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Nuclear pasta in hot and dense matter and its influence on the equation
of state for astrophysical simulations
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We explore the properties of nuclear pasta appearing in supernova matter, i.e., matter at finite temperature with
a fixed proton fraction. The pasta phases with a series of geometric shapes are studied using the compressible
liquid-drop (CLD) model, where nuclear matter separates into a dense liquid phase of nucleons and a dilute
gas phase of nucleons and α particles. The equilibrium conditions for two coexisting phases are derived by
minimization of the total free energy including the surface and Coulomb contributions, which are clearly different
from the Gibbs conditions for phase equilibrium due to the finite-size effects. Compared to the results considering
only spherical nuclei, the inclusion of pasta phases can delay the transition to uniform matter and enlarge
the region of nonuniform matter in the phase diagram. The thermodynamic quantities obtained in the present
calculation with the CLD model are consistent with those in the realistic equation of state table for astrophysical
simulations using the Thomas-Fermi approximation. It is found that the density ranges of various pasta shapes
depend on both the temperature T and the proton fraction Yp. Furthermore, the nuclear symmetry energy and its
density dependence may play crucial roles in determining the properties of pasta phases. Our results suggest that
the pasta phase diagram is most sensitively dependent on the symmetry energy slope L especially in the low-Yp

and high-T region.
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I. INTRODUCTION

Core-collapse supernovas are one of the most fascinating
phenomena in the universe, and lead to the formation of
neutron stars or black holes. During the past decades, great
efforts have been devoted to numerical simulations of gravi-
tational collapse of massive stars [1–3], in which the equation
of state (EOS) of dense matter is an essential ingredient.
The EOS plays an important role in understanding the dy-
namics of supernova explosions, which requires information
over very wide ranges of temperature, proton fraction, and
baryon density (see, e.g., Table 1 of Ref. [4]). In the full
thermodynamic parameter space, the nuclear matter exhibits
a rich and complex phase diagram. At low temperatures and
subsaturation densities, the matter is nonuniform where heavy
nuclei are formed to lower the free energy of the system.
When the density is beyond ≈1/2 nuclear saturation den-
sity, heavy nuclear clusters tend to dissolve into a uniform
nucleon liquid. It is likely that nonspherical nuclei, known
as pasta phases, may appear as the density approaches the
phase transition to uniform matter [5–9]. However, heavy
nuclei cannot be formed above a critical temperature, where
the matter is a mixture of free nucleons and light clusters

*hujinniu@nankai.edu.cn
†bao_shishao@163.com
‡shennankai@gmail.com

together with leptons [10,11]. At densities much higher than
nuclear saturation density, non-nucleonic degrees of freedom
like hyperons and quarks may occur and soften the EOS of
dense matter [12].

It is a challenge to construct a realistic EOS covering
the whole range of thermodynamic conditions for numerical
simulations of core-collapse supernovas. Currently, there are
various EOSs available for astrophysical simulations such as
core-collapse supernovas and neutron-star mergers (see, e.g.,
Ref. [12] for a recent review). One of the most commonly
used EOSs is the Lattimer-Swesty EOS [13], which employed
a compressible liquid-drop (CLD) model with Skyrme forces
to describe heavy nuclei in nonuniform matter. Recently, the
approach of Lattimer and Swesty was extended and improved
by Schneider et al. [14,15] for computing many EOSs based
on Skyrme-type parametrizations of the nuclear forces. An-
other commonly used EOS is often referred to as the Shen
EOS [4,16,17], which was based on the relativistic mean-
field (RMF) model and Thomas-Fermi approximation with
a parametrized nucleon distribution for the description of
nonuniform matter. A similar Thomas-Fermi approximation
with realistic nuclear forces was used to construct the EOS
table by Togashi et al. [18] recently. In these realistic EOSs
for astrophysical simulations, the nonuniform matter at inter-
mediate densities is treated using the single nucleus approx-
imation (SNA) [19]. There are also several EOSs that were
developed beyond the SNA by including multiple nuclei in the
framework of nuclear statistical equilibrium (NSE) [20–24].
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Usually only spherical heavy nuclei are considered in con-
structing the EOS tables. In the present work, we intend to
explore the influence of nonspherical pasta phases on the EOS
for astrophysical simulations.

The appearance of nuclear pasta is mainly caused by the
competition between the surface and Coulomb energies of
heavy nuclei. As a result, the stable nuclear shape in nonuni-
form matter may change from droplet to rod, slab, tube, and
bubble with increasing baryon density. Nuclear pasta phases
are expected to occur both in core-collapse supernova matter
with fixed proton fraction at finite temperature and in the
inner crust of neutron stars where neutron-rich matter is in
β equilibrium at zero temperature. Over the past decades,
the properties of pasta phases have been studied using var-
ious methods, such as the liquid-drop model [25–28] and
the Thomas-Fermi approximation [6,29–31]. Generally, the
Wigner-Seitz approximation with typical geometric shapes of
nuclear pasta is employed to simplify the calculations. For
more realistic description, there are some studies that have not
explicitly assumed any geometric shape and performed fully
three-dimensional calculations for nuclear pasta based on
the Thomas-Fermi approximation [8,32,33], Hartree-Fock ap-
proach [5,11,34–37], and molecular dynamics method [7,38–
42]. It is noteworthy that nuclear symmetry energy and its
slope could significantly affect the pasta phase structure and
crust-core transition of neutron stars [9,29,30].

For the pasta phases in supernova matter, Pais et al. [31]
performed calculations and compared results using three dif-
ferent methods: the coexisting phases (CP) method, the CLD
model, and the self-consistent Thomas-Fermi approximation.
The CP method is relatively simple, whereby two coexisting
phases satisfy the Gibbs conditions for phase equilibrium,
whereas the surface and Coulomb contributions are pertur-
batively taken into account [6,43]. In the CLD model, the
surface and Coulomb contributions are treated in a more
consistent manner, and are included in the minimization pro-
cedure and lead to some additional terms in the equilibrium
conditions [44]. The Thomas-Fermi approximation describes
the nucleon distributions of pasta phases in a realistic way,
whereby the finite-size effects are treated self-consistently.
Recently, the impact of nuclear pasta on the neutrino scatter-
ing rates has been discussed for core-collapse supernovas and
protoneutron star evolution [45,46], and it was found that the
presence of nuclear pasta could alter the late-time neutrino
signal from supernovas. The elastic properties of nuclear
pasta are presently interesting to some researchers for their
relevance to gravitational wave searches both from supernova
and neutron-star mergers, which motivates calculations of
the pasta phase diagram [47–50]. Therefore, it is interesting
and important to investigate under which conditions the pasta
phases can occur.

In this article, we have two aims. The first is to investigate
the properties of pasta phases that occur in supernova matter,
while the effects of nuclear symmetry energy are examined
by using two RMF models, namely, the TM1 and TM1e
parametrizations [44,51], which have the same properties of
symmetric nuclear matter but different behaviors of the sym-
metry energy. The second is to explore the influence of nuclear
pasta on the EOS for astrophysical simulations. We perform

calculations of nonuniform matter using the CLD model,
where a nuclear liquid coexists with a dilute gas consisting
of free nucleons and α particles employing a sharp interface.
By comparing the results with and without pasta phases, we
analyze the possible impact from nuclear pasta on the phase
diagram and thermodynamic quantities. Since both the TM1
and TM1e models have been employed in constructing the
EOS tables for core-collapse supernova simulations using a
parametrized Thomas-Fermi approximation [4,52], it is pos-
sible to examine the difference between the present results
using the CLD method and the values from realistic EOS
tables, so that the uncertainty due to different descriptions of
nonuniform matter can be estimated quantitatively.

It is necessary to check the nuclear model by recent de-
velopments in astrophysical observations. One strong con-
straint coming from the mass measurements of massive pul-
sars [53–56] requires the maximum neutron-star mass to
be larger than ≈2M�. We notice that the TM1 and TM1e
models predict maximum neutron-star masses of 2.18M�
and 2.12M�, respectively. Recently, the first detection of
gravitational waves from a binary neutron-star merger, known
as GW170817, provided valuable constraints on the tidal
deformability [57,58], which also restricts the radius of a
canonical 1.4M� neutron star as R1.4 < 13.8 km [59–63].
More recently, the second detection of gravitational waves,
GW190425, was reported by the LIGO and Virgo Collab-
orations [64]. The latest observations by the Neutron Star
Interior Composition Explorer (NICER) for PSR J0030+0451
provided a simultaneous measurement of the mass and radius
of a neutron star [65,66]. It is interesting to notice that con-
straints on the neutron-star radius from various observations
are consistent with each other. In our previous work [67], we
studied the correlation between the neutron-star radius and
the slope parameter L of symmetry energy using a family
of RMF models generated from the TM1 parametrization.
The TM1e model with L = 40 MeV predicts a radius of
R1.4 = 13.1 km that is well within the current constraints,
whereas the original TM1 model with L = 110.8 MeV results
in a much larger radius of R1.4 = 14.2 km. Furthermore, the
neutron-star maximum mass and tidal deformability predicted
by the TM1e model are also compatible with observational
constraints. In the present study, we employ the TM1e model
with L = 40 MeV to perform calculations of nonuniform
matter including pasta phases, whereas the results from the
original TM1 model with L = 110.8 are also presented to
examine the influence of the density dependence of symmetry
energy.

This article is organized as follows. In Sec. II, we briefly
review the RMF model used and describe the CLD method
for the description of pasta phases in hot and dense matter. In
Sec. III, the results of nuclear pasta and its influence on the
EOS are discussed. Finally, the conclusions are presented in
Sec. IV.

II. FORMALISM

We study the nuclear pasta phases at finite tempera-
ture based on the CLD method, where the RMF model
with extended TM1 parametrization is used for the nuclear
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TABLE I. Coupling constants of the TM1e and TM1 models with symmetry energy Esym and slope L at saturation density.

Model Esym (MeV) L (MeV) gσ gω gρ g2 (fm−1) g3 c3 �v

TM1e 31.38 40 10.0289 12.6139 13.9714 −7.2325 0.6183 71.3075 0.0429
TM1 36.89 110.8 10.0289 12.6139 9.2644 −7.2325 0.6183 71.3075 0.0000

interaction [44]. In the RMF approach, nucleons interact via
the exchange of various mesons including the isoscalar-scalar
meson σ , isoscalar-vector meson ω, and isovector-vector me-
son ρ. The nucleonic Lagrangian density reads

L =
∑
i=p,n

ψ̄i

[
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)
, (1)

where W μν and Raμν denote the antisymmetric field tensors
for ωμ and ρaμ, respectively. Under the mean-field approx-
imation, the meson fields are treated as classical fields and
the field operators are replaced by their expectation values.
In a static system, the nonvanishing expectation values of
meson fields are σ = 〈σ 〉, ω = 〈ω0〉, and ρ = 〈ρ30〉. From
the Lagrangian density (1), we derive in the standard way
the equations of motion for the nucleon and meson fields,
which are coupled with each other and can be solved self-
consistently. It is straightforward to obtain the expressions for
the free energy density and pressure in uniform nuclear matter
at finite temperature [68].

In the Lagrangian density (1), an ω-ρ coupling term (i.e.,
the last term) is introduced in addition to the original TM1
model. It is well known that ω-ρ coupling plays a crucial
role in determining the density dependence of the symmetry
energy [69–73]. By adjusting the coupling constants, gρ and
�v, it is possible to control the behavior of symmetry en-
ergy and its density dependence. In our previous work [44],
we generated a set of RMF models, based on the TM1
parametrization, which have the same isoscalar properties
and fixed symmetry energy at a density of 0.11 fm−3 but
have different symmetry energy slope L. In the present study,
we perform the calculations for pasta phases employing the
extended TM1 model with L = 40 MeV, which is referred to
as the TM1e model. It is found that the TM1e model provides
satisfactory descriptions for both finite nuclei and neutron
stars. To study the influence of symmetry energy slope L,
the results of the TM1e model are compared to those of the
original TM1 model with L = 110.8 MeV. For completeness,
we present in Table I the coupling constants of the TM1e
and TM1 models. It is shown that only gρ and �v related to

isovector parts are different, while all other parameters remain
the same. Therefore, the isoscalar saturation properties are the
same between these two models, while the behaviors of sym-
metry energy are different. In the TM1e model, the symmetry
energy and its slope parameter at saturation density are Esym =
31.38 MeV and L = 40 MeV, which are well within the
constraints from various observations [12]. The corresponding
values in the original TM1 model are Esym = 36.89 MeV and
L = 110.8 MeV, which are considered to be rather large and
disfavored by recent astrophysical observations.

To describe the pasta phases in hot and dense matter, we
employ the CLD model [31,44,68], where the Wigner-Seitz
approximation is adopted for simplifying the calculation of
the free energy. The nuclear matter inside the Wigner-Seitz
cell is assumed to separate into a dense liquid (L) phase
and a dilute gas (G) phase by a sharp interface, while the
background electron gas is approximated to be uniform with
the density determined by the charge neutrality condition.
In general, the possible geometric structure of pasta phases
may change from droplet to rod, slab, tube, and bubble with
increasing baryon density. At given temperature T , average
baryon density nb, and proton fraction Yp, the equilibrium state
can be determined by minimizing the total free energy density
of the system among all configurations considered [4,13,44].
The free energy density of the pasta phases is expressed as

f = u f L
(
nL

p, nL
n

) + (1 − u) f G
(
nG

p , nG
n , nG

α

)
+ fsurf (u, rD, τ ) + fCoul

(
u, rD, nL

p, nG
p , nG

α

)
, (2)

where u is the volume fraction of the liquid phase. The proton
and neutron densities in the liquid (gas) phase are denoted by
nL

p (nG
p ) and nL

n (nG
n ), respectively. The free energy contributed

from nucleons in phase i (i = L, G) can be calculated in the
RMF models [4,68]. Note that contributions from electrons
are not included in Eq. (2), since the background electron gas
with a fixed density plays no role in the minimization proce-
dure. Generally, the contributions from leptons and photons
are treated separately when one constructs the EOS table for
astrophysical simulations. At finite temperature, the α particle
may exist as a representative light nucleus in the dilute gas
phase, whereas it is absent in the dense liquid phase. This
is because the α particle tends to dissolve close to nuclear
saturation density due to the finite volume effect [4,13].
For simplicity, the α particles are treated as noninteracting
Boltzmann particles in the present calculation. The surface
and Coulomb energy densities are given by

fsurf = Dτuin

rD
, (3)

fCoul = e2

2
(δnc)2r2

Duin�(uin ), (4)
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with

�(uin ) =
⎧⎨
⎩

1
D+2

(
2−Du1−2/D

in
D−2 + uin

)
, D = 1, 3

uin−1−ln uin
D+2 , D = 2.

(5)

Here, τ denotes the surface tension, while D = 1, 2, 3 is
the geometric dimension of the cell with rD being the size
of the inner part. uin represents the volume fraction of the
inner part, i.e., uin = u for droplet, rod, and slab config-
urations, and uin = 1 − u for tube and bubble configura-
tions. e = √

4π/137 is the electromagnetic coupling constant.
δnc = nL

p − (nG
p + 2nG

α ) is the charge-density difference be-
tween the liquid and gas phases. The surface tension τ is
calculated by using the Thomas-Fermi approach for a one-
dimensional nuclear system with the same RMF parametriza-
tion [6,28]. At finite temperature, both the surface energy
and surface entropy are included in the surface tension τ .
It was shown in Ref. [68] that τ decreases with increas-
ing temperature and decreasing proton fraction of the liquid
phase. Meanwhile, it has also been reported that the model
with a small slope parameter L leads to a large surface
tension [28,29,43].

With given average density nb and proton fraction Yp, the
free energy density f in Eq. (2) is considered a function of
seven variables: nL

p, nL
n , nG

p , nG
n , nG

α , u, and rD. These variables
satisfy the constraints of the proton and neutron number
conservation, which can be expressed as

unL
p + (1 − u)

(
nG

p + 2nG
α

) = nbYp, (6)

unL
n + (1 − u)

(
nG

n + 2nG
α

) = nb(1 − Yp). (7)

In order to derive the phase equilibrium conditions by min-
imizing the free energy density, we introduce the Lagrange
multipliers μp and μn for the constraints, and then perform
the minimization for the function,

w = f − μp
[
unL

p + (1 − u)
(
nG

p + 2nG
α

)]
−μn

[
unL

n + (1 − u)
(
nG

n + 2nG
α

)]
. (8)

By minimizing w with respect to the variables, we obtain the
following relations:
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]
, (9)

0 = ∂w

∂nG
n

= (1 − u)
[
μG

n − μn
]
, (10)

0 = ∂w

∂nL
p

= u
[
μL

p − μp
] + 2 fCoul

δnc
, (11)

0 = ∂w

∂nG
p

= (1 − u)
[
μG

p − μp
] − 2 fCoul

δnc
, (12)

0 = ∂w

∂nG
α

= (1 − u)
[
μG

α − 2(μp + μn)
] − 4 fCoul

δnc
, (13)
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. (15)

According to Eqs. (9)–(13), the equilibrium conditions for
chemical potentials are written as

μG
n = μL

n , (16)

μG
p = μL

p + 2 fCoul

u(1 − u)δnc
, (17)

μG
α = 2μG

p + 2μG
n . (18)

The equilibrium condition for the pressures between the liquid
and gas phases is achieved from Eq. (14) and written as

PG = PL + 2 fCoul

δnc

(
nL

p

u
+ nG

p + 2nG
α

1 − u

)

∓ fCoul

uin

(
3 + uin

�′

�

)
, (19)

where the sign of the last term is “−” for droplet, rod, and slab
configurations, or “+” for tube and bubble configurations. It
is clear that equilibrium conditions for two-phase coexistence
are altered due to the inclusion of surface and Coulomb
terms in the minimization procedure and, as a result, they are
different from the Gibbs equilibrium conditions. Compared
to the Gibbs conditions with equal pressures and chemical
potentials between the two phases, the additional terms in
Eqs. (17) and (19) are caused by the surface and Coulomb
contributions. If we neglect the finite-size effects by taking the
limit τ → 0, these additional terms disappear and the equilib-
rium equations would reduce to the Gibbs conditions. Based
on the equilibrium condition fsurf = 2 fCoul from Eq. (15), the
size of the inner phase and that of the Wigner-Seitz cell are
respectively given by

rD =
[

τD

e2(δnc)2�

]1/3

, (20)

rC = u−1/D
in rD. (21)

At given temperature T , average baryon density nb, and
proton fraction Yp, we solve the equilibrium conditions to-
gether with the coupled equations of the RMF model in the
liquid and gas phases for all pasta shapes, and then determine
the thermodynamically stable state that has the lowest free
energy density. In the pasta phases, the pressure and chemical
potentials of the system may be different from those in the
liquid and gas phases. Therefore, we compute these quantities
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FIG. 1. Phase diagrams in the nb-T plane for Yp = 0.1, 0.3, and 0.5 obtained using the TM1e and TM1 models. Different colors indicate
the regions for different pasta shapes. The boundary of nonuniform matter with only droplet configuration is shown by the dashed line for
comparison.

by the thermodynamic relations

P =
[

n2
b

∂ f (T,Yp, nb)/nb

∂nb

]
T,Yp

, (22)

μp =
[
∂ f (T,Yp, nb)

∂np

]
T,nn

, (23)

μn =
[
∂ f (T,Yp, nb)

∂nn

]
T,np

, (24)

where np = Ypnb and nn = (1 − Yp)nb are the average number
densities of protons and neutrons, respectively.

III. RESULTS AND DISCUSSION

We explore the properties of nuclear pasta and its influence
on the EOS for astrophysical simulations. The pasta phases
are calculated in the CLD model, where a nuclear liquid
coexists with a dilute gas consisting of free nucleons and α

particles employing a sharp interface. For the nuclear inter-
action, we employ the TM1e model with a small symmetry

015806-5



FAN JI, JINNIU HU, SHISHAO BAO, AND HONG SHEN PHYSICAL REVIEW C 102, 015806 (2020)

FIG. 2. Phase diagrams in the nb-Yp plane at T = 1 and 10 MeV obtained using the TM1e and TM1 models. Different colors indicate
the regions for different pasta shapes. The boundary of nonuniform matter with only droplet configuration is shown by the dashed line for
comparison.

FIG. 3. Size of the nuclear pasta, rD (solid lines), and that of the Wigner-Seitz cell, rC (dotted lines), as a function of the baryon density
nb obtained using the TM1e and TM1 models. The results for Yp = 0.3 at T = 1 and 10 MeV are shown in the lower and upper panels,
respectively.
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FIG. 4. Surface tension, τ , as a function of the proton fraction in
the liquid phase, Y L

p , at T = 1 and 10 MeV. The results are calculated
from the Thomas-Fermi approach for a one-dimensional nuclear
system using the TM1e and TM1 models.

energy slope L = 40 MeV, which is compatible with both
experimental nuclear data and recent observations of neutron
stars. To evaluate the effects of nuclear symmetry energy on
the pasta phases, we compare the results of TM1e to those
of the original TM1 model with a large symmetry energy
slope L = 110.8 MeV. The difference between the TM1e and
TM1 models is only in the isovector part, while the isoscalar
properties in the two models remain the same.

We first discuss the phase diagram of hot and dense
matter including nuclear pasta. At given temperature T , pro-
ton fraction Yp, and baryon number density nb, we perform
calculations for all pasta phases, and then determine the
most stable shape among them with the lowest free energy
density. The transition to uniform matter occurs at a density
of nt where the free energy density of homogeneous matter
becomes lower than that of pasta phases. In Fig. 1, we show
the phase diagrams in the nb-T plane for Yp = 0.1, 0.3, and
0.5 obtained in the TM1e model (left panels) compared to
that in the TM1 model (right panels). The results with only
droplet configuration are plotted by the dashed lines, so that
the influence of nuclear pasta on the phase diagram can

FIG. 5. Properties of the pasta phases at T = 10 MeV and Yp = 0.3 using the TM1e model. The (a) coexisting liquid and gas densities nL
b

and nG
b , (b) proton fractions Y L

p and Y G
p , (c) pressures PL and PG, and (d) volume fraction of the liquid phase, u, are plotted as a function of the

average baryon density nb.
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be estimated. It is found that the inclusion of pasta phases
delays the transition to uniform matter. This is because the
configuration space is enlarged by considering nonspherical
nuclei in addition to the droplet. One can see that the density
range of nonuniform matter depends on both T and Yp. At
low temperatures, various pasta shapes appear one by one
with increasing density, and the transition between different
shapes is only weakly dependent on T . As the temperature
increases, the density range of nonuniform matter shrinks,
while some pasta shapes like bubble and tube may not occur
before the transition to uniform matter. Eventually, the tem-
perature reaches the critical value Tc where the nonuniform
matter phase disappears completely; i.e., nuclear pasta cannot
be formed at T > Tc. Clearly, the critical temperature Tc for
Yp = 0.1 obtained in the TM1 model is much smaller than
in other cases. This is because the TM1 model has a rather
large symmetry energy slope L = 110.8 MeV and a large L
is generally correlated to a small crust-core transition density
in neutron stars [9]. By comparing the results of the TM1e
model (left panels) to those of the TM1 model (right panels),
one can see the influence of the symmetry energy slope on
the phase diagram. There is almost no difference in the case
of Yp = 0.5 and the difference for Yp = 0.3 is still small.
However, a significant difference between the TM1e and TM1
models is observed in the case of Yp = 0.1. This is because the
two models have the same isoscalar properties but different
symmetry energy behavior. It is well known that the symmetry
energy plays an important role in neutron-rich matter, but
it has no impact on the properties of symmetric nuclear
matter. A similar effect of the symmetry energy slope on
the phase diagram was also reported in Refs. [18,52], where
the parametrized Thomas-Fermi approximation was used and
only spherical nuclei were taken into account. In Fig. 2, we
show the phase diagrams in the nb-Yp plane for T = 1 and
10 MeV obtained in the TM1e and TM1 models. It is seen
that the onset of various pasta shapes is somewhat dependent
on Yp. There are significant differences between the TM1e
and TM1 models in the low-Yp region, where the behavior of
symmetry energy plays a crucial role. It is found that nuclear
pasta cannot be formed in the TM1 model for Yp < 0.2 at
T = 10 MeV, whereas it exists until Yp ≈ 0.05 in the TM1e
model. At T = 1 MeV, the region of nuclear pasta extends to
a lower value of Yp compared to the case of T = 10 MeV.

It is interesting to investigate the properties of nuclear pasta
appearing in nonuniform matter. We show in Fig. 3 the size
of the nuclear pasta (rD) and that of the Wigner-Seitz cell
(rC) as a function of the baryon density nb. The results of the
TM1e model (left panels) for Yp = 0.3 at T = 1 and 10 MeV
are compared to those obtained in the TM1 model (right
panels). It is observed that rD in the droplet, rod, and slab
phases increases with increasing nb, whereas rD in the tube
and bubble phases decreases. This is related to an increase
of the volume fraction of the liquid phase. There are obvious
discontinuities in rD and rC at the transition between different
pasta shapes, which exhibit the character of the first-order
transition. Comparing the results between the TM1e and TM1
models, the tendencies of rD and rC are very similar in the two
models. It is noticed that the value of rD in the TM1e model is
slightly larger than that in the TM1 model. This is mainly due

FIG. 6. Fractions of neutrons (Xn), protons (Xp), α particles (Xα),
and heavy nuclei (XA) as a function of the average baryon density
nb in nonuniform matter for Yp = 0.3 at T = 1 and 10 MeV using
the TM1e model. The results with nuclear pasta (solid lines) are
compared to those with droplet only (dashed lines).

to the difference of the surface tension τ , which is displayed
in Fig. 4. According to Eq. (20), a large surface tension τ

generally leads to a large nuclear size rD. From Fig. 4, we can
see that the TM1e model with a small symmetry energy slope
L = 40 MeV predicts much larger surface tension than the
TM1 model with L = 110.8 MeV. The correlation between
the slope L and the surface tension τ has also been discussed
in Refs. [29,43,68].

In Fig. 5, we present several properties of nuclear pasta
described in the CLD model, where the liquid phase with
density nL

b and proton fraction Y L
p coexists with the gas phase

with nG
b and Y G

p . The equilibrium conditions for two-phase
coexistence are given by Eqs. (16)–(19). We plot in Fig. 5
the following quantities as a function of the average baryon
density nb: the coexisting liquid and gas densities nL

b and nG
b

[Fig. 5(a)], proton fractions Y L
p and Y G

p [Fig. 5(b)], pressures
PL and PG [Fig. 5(c)], and volume fraction of the liquid
phase u [Fig. 5(d)]. The calculations are performed at T =
10 MeV and Yp = 0.3 with the TM1e model. To explore the
differences between spherical and nonspherical nuclei, we
show the results with only droplet configuration by the dashed
lines. It is found that the differences between pasta phases
and droplet configuration are rather small in Figs. 5(a), 5(b),
and 5(d), whereas considerable differences are observed in
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FIG. 7. Free energy per baryon F as a function of the baryon
density nb for Yp = 0.3 at T = 1 and 10 MeV using the TM1e
model. The results with nuclear pasta (solid lines) are compared to
those with droplet only (dashed lines). The dots represent the values
from the Shen EOS4 [52], which are calculated by a parameterized
Thomas–Fermi approximation.

the pressure of Fig. 5(c). Since the surface and Coulomb
contributions are distinguished for different pasta shapes, it
leads to the jumps at the transition between pasta shapes.
It is noticeable that the pressure of the liquid phase (PL) is
clearly different from that of the gas phase (PG), which is due
to the surface and Coulomb contributions given by the last
two terms in Eq. (19). On the contrary, the coexisting liquid
and gas phases have equal pressures according to the Gibbs
equilibrium conditions used in the CP method. In Fig. 5(b),
the proton fraction Y L

p decreases with increasing nb, which
implies that heavy nuclei become more neutron rich before
dissolving into uniform matter. The volume fraction of the
liquid phase u shown in Fig. 5(d) increases monotonically
and nonspherical nuclei appear at u ≈ 0.21. A simple estimate
based on the Bohr-Wheeler fission condition indicates that a
spherical nucleus becomes unstable to quadrupolar deforma-
tion at u > 1/8 [74]. In the CP method, the transition from
droplet to rod occurs at u ≈ 0.22, which is very close to
the value obtained in the present calculation using the CLD
method.

We display in Fig. 6 the fractions of neutrons, protons, α

particles, and heavy nuclei as a function of the average baryon
density nb in nonuniform matter for Yp = 0.3 at T = 1 and
10 MeV. These quantities are calculated in the CLD model

FIG. 8. Same as Fig. 7, but for pressure P.

by XA = u(nL
n + nL

p )/nb, Xα = (1 − u)4nG
α /nb, and Xi = (1 −

u)nG
i /nb (i = n, p). Compared to the results with only droplet

configuration (dashed lines), the tendency of Xi with the
inclusion of nuclear pasta is very similar, but small discon-
tinuities appear at the change of pasta shapes. In the case of
T = 10 MeV (upper panel), there are noticeable fractions of
protons (Xp) and α particles (Xα), which are reduced to almost
zero at T = 1 MeV (lower panel). Moreover, the fraction of
heavy nuclei (XA) is dominant in nonuniform matter and the
value of XA at T = 10 MeV is smaller than that at T = 1 MeV.
This is because, at higher temperature, the particle densities in
the gas phase are significantly enhanced, whereas the densities
in the liquid phase are insensitive to the temperature due to
their high degeneracy. We can see that Xn, Xp, and Xα decrease
with increasing nb, which is related to the increase of the
volume fraction u shown in Fig. 5(d).

It is essential to analyze the influence of nuclear pasta
on the thermodynamic quantities which play crucial roles
in numerical simulations of core-collapse supernovas and
neutron-star mergers. It is also important to compare the
present results in the CLD model to those from a realistic
EOS table with the same nuclear interaction, so that the
uncertainty due to different descriptions of nonuniform matter
can be estimated. In Fig. 7, we show the free energy per
baryon, F , as a function of the baryon density nb for Yp =
0.3 at T = 1 and 10 MeV. The results with the inclusion
of nuclear pasta (solid lines) are slightly smaller than those
with droplet only (dashed lines) due to the enlargement of
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FIG. 9. Same as Fig. 7, but for chemical potential of neutrons, μn.

the configuration space by considering nonspherical nuclei.
Meanwhile, the results from the realistic Shen EOS4 [52],
which were constructed using a parametrized Thomas-Fermi
approximation with the TM1e model, are shown by dots for
comparison. It is found that the values of F taken from the
Shen EOS4 are very close to the present results obtained using
the CLD method. This confirms that the two methods are
consistent with each other for calculating the free energies.
We see that F increases with the density in the case of
T = 10 MeV (upper panel), while it decreases at T = 1 MeV
(lower panel). This is because F = E − T S is related to the
behaviors of the internal energy E and the entropy S. As the
density increases, the entropy per baryon, S, decreases (see,
e.g., Fig. 11 of Ref. [52]), which leads to the increase of F
at higher temperature. On the contrary, the entropy plays less
of a role at lower temperature, where the decrease of internal
energy E is dominant. In Fig. 8, we display the pressure P as
a function of the baryon density nb for Yp = 0.3 at T = 1 and
10 MeV. Compared to the results with droplet only (dashed
lines), small discontinuities are observed in the pressures with
the inclusion of pasta phases (solid lines) due to the change of
pasta shapes. The discontinuities exhibit the character of the
first-order transition. It is found that the pressures taken from
the Shen EOS4 are consistent with the present results obtained
using the CLD method. Comparing the cases between T = 1
and 10 MeV, the pressure at higher temperature is relatively
larger, while the tendencies of P in the two cases are very
similar. We note that the result shown in Fig. 8 represents

FIG. 10. Same as Fig. 7, but for chemical potential of protons, μp.

the baryon pressure without contributions from electrons and
photons. In fact, the pressure of nonuniform matter is domi-
nated by the background electron gas, which ensures the total
pressure is positive. Therefore, the influence of nuclear pasta
on the pressure is neglectable. In Figs. 9 and 10, the chemical
potentials of neutrons and protons, μn and μp, are shown as
a function of the baryon density nb for Yp = 0.3 at T = 1
and 10 MeV. It is observed that the results with nuclear pasta
(solid lines) are very close to those with droplet only (dashed
lines), whereas the change of pasta shapes may cause small
discontinuities in μn and μp. One can see that μp decreases
with increasing nb, which is related to the decrease of the
proton density in the gas phase. There are visible differences
between the present results of the CLD model and those from
the Shen EOS4 obtained by a Thomas-Fermi calculation. This
implies that the chemical potentials are relatively sensitive to
the method used for describing nonuniform matter. Since the
chemical potentials are calculated from the first derivative of
the free energy as given in Eqs. (23) and (24), the differences
in chemical potentials could be more obvious than those in
the free energy. Furthermore, the chemical potentials, μn and
μp, are sensitively dependent on the density distributions of
protons and neutrons, which are clearly different between
the CLD model and the parametrized Thomas-Fermi approx-
imation. The relatively large differences in μp between the
present results and those from the Shen EOS4 may be partly
due to different treatments of the Coulomb contributions
between the two methods. In the present calculation using the
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CLD method, the Coulomb energy is related to the surface
energy by the equilibrium condition fsurf = 2 fCoul, where the
surface tension τ is determined self-consistently as described
in Refs. [6,28]. In the parametrized Thomas-Fermi approxi-
mation used in the Shen EOS4, the Coulomb energy is related
to a gradient parameter F0, which is somewhat underestimated
in comparison to the self-consistent Thomas-Fermi approxi-
mation [75]. Notable differences in μp were also found and
discussed in Ref. [75]. Generally speaking, the inclusion
of nuclear pasta does not lead to significant differences in
the thermodynamic quantities, but it may be important for
the neutrino scattering rates and elastic properties of stellar
matter.

IV. CONCLUSIONS

In this work, we investigated the properties of nuclear
pasta appearing in hot and dense matter, associated with core-
collapse supernovas and neutron-star mergers. We employed
the compressible liquid-drop (CLD) model to describe the
pasta phases with various geometric shapes. In the CLD
model, the matter in the Wigner-Seitz cell is assumed to
separate into a dense liquid phase of nucleons and a dilute
gas phase of nucleons and α particles by a sharp interface.
The equilibrium conditions between the liquid and gas phases
were derived by minimization of the total free energy in-
cluding the surface and Coulomb contributions, which are
clearly different from the Gibbs equilibrium conditions. For
the nuclear interaction, we employed the TM1e model with a
small symmetry energy slope L = 40 MeV, which could be
compatible with both experimental nuclear data and recent
observations of neutron stars. To evaluate the influence of the
density dependence of symmetry energy, the results of the
TM1e model were compared to those of the original TM1
model with a large symmetry energy slope L = 110.8 MeV. It
is noteworthy that the TM1e and TM1 models have the same
properties of symmetric nuclear matter but different density
dependencies of symmetry energy, so that the comparison
between the two models reflects the influence solely from
the symmetry energy without interference of the isoscalar
part.

At given temperature T , proton fraction Yp, and average
baryon density nb, we performed calculations for all pasta

phases considered, and then determined the thermodynami-
cally stable state with the lowest free energy. The transition
from nonuniform matter to uniform matter occurs at the
density where the free energy density of pasta phases becomes
higher than that of homogeneous matter. It was found that
the inclusion of pasta phases could significantly delay the
transition to uniform matter as compared to the case with
spherical nuclei only. From the phase diagrams obtained, it
was observed that at lower temperatures various pasta shapes
appear one by one with increasing density and their density
ranges are only weakly dependent on the temperature. At
higher temperatures, the density ranges shrink and some pasta
shapes may have no chance to appear before the transition
to uniform matter. When the temperature reaches the critical
value Tc, nuclear pasta cannot be formed and the nonuniform
matter phase disappears completely. It was shown that the
critical temperature Tc depends on both the proton fraction Yp

and the nuclear model used. Significant differences between
the TM1e and TM1 models could be observed in the phase
diagram at the low-Yp region. This implies that nuclear sym-
metry energy and its density dependence play a crucial role
in determining the properties of pasta phases in neutron-rich
matter.

The present results with pasta phases using the CLD
method were compared to those in the realistic EOS table for
astrophysical simulations, where the parametrized Thomas-
Fermi approximation was used and only spherical nuclei
were taken into account. It was found that thermodynamic
quantities obtained in the two methods are consistent with
each other, but the inclusion of pasta phases causes small
discontinuities at the change of pasta shapes. It is likely that
the influence of pasta phases on the EOS for astrophysical
simulations is relatively limited. The discontinuities of the
first-order phase transition in pasta may play a role in the
neutron-star cooling and affect the glitch phenomena. Possible
impacts of nuclear pasta on the neutrino scattering rates need
to be studied in future work.
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