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We investigate the contribution of the 2+
2 resonance in 6He to observables via analysis of the 6He(p, p′)

reaction by using the continuum-discretized coupled channels method combined with the complex-scaling
method. In this Rapid Communication, we obtain the 2+

2 state with the resonant energy 2.25 MeV and the
decay width 3.75 MeV and analyze contributions of resonances and nonresonant continuum states to the cross
section separately. It is found that the 2+

2 state plays an important role in the energy spectrum. Furthermore,
contributions of nonresonant continuum states are also important to clarify the properties of the 2+

2 state.

DOI: 10.1103/PhysRevC.102.021602

Studies on resonances have attracted much attention in
many-body quantum systems for nucleons, quarks, atoms, and
so on. In nuclear physics, various resonances have been dis-
covered and investigated their properties, e.g., single-particle
resonances, giant resonances, and cluster resonances. Re-
cently, by the development of radioactive ion-beam exper-
iments, resonant structures of nuclei near and beyond the
neutron dripline have been intensively pursued. Nuclei on the
neutron dripline, such as 6He, 11Li, 14Be, and 22C are known
as a two-neutron halo nuclei and have a Borromean structure
in which there is no bound state in binary subsystems. To
explore resonances of such unstable nuclei, the (p, p′) reaction
with the inverse kinematics has been often used [1–3], and the
contribution of resonances shows up as a peak structure in the
excitation energy spectrum observed.

For 6He, low-lying resonances have been discussed by both
theoretical and experimental approaches [4–13]. The 2+

1 state
with a small decay width is well understood as the first excited
state, and its contribution to cross sections shows up as a sharp
peak. The 2+

2 state, which is considered as the next lower state
to 2+

1 , has also been investigated via structural calculations
[4–7,9–13] and experimental studies [14,15]. Furthermore,
the 2+

2 state is also considered to play important roles in
predicting the properties of some resonant states, e.g., the
3/2−

3 state in 7He [10] exists beyond the dripline, and the
3/2+

2 , 5/2+
2 states in the hypernucleus 7

�He [16]. Thus, it
is necessary to clear the property of the 2+

2 state in 6He.
However, unfortunately, the contribution of the 2+

2 state in the
energy spectrum does not show a shape structure because its
resonant energy is near the right end of the contribution of
the 2+

1 state, and its width is rather large. Thus, the resonant
energy (Er ) and the decay width (�) of the 2+

2 state are less
clear. To clarify the properties of the 2+

2 state, it is required an
accurate analysis of treating not only resonant contributions,
but also nonresonant ones in the energy spectrum.
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The continuum-discretized coupled-channels (CDCC)
method is a reliable method of describing coupling effects to
continuum states [17]. At first, CDCC was a method of de-
scribing three-body breakup reactions with a two-body projec-
tile, but now it is applicable to analyses of four-body breakup
reactions in which a projectile breaks up into three con-
stituents, such as two-neutron halo nuclei [18,19]. In CDCC,
an energy spectrum of a breakup cross section is obtained as
a continuous function of the excitation energy by using the
smoothing procedure based on the complex-scaling method
(CSM) [20–23], which is useful for searching resonances in
many-body systems. As an advantage of the smoothing proce-
dure, contributions of resonances and nonresonant continuum
states in energy spectra are investigated separately. Thus, the
CDCC analysis combined with the CSM is indispensable to
investigate resonant contributions in energy spectra. Recently,
the energy spectrum of the 11Li(p, p′) reaction [1] has been
analyzed by the approach, and contributions of the resonance
and nonresonant continuum states in the energy spectrum have
been confirmed [24].

In this Rapid Communication, the 2+
2 resonant state in

6He is investigated via the CDCC analysis combined with the
CSM of 6He(p, p′) reactions. In this analysis, the reactions are
described as a 4He +n + n + p four-body system, and each
resonance in 6He is obtained by the CSM. The calculated
elastic and inelastic cross sections are compared with the
experimental data, and the effect of the 2+

2 state on the energy
spectrum is discussed by excepting contributions of the 2+

1
state and nonresonant continuum states.

In the 4He +n + n + p four-body system, the Schrödinger
equation based on the multiple scattering is written as[

KR + AP − 1

AP

∑
i∈6He

gi + VC + h − E

]
�(ξ, R) = 0, (1)

where R and ξ represent the coordinates between p and the
center of mass (c.m.) of 6He and the intrinsic coordinate
of 6He, respectively. KR is a kinetic-energy operator asso-
ciated with R, and h is the internal Hamiltonian of 6He.
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As the interaction between nucleons in 6He and p, gi, the
Jeukenne-Lejeune-Mahaux (JLM) effective NN interaction
[25] is adopted. Here, it should be noted that we take into ac-
count the antisymmetrization between nucleons in 6He and p
based on the Kerman-McManus-Thaler (KMT) theory [26,27]
as a factor (AP − 1)/AP with the mass number AP of 6He . VC

is the Coulomb interaction between the c.m. of 6He and p, that
is, Coulomb breakup is neglected in the present analysis.

In CDCC, the scattering wave function with the total spin
J and its projection on z-axis M is expanded in terms of a set
of eigenstates {�I

n} of 6He as

�JM (ξ, R) =
∑
I,n,L

χγ (Kn, R)

R

[
�I

n(ξ) ⊗ iLYL(R̂)
]

JM
. (2)

Here, I is the internal spin of 6He, and a set of �I
n is generated

with the Gaussian expansion method (GEM) [28] in which h
is diagonalized by using Gaussian basis functions. As a model
space in the present analysis, we take Iπ = 0+, 1−, and 2+
states of 6He. The orbital angular momentum regarding R is
L, γ represents {n, I, L}, and Kn is the relative wave number
defined by

Kn =
√

2μ
(
E − εI

n

)
h̄

, (3)

with the reduced mass μ of the 6He -p system and the eigenen-
ergy εI

n of �I
n. The relative wave-function χγ between the c.m.

of 6He and p satisfies

[
− h̄2

2μ

d2

dR2
+ h̄2L(L + 1)

2μR2
+ AP − 1

AP
Uγ γ (R) + 2e2

R
− (

E − εI
n

)]
χγ (Kn, R) = −

∑
γ ′ �=γ

AP − 1

AP
Uγ γ ′ (R)χγ ′ (Kn′ , R). (4)

The coupling potentials Uγ γ ′ between the γ and the γ ′ chan-
nels are calculated by using the folding model with the JLM
interaction in which a normalization factor Nw for the imag-
inary part is introduced by optimizing the experimental data.
Details for the calculation of Uγ γ ′ are shown in Refs. [24,29].

Solving Eq. (4) under the appropriate boundary condition,
we obtain a scattering T matrix represented by T ′

nIL. Here, it
should be noted that T ′

nIL is not the actual scattering T matrix
considered in the present Rapid Communication. In the KMT
theory, the actual scattering T matrix TnIL is defined as

TnIL = AP

AP − 1
T ′

nIL. (5)

Details for the KMT theory are shown in Refs. [26,27].
According to the smoothing procedure based on the CSM

[23], the double differential cross section (DDX), which de-
pends on the internal energy ε of 6He, and the scattering angle,
is described as

d2σ

dε d�
= 1

π
Im

∑
iIL

T θ
iILT̃ θ

iIL

ε − εI
θ,i

(6)

with

T̃ θ
iIL =

∑
n

〈
�̃I

θ,i

∣∣U (θ )
∣∣�I

n

〉
TnIL, (7)

T θ
iIL =

∑
n

TnIL
〈
�I

n

∣∣U −1(θ )
∣∣�̃I

θ,i

〉
. (8)

Here, U (θ ) is the scaling transformation operator in the CSM,
and �I

θ,i and εI
θ,i represent the ith eigenstate and energy

of 6He, respectively. These states calculated by using the
framework combining the GEM and CSM with the scaling
angle θ . From Eq. (6), one sees that the DDX is given by an
incoherent sum of the contributions of �θ,i. Therefore, we can
distinguish between resonant and nonresonant contributions
in the DDX.

For the internal Hamiltonian of 6He, we take the Minnesota
interaction [30] and the KKNN potential [31] for the n-n and

the n- 4He interactions, respectively. The particle exchange
between valence neutrons and neutrons in 4He is treated
with the orthogonality condition model [32]. Furthermore,
we introduce the phenomenological three-body potential to
reproduce the energies of the ground and 2+

1 states [33]. As
the result, we obtained the ground-state energy −0.972 MeV
and (Er, �) = (0.848 MeV, 0.136 MeV) for the 2+

1 state.
First, we calculate eigenenergies of 6He by using the

CSM with complex-range Gaussian functions [34], which are
useful for obtaining resonances with a large decay width. In
Fig. 1, the squares represent the eigenenergies of nonresonant
continuum states for Iπ = 2+ with the scaling angle θ = 32◦.
The circle and triangle describe the eigenenergies of the 2+

1
and 2+

2 states, respectively. It is found that the 2+
2 state has

(Er, �) = (2.25 MeV, 3.75 MeV), and its value is consistent
with one calculated by Myo et al [10], which provides a better
description of the experimental data as mentioned in Ref. [15].

ε θ

εθ

FIG. 1. The eigenvalue distributions for Iπ = 2+ states in CSM
with scaling angle θ = 32◦.
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TABLE I. Comparing the results of the resonant energy and the
decay width (in units of MeV) with those calculated in Ref. [10]. For
our calculation, we mention Er , the excitation energy Ex , and �.

Present results Ref. [10]

Iπ Er Ex � Ex �

2+
1 0.848 1.83 0.136 1.8 0.1

2+
2 2.25 3.23 3.75 3.5 3.9

0+
2 3.70 4.68 7.13 4.9 8.8

1−
1 4.42 5.39 4.82

1−
2 4.51 5.48 8.23

In Table I, all resonances obtained in the present calculation
are shown. For the calculation of the DDX, the scaling angle
is taken as 32◦ for the 2+

2 state and 15◦ for the other states. In
this analysis, the convergence of the calculated DDX has been
confirmed.

Next, we calculate angular distributions of the elastic and
inelastic cross sections for 6He scattering on p. Figure 2 shows
the angular distributions of the elastic cross section at E/AP =
25, 41, and 71 MeV [2,35–37] in panel (a) and of the inelastic
cross section at E/AP = 25 and 41 MeV [2,3] in panel (b).θc.m.

means the scattering angle in the center-of-mass frame. For
the inelastic cross section, the DDX is integrated over ε up
to 1.5 MeV, which is the same as the experimental setup at
E/AP = 41 MeV [2]. The solid and dashed lines represent the
results with the CDCC and those with the so-called one-step
calculation, respectively. The one-step calculation neglects
multicoupling effects in the CDCC. In the analysis, Nw is
taken as 0.8, and it is found that the CDCC well reproduces
the experimental data for both elastic and inelastic cross
sections simultaneously. The difference between the results
of the CDCC and the one-step calculation represents coupling
effects. One sees that the effects are particularly important for
elastic cross sections at low incident energy and inelastic cross
sections.

For the inelastic cross section, we investigate the contri-
bution of the 2+

1 state. Figure 3 shows the inelastic cross
section at E/AP = 41 MeV for each spin-parity state of 6He.
The thick solid line is the same as the result of the CDCC in
Fig. 2(b). The dotted, dot-dashed, dashed, and thin solid lines
denote the contributions for Iπ = 0+, 1−, 2+, and of the 2+

1
state, respectively. It is found that the contribution for Iπ = 2+
is dominant and mainly comes from the 2+

1 state. Furthermore,
contributions for Iπ = 0+ and 1− are not negligible and come
from nonresonant continuum states because resonances for
Iπ = 0+ and 1− do not exist in ε � 1.5 MeV. This result
shows that the experimental data shown in Fig. 2(b) include
not only the contribution of the 2+

1 state, but also contributions
of nonresonant continuum states. In the present calculation,
the nonresonant contributions account for about 30% of the
total.

Finally, we discuss the contribution of the 2+
2 state to

energy spectra of the breakup cross section in the case of
E/AP = 41 MeV. As mentioned above, for the angular distri-
bution of the DDX integrated over ε up to 1.5 MeV, the contri-

E/A  = ×

×

dσ
/d

Ω

θ

FIG. 2. Angular distributions of the (a) differential elastic cross
section at E/AP = 25–71 MeV ) and the (b) differential inelastic
cross section calculated by integrating the DDX over ε from ε = 0
to 1.5 MeV at E/AP = 25 and 41 MeV. The experimental data are
taken from Refs. [2,3,35–37]. Each cross section is multiplied by the
factor shown in the figure.

bution of the 2+
2 state is negligible. Therefore, we investigate

the angular distribution of the DDX integrated over ε from
1.5 to 3 MeV as shown in Fig. 4. The solid line represents
the contribution of the 2+

2 state. The dotted, dot-dashed, and
dashed lines describe the contributions for Iπ = 0+, 1−, and
Iπ = 2+ without the 2+

2 state. One sees that the contribution
of the 2+

2 state is more important than the other contributions
in 20◦ � θc.m. � 30◦. Then, we focus on the energy spectrum
around the scattering angle region.

Figure 5(a) shows the energy spectrum for Iπ = 2+ calcu-
lated by integrating the DDX over θc.m. from 20◦ to 30◦. The
solid line represents the total contribution for Iπ = 2+. The
dotted, dot-dashed, and dashed lines denote the contributions
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E/A  =

dσ
/d

Ω

θ

FIG. 3. Angular distributions of the differential cross section
calculated by the same way as Fig 2(b) in the case of 6He + p
inelastic scattering at E/AP = 41 MeV.

of the 2+
1 , 2+

2 , and nonresonant continuum states, respec-
tively. The strong peak around ε = 1 MeV comes from the 2+

1
state. Meanwhile, the contribution of the 2+

2 state shows up as
a shoulder peak and is dominant around ε = 2 MeV. Thus, in
terms of the cross section for only Iπ = 2+, the contribution
of the 2+

2 state is rather visible in the energy spectrum.
However, it is difficult to extract a component of a specific

spin-parity state from the experimental data. Therefore, we
have to confirm how to see the contribution of the 2+

2 state
in the cross section including components from all spin-parity
states of 6He. In Fig. 5(b), the solid line represents the energy
spectrum with the all components in the present model space,
and the dotted line corresponds to the result without the 2+

2

dσ
/d

Ω

θ

FIG. 4. Angular distributions of the differential cross section
calculated by integrating the DDX up from ε = 1.5 to 3 MeV.

dσ
/d

ε

ε

dσ
/d

ε

ε

FIG. 5. Energy spectra of the breakup cross section calculated by
integrating the DDX up from θc.m. = 20◦ to 30◦ for Iπ = 2+ (a) and
the sum of all spin-parity states (b).

state. If there was not the 2+
2 state, the shape of the cross

section would be shown by the dotted line. Although a peak
structure from the 2+

2 state does not exist, an increase in
the cross section around ε = 2 MeV is found by comparing
the solid line with the dotted line. The similar increase in
the cross section can be confirmed in the measured energy
spectrum from 8He(p, t )6He reaction in Ref. [15]. Therefore,
we conclude that the increase in the cross section around
ε = 2 MeV indicates the existence of the 2+

2 state. Here, it
should be noted that the low-lying energy spectrum includes
contributions of nonresonant continuum states shown by the
dotted line. It indicates that one fails to obtain properly
the resonant energy and decay width of the 2+

2 state if the
contributions of nonresonant continuum states are neglected.

To clarify the above indication, we fit the breakup cross
section up to ε = 3 and 4 MeV by using the Breit-Wigner
functions,

f (ε) =
2∑

i=1

Ai �i/2(
ε − Ei

r

)2 + (�i/2)2
, (9)

where Ai, Ei
r , and �i are free parameters, and i = 1

and 2 represent the 2+
1 and 2+

2 states, respectively. This
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TABLE II. Comparing the results of the calculated resonant
energy and the decay width (in units of MeV) in the CSM with those
obtained by fitting the breakup cross section up to ε = 3 and 4 MeV.

CSM Fit (0–3 MeV) Fit (0–4 MeV)

Iπ Er � Er � Er �

2+
1 0.848 0.136 0.855 0.144 0.855 0.144

2+
2 2.25 3.75 1.71 1.97 1.92 2.72

Breit-Wigner parametrization does not take into account ef-
fects of nonresonant continuum states. In Table II, the ob-
tained resonant energies and decay widths by fitting are
shown. For the 2+

1 state, Er and � are consistent with the
result of the CSM, and nonresonant effects are negligible.
Meanwhile, Er and � of the 2+

2 state are smaller than those
calculated in the CSM because nonresonant effects are ne-
glected. Furthermore the properties of the 2+

2 state, thus,
obtained get close to those determined in the 8He(p, t )6He
reaction [15]. This implies that the higher resonant energy
and broader decay width can be obtained if a detailed analysis
taken into account effects of nonresonant continuum states for
the 8He(p, t )6He reaction is performed. Therefore, in order
to determine the resonant energy and decay width of the
2+

2 state, an accurate analysis of treating not only resonant
contributions, but also nonresonant ones is highly required.

To summarize, we investigated the contribution of the 2+
2

state in 6He to the breakup cross section via the CDCC

analysis combined with the CSM of 6He(p, p′) reactions. As
the result of the CSM, we obtained the resonant energy and
decay width of the 2+

2 state, which are consistent with those in
the previous study. In the analysis of 6He(p, p′) reactions, we
calculated the angular distributions of the elastic and inelastic
scatterings and confirmed importance of coupling effects. For
the inelastic cross section, which the DDX is integrated over
ε up to 1.5 MeV, it is found that not only the 2+

1 state, but also
nonresonant continuum states contribute substantially to the
cross section.

Furthermore, we calculated the breakup cross section by
integrating the DDX from θc.m. = 20◦ to 30◦ to investigate
the contribution of the 2+

2 state to the energy spectrum. As
the result, the shoulder peak due to the 2+

2 state appears
in the component for Iπ = 2+ around ε = 2 MeV, and the
effect from the existence of the 2+

2 state is enhanced in the
total components in ε = 2 and 3. Moreover, it is found that
the contribution of the nonresonant continuum states to the
breakup cross section is also important. Indeed, the nonres-
onant contribution affects on the resonant energy and decay
width estimated from a fitting of cross sections. Thus, an
accurate analysis of treating both resonances and nonresonant
continuum states is highly required to clarify the properties of
the 2+

2 state. To discuss in more detail, new experimental data
are also desired.
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