

Apart from slight deviations these findings are qualitatively
in line with those of Ref. [20]. The difference of principle
is that in Ref. [20] the phase equivalence was forced to the
interaction with and without the N� coupling, while here
no such constraint is explicitly imposed, though the phase
shifts of, e.g., Arndt et al. [40] are well reproduced. Of
course, that constraint implicitly incorporates also the finite
kinetic energy of the N� system. To counteract the strongly
attractive N� box and its iterations by repulsive [V2(r)]2/�E ,
the denominator �E needs to become even smaller than the
� − N mass difference [in the absence of the centrifugal
barrier in the 5S2(N�) state]. By definition, this is not possible
in the present work. Similar systematics holds also for the
triplet states. In general, this energy denominator remains
thus somewhat smaller than the presently calculated effective
thresholds. Numerically, apparently the implicit combination
of the centrifugal energy and the L′-dependent radial ki-
netic energy gave larger quanta of 40 MeV attributed to the
centrifugal part in Ref. [20] as the overall rotational series
const + 40L′(L′ + 1) MeV. A quick look at Table I confirms
this simplified prescription as well valid for the 1D2 and
3P1 NN states, but only qualitatively elsewhere with smaller
energy quanta of ≈30 MeV.

Numerically the effective thresholds for the lowest L′ N�

states shown in Table I and Fig. 4 agree relatively well with
the suggested isospin 1 1D2 and 3F3 dibaryons. Also the state
1G4 can get some qualitative illumination in terms of N�

wave functions. Moreover the widths are agreeable at relevant
masses as shown earlier, e.g., in Ref. [15].
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