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New Rosenbluth formula including the Coulomb correction in the second Born approximation
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The Coulomb correction factor is derived for M1 scattering on a pointlike nucleus in the second Born
approximation. The Coulomb correction for M1 scattering off the proton is larger than that for C0 scattering
by 2%. The difference affects the determination of the proton radius where an identical Coulomb correction has
been applied for both components so far. A new Rosenbluth formula, that includes the Coulomb corrections,
is applied to electron scattering on the proton with low-energy electron beams. The Coulomb corrections are
essential to discuss the electric and magnetic radii of the proton.
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The proton charge radius rE has been a topic of great
interest since the Lamb shift measurements in muonic hydro-
gen [1–3] resulted in rE = 0.841 84(67) fm, which is smaller
by 5% than standard analyses of electron scattering (rE =
0.88 fm) [4–8]. In electron scattering, the information of the
proton structure is included in the electric form factor GE and
magnetic form factor GM .

In the nonrelativistic limit, the electric form factor is ob-
tained by the Fourier transformation of the charge distribution
ρ(r) and can be expanded in Taylor series as
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The charge radius rE is defined by a root-mean-square radius
〈r2

E 〉1/2. Measurements at very low momentum transfers are

necessary to obtain 〈r2
E 〉1/2 without the influence of higher

moments [9]. However, the sensitivity of the form factor to
the proton size is very low in the region of low momentum
transfer. For instance, it is less than 0.1% at Q2 = 0.3 fm−2

for a difference of 0.01 fm of the proton size. The precise
separation of Coulomb and magnetic scatterings is necessary
to obtain the charge or magnetic radii from the form factors.
Typically, they are deduced from measured cross sections
using the Rosenbluth formula,
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where ( dσ
d�

)Mott is the Mott cross section, GE and GM are the
electric and magnetic Sachs form factors, respectively, and
τ = Q2

4M2 (M is the proton mass). This is the formula derived
in the plane-wave Born approximation (PWBA). However,

higher-order correction is needed to discuss precise values of
the form factors.

Furthermore, the Coulomb correction is inevitable to de-
rive precise form factors. The effects of the Coulomb cor-
rection have been discussed in different ways [10–13]. So
far, the identical Coulomb correction has been applied for
both Coulomb and magnetic scatterings. Similarly, the so-
called Feshbach correction [14,15] was used in Bernauer
et al. [13]. This is a correction to the PWBA cross section
for the Coulomb scattering off a point charge. The correction
factor is obtained by expanding the Mott solution [16] in
a power series of (zα) to the next-leading order, where α

is the fine-structure constant. However, the assumption that
the Coulomb correction is identical for both Coulomb and
magnetic scatterings must be reconsidered. This is because
the spin states of incoming and outgoing electron waves are
the same in Coulomb scattering but different in magnetic
scattering [17].

Bergstrom [18] has derived a correction factor for M1
scattering in the second Born approximation.1 His result is
given in an integral expression, that includes form factors in
the integration. If one assumes a point nucleus with charge
and magnetism as a target, one can push the calculation
forward and obtain the correction factor as a simple form. The
magnetic M1 cross section in the first Born approximation is
given in Bergstrom [18] as
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)
|FM1(q)|2, (3)

1Bergstrom treated the Coulomb correction for inelastic magnetic
scattering, and his procedure can be used for elastic scattering. Cutler
[25] formulated a similar procedure for inelastic Coulomb scattering.
It should be noted that the Coulomb correction formula for C0
inelastic scattering is different from that for elastic scattering due
to the difference of the number of cross terms.
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where FM1 is the M1 form factor and q and Q are three- and
four-momentum transfers, respectively. The second Born M1
cross section can be expressed using the Coulomb correction
factor βM1 as(
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)second Born
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. (4)

The correction factor derived by Bergstrom [18] is given as

βM1 = 8δ2
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where the momentum-transfer vector is rewritten in terms of
a unitless vector as

�q = E�δ, δ = 2 sin
θ

2
. (6)

The momentum transfer �q ′, which appears in the integration,
is also rewritten as

�q ′ = E �u, (7)

and then FM1(Eu) is the M1 form factor at a momentum
transfer of Eu, and FC (E |�u − �δ|) is a charge form factor
at a momentum transfer of E |�u − �δ|. In addition, since the
notations of Eqs. (2) and (3) are different, the form factor
FM1 must be related to the Sachs form factor GM . Thus, by
comparing these equations, taking account of Q2

q2 = 1
1+τ

, the
M1 form factor in Eq. (5) is rewritten as
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2
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where the nuclear recoil is ignored, that is, Ei = E f = E , and
then Q = q, and

FM1(Eu) = 1√
2

Eu

M
GM (Q). (9)

As the proton is treated as a point particle with a magnetic
moment μp, GM (Q) = μp, and FC (E |�u − �δ|) = 1. Although
the integration of δ

4 and δ
16 u ln | u+2

u−2 | in Eq. (5) individually
diverges, they eventually cancel out each other. The remaining
part can be calculated using contour integration. Finally, the
correction factor for M1 scattering is reduced to a simple
form, given as

βM1 = π sin θ
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The correction factor βC0 has been obtained by McKinley, Jr.
and Feshbach [14] and Feshbach [15] as

βC0 = π sin θ
2

(
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2

)
cos2 θ

2

. (11)

Therefore, using these corrections for Coulomb and magnetic
scatterings, a new Rosenbluth formula, which includes the
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FIG. 1. The second Coulomb corrections of C0 and M1, δC0 =
1 + zαβC0, δM1 = 1 + zαβM1 (z = 1).

Coulomb correction in the second Born approximation, is
given as(
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The Coulomb corrections of C0 and M1, δC0 = 1 +
zαβC0, δM1 = 1 + zαβM1 are shown for z = 1 in Fig. 1; the
correction for M1 is 2% larger than that for C0. The influence
of the corrections on the problem to determine the proton
radius is discussed below.

In the PWBA, the reduced cross section defined as

σred = ε(1 + τ )

(
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)
M

(13)

is linear against the polarization,

ε =
{

1 + 2(1 + τ )tan2 θ

2

}−1

, (14)

σred = εG2
E (Q) + τG2

M (Q). (15)

However, in Eq. (12), the different Coulomb corrections
for the Coulomb and magnetic terms induce the nonlinearity
because the correction factors are functions of the scattering
angle. The larger correction factor for M1 alters the magnetic
form factor and affects the charge form factor through the
nonlinearity. The nonlinearity is removed by replacement,
such as

σred → σ second
red = σred

(1 + zαβM1)
, (16)

and

ε → εsecond = (1 + zαβC0)

(1 + zαβM1)
ε. (17)

Most recently, Xiong et al. [19] obtained a small value
of the proton size rE = 0.83 fm from an experiment at very
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FIG. 2. Form factors calculated by the phase-shift analysis (PSA)
at θ = 30◦–150◦ and that obtained by the Fourier transformation of
the charge density (no distortion) for 〈r2

E 〉1/2 = 0.88 fm. The form
factors (PSA) calculated with different electron energies do not scale
and are different from the result with no distortion.

forward angles (0.7◦–7.0◦) performed at the Jefferson Labo-
ratory (JLab). In this experimental condition, the contribution
of the magnetic scattering can be ignored, and the influence of
the Coulomb distortion is negligible. Experiments in different
kinematic conditions may be necessary to check the result.
However, the effects, which can be ignored in the experiment
at JLab, are essential in experiments using lower-energy elec-
tron beams.

Bernauer et al. [7,13] obtained rE = 0.88 and rM =
0.78 fm from 1400 cross sections measured at Mainz using
electron beams of 180–855 MeV. They applied the Fesh-
bach correction for both Coulomb and magnetic parts. In
the GM/(μpGstd. dipole ), they observed a wiggle of 1% around
0.2 (GeV/c), which gives a small rM . On the other hand,
Arrington [11] pointed out that the two-photon exchange
correction will modify GM and bring rM larger. The possibility
that the wiggle may be attributed to the influence of the
Coulomb distortion on magnetic scattering should be consid-
ered. Using Eq. (12) gives a smaller magnetic form factor and,
then, a larger magnetic radius.

The Tohoku group [20,21] plans a precise measurement
in the region of low-momentum transfer using low-energy
electron beams of Ee = 20–60 MeV. First, the effect of βC0 is
investigated. The predicted Coulomb distortion on Coulomb
scattering is large as shown in Fig. 2. In the figure, the charge
form factor, which has been deduced from the cross section
calculated using a phase-shift program DREPHA [22], are
compared with the result with no distortion. The description
of the phase-shift calculation is shown in Yennie et al. [23].
These have been calculated using the same charge distribu-
tion: dipole form factor of 〈r2

E 〉1/2 = 0.88 fm. A wiggle is
found in the phase-shift calculations similar to that observed
at Mainz in the magnetic form factor. This shows that the
Coulomb distortion is too large to define the proton size
using the expression of Eq. (1) because it changes the form
factor gradient around Q = 0 significantly. This situation is

FIG. 3. Form factors corrected using the Feshbach correction.
The results for different electron energies align on a line. They are
close to the line without the Coulomb distortion.

improved by applying the Feshbach correction. The form
factors corrected by the Feshbach correction are shown in
Fig. 3, using
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Results calculated at different electron energies align on a
line, and the difference to the PWBA (no distortion) is small.
The root-mean-square radius obtained by fitting with a Taylor
series is 0.871 fm. It shows the Coulomb distortion is mostly
removed by the Feshbach correction, but there remains a
small difference. The difference is discussed later. It has been
confirmed that the form factors calculated using dipole and
Gaussian charge distributions are almost the same at these
low-momentum transfers, and the cross section is determined
by only 〈r2

E 〉1/2.

FIG. 4. Ratio of form factors in cases where the C0 and M1 cor-
rections are applied as in Eq. (12), and only the Feshbach correction
is applied to the whole cross section. The kinematic condition is the
same as shown in Fig. 2.
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Next, the effect of βM1 is investigated. Figure 4 demon-
strates the ratio of form factors calculated using two different
formulas. One is the formula shown in Eq. (12) where in-
dividual corrections are applied for C0 and M1 scatterings.
In the other, only the Feshbach correction is applied to the
whole cross section as performed by Bernauer et al. [13]. In
the calculation, pseudodata created using Eq. (12) for Ee =
20–60 MeV and θ = 30–150◦ are separated into the Coulomb
and magnetic parts by assuming that δM1 is equal to δC0.
The use of the wrong Coulomb correction for M1 scattering
affects GM by more than 1%. The Coulomb correction for the
magnetic part does not affect the charge form factor at q2 >

0.011 fm−2, namely, the influence is 0.01% or less. However,
the cross section calculated using Eq. (12) is slightly nonlinear
against the polarization ε. The influence of the nonlinearity
appears at low-momentum transfers. Therefore, the use of
correct Coulomb corrections is necessary to obtain the charge
radius from the gradient of GE in these low-momentum trans-
fers. Furthermore, the determination of the magnetic radius
and the verification of the Coulomb corrections are expected
in the experiments using the low-energy electron beams in
addition to the cross-check of the proton charge radius.

The approximations of the second-order Coulomb cor-
rections analyzed in the present Rapid Communication are
summarized below.

(1) The corrections are in an order of (zα), and they are
good for the proton but not sufficient for heavy nuclei.

(2) The Coulomb distortion of electron waves is calculated
using the one-photon exchange potential induced by a
pointlike nucleus. A numerical calculation is necessary
if the extended nucleus is considered.

(3) The recoil of the nucleus and the electron mass are
ignored. In the phase-shift calculation, the effects are
partly recovered by the calculation in the center-of-
mass system [24].

(4) Influence of the Coulomb corrections is 3% at most.
It is small, but the nonlinearity induced from the
corrections makes large errors when the Rosenbluth
fit is made using Eq. (2) in a limited range of polar-
ization ε.

The precise determination of the charge and magnetic radii
of the proton is a challenging project. It needs high accuracy
that has never tried in this field. In the present investigation,
it is unclear which of the problems of the phase-shift cal-
culation mentioned above or the accuracy of the Feshbach
correction accounts for a small difference shown in Fig. 3. In
order to accomplish our goal, everything including formulas
used for analysis must be considered if it is equal to the
usage.
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