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The tidal deformability probability distribution extracted from GW170817 alone, or including multimessenger
information, is confronted by additional constraints from astrophysical and nuclear physics within a semiagnostic
approach for the dense matter equation of state. We use Bayesian statistics to combine together low-density
nuclear physics data, such as the ab initio predictions based on chiral effective field theory interactions or the
isoscalar giant monopole resonance, and astrophysical constraints from neutron stars, such as the maximum mass
of neutron stars or the probability distribution function of the tidal deformability �̃ obtained from the GW170817
event. The so-called posterior probability distribution functions are marginalized over several nuclear empirical
parameters (Lsym, Ksym, Qsat, and Qsym), as well as over observational quantities such as the 1.4M� radius R1.4

and the pressure at twice the saturation density P(2nsat ). The correlations between Lsym and Ksym and between
Ksat and Qsat are also further analyzed. Tension is found between the posteriors: The first one is localized in
the tidal deformability probability distribution itself, depending whether multimessenger analysis is included,
and the second one is between the observational data and the nuclear physics inputs. These tensions impact the
predictions for Lsym, Ksym, and R1.4 with centroids which differ by 2–3σ . Implications for the nuclear equation
of state are also discussed.

DOI: 10.1103/PhysRevC.102.015805

I. INTRODUCTION

While experiments in finite nuclei probe densities around
saturation density of nuclear matter (nsat ≈ 0.16 fm−3, ρsat ≈
2.7 × 1014 g/cm3) and heavy-ion collisions explore a wider
domain of densities with small isospin asymmetries, neutron
stars (NS) are the sole system which explore the equilibrium
properties of dense matter at densities well above saturation
density and isospin asymmetries close to pure neutron matter
[1]. NS physics addresses thus one of the most fundamental
question in nuclear physics, which is the understanding of the
nuclear interaction in a dense medium as a function of the
density and the isospin asymmetry. They are excellent systems
where the high-density behavior of the nuclear equation of
state (EoS) can potentially be determined.

However, the difficulty with the analysis of astrophysi-
cal observations is that they often carry global information
requiring the understanding of many ingredients, such as
general relativity, plasma physics, magnetic fields, nuclear
and hadron physics, neutrino transport properties, and so on

[1]. At variance with astrophysics, experimental conditions in
laboratories are usually better controlled. Therefore, linking
theoretical modelings and data requires specific approaches
which take into account the specificities of astrophysics and
nuclear physics. We propose an approach combining a semi-
agnostic metamodeling for the nuclear equation of state [2]
and a Bayesian statistical analysis. In this way, it is possible
to put together data or constraints from very different origins,
where the individual impact of the various set of constraints
could also be analyzed separately [3–7].

From the nuclear physics side, we consider the many-body
perturbation theory (MBPT) predictions in symmetric (SM)
and neutron matter (NM) based on Chiral effective field theory
(χEFT) interactions from the Ref. [8] as a good representation
of the present nuclear physics knowledge of the equation of
state (EoS). These χEFT interactions include not only two-
body nucleon-nucleon force but also three-body interactions
and they reproduce experimental data such as the charge
radius, the neutron radius, the weak form factor, and the dipole
polarizability of 48Ca [9]. The generated EoS will therefore be
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evaluated with respect to their proximity to the χEFT band.
We complement this constraint by the experimental informa-
tion on the isoscalar giant monopole resonance (ISGMR),
which provides a constraint on the parameter Mc defined
below saturation density [10,11]. The nuclear parameter Mc

strongly constrains the density dependence of SM below
saturation density and happens to be less model dependent
than the usual nuclear empirical parameter (NEP) Ksat. The
marginalization of the Bayesian probability over the NEP
will show the consistency or the tension existing among the
various constraints considered here.

From the astrophysical side, the observation of NSs allows
us to set limits on the maximum mass, for which radio
observations only provide a lower bound. The maximum mass
of neutron stars, which impacts the maximum density of
stable baryonic matter, fixes the mass boundary between NSs
and black holes, which give clues on the understanding of
supernova core-collapse mechanism [12] as well as of the
fate of NS mergers as kilonovas [13]. The observed masses
vary from 1.174(4)M� [14,15] to about 2M� [14,16]. The
well-established upper mass limits are 1.908(16)M� for PSR
J1614-2230 [17] and 2.01(4)M� for PSR J0348+0432 [16].
Recently, two observations have raised the upper limit to
Mmax = 2.14+0.10

−0.09M� from the Shapiro delay associated to the
MSP J0740+6620 [18] and Mmax = 2.27+0.17

−0.15M� from mag-
nesium lines associated to the “redback” PSR J2215+5135
[19]. To be compatible with observations, we consider that
the maximum mass to be reached by the EoS models should
be above the measured centroid mass minus twice the error
bar (95% confidence level). In the present work, we fix this
limit to be Mobs

max ≈ 2M�.
In 2017, gravitational waves (GW) from a binary NS

(BNS) merger (GW170817), been detected by the LIGO-
Virgo Collaboration [20,21], have provided an estimation of
the NS tidal deformability �̃ [22–24]. The tidal deformability
is similar to the measure of compactness [20] and, together
with a measure of the mass, can be used to extract the NS ra-
dius [25]. The tidal deformability extracted from GW170817
has been reported as 70 < �̃ < 720 at 90% confidence level
[21] and 70 < �̃ < 500 [26]. Moreover, the �̃ probability
distribution function (PDF) exhibits an interesting structure,
doubly peaked from Ref. [21] (with large and small peaks)
and only singly peaked from Ref. [26]. In the present work,
we shall perform a Bayesian analysis exploring the impact of
these two different PDF on our results.

The GW170817 signal has been compared to various nu-
clear modelings, from the most agnostic ones, such as piece-
wise polytropes (PE) [5,27–29] and sound speed (CSS) EoS
[25,30], semiagnostic approaches where matter composition
is known, to Taylor-expanded (TE) EoS [3,4,25,30,31]) or
more traditional approaches based on nuclear interactions or
Lagrangians, such as Skyrme-Type functional (STF) [31–35]
and relativistic mean field (RMF) [31,32,36–38] models. In
Refs. [36,37], based on RMF modeling, the authors concluded
that the NEP Lsym is independent of the radius at 1.4M� and
that most of the explored EoSs are inside the tidal deforma-
bility limit (�̃ < 720). In Refs. [33,35], 5 and 28 STFs were
analyzed, predicting NS radii to be 11.8 � R1.4 � 12.8 km
[33] (R1.4 = 11.6 ± 1 km [35]), and the tidal deformability for

canonic NS mass (1.4M�) 308 < �1.4 < 583. Additionally, it
is suggested that the ISGMR constrains the NS compactness
[35]. Therefore, in the present work, we investigate the role of
the ISGMR to constrain NS EoS. In Refs. [27,29], PEs were
used to calculate NS EoS leading to 12 � R1.4 � 13.7 km
for the canonical 1.4M� NS radius. Similar results are found
using both RMF and STF [3,31,32] and TE [3,31]. In contrast
to Ref. [36], TE EoS from Ref. [31] showed that the tidal
deformability constrains both the incompressibility slope at
the saturation density M0 and Lsym. Recently, GW70817 has
been reanalyzed based on an agnostic approach (CSS) and
including a constraint on the maximal mass of NS [39]. This
analysis concluded that the NS radius shall be ≈11 ± 1 km.
We come to a similar conclusion in our analysis based on the
�̃ PDF from Refs. [21,26].

In addition to the GW signal, the GW170817 BNS
merger has produced an observed electromagnetic (EM) sig-
nal (AT2017gfo) and a γ -ray burst (GRB170817A). These
additional signals are influenced by the properties of the in-
spiral NS and could potentially also help the characterization
of the tidal deformability. A recent multimessenger Bayesian
analysis has been performed based on the present knowledge
and modeling of the EM and GRB signals [40]. This anal-
ysis suggests that �̃ � 300 [40]. While one should expect
improved modeling of the EM and GRB emission before
strong conclusions can be drawn, this analysis illustrates
how a global understanding of the transient event could shed
light on the estimation of the tidal deformability. However,
constraining GW with its counterpart AT2017gfo signal relies
on a number of hypotheses which, for some of them, are still
under debate. We refer, for instance, to the recent update on
this topic presented in Ref. [41]. In the present work, we
confront the suggestion of the �̃ PDF from Ref. [40] with
the ones based on only the GW signal [21,26]. In this way,
we could analyze the sensitivity of the predictions to the �̃

PDF.
The radii of NS can also be inferred from x-ray emission,

whether they are thermal emissions from qLMXB (quiescent
low-mass x-ray binary) or x-ray bursts [6,14,42–46]. The
predictions from these analyses are becoming more accurate
since the modeling is improving and more statistics are being
accumulated. These analyses, however, require a clear knowl-
edge of some NS properties, such as the composition of their
atmosphere, the hydrogen column density on the line site, and
in some cases the magnetic fields [14]. In the absence of pul-
sation, the uncertainty on the NS spin could also bring other
uncertainties as well. The traduction of all these uncertainties
in the inferred radius is expected to be about 1 to 2 km [44].
In a recent work, a semiagnostic metamodel identical to ours
was directly injected in the analysis of the thermal emission
from seven qLMXB [45]. The constant radius approximation
of Ref. [46] was also performed with the new data, providing
a radius of about RNS ≈ 11.06 ± 0.4 km. Injecting constraints
from nuclear physics and neglecting possible phase transitions
in dense matter, the radius of a 1.4M� NS is predicted to be
R1.4 ≈ 12.4 ± 0.4 km. The observation of a NS with a marked
lower radius would clearly indicate a softening of the EoS
induced by new degrees of freedom which are not contained
in our nuclear physics metamodeling.
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For densities above ≈3ρsat, additional degrees of freedom
could indeed appear, such as pion condensation [47–49],
hyperonization [50–55], or phase transition to quark matter
[56–59]. In general, additional degrees of freedom tend to
soften the EoS, and thus reduce the radius, except in the
case of the quarkyonic model, which describes the transition
to quark matter as a crossover [59]. Since softening of the
EoS also reduces the maximum mass, it is important to
include in the model selection the knowledge about Mobs

max. The
present analysis is focused on nucleonic matter without phase
transition, but we will show that it clearly calls for a future
extension with phase transition(s).

The present work is organized as follows: In Sec. II, the
main theoretical inputs are presented, namely the nucleonic
metamodel [2], and the general relativistic equations, i.e., the
spherical Tollman, Oppenheimer, and Volkoff (TOV) model
[60–62] and the pulsation equations [22–24], which gener-
ate masses, radii, and tidal deformabilities. The statistical
Bayesian tools are also introduced and we detail the construc-
tion of the posterior probability from the likelihood, which
includes the constraints, and from the prior probability on the
model parameters. In Sec. III, results are given: An analysis of
the posterior PDF is undertaken for the empirical parameters
Lsym, Ksym, Qsat, and Qsym as well as for the radius R1.4 and
the pressure at 2nsat, P(2nsat ). Then, the origins of the Lsym-
Ksym and Ksat-Qsat correlations are analyzed in details. Finally,
we present our conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

In the present study, we consider a few assumptions con-
cerning the composition of the EoS. We assume neutron star
cores are composed of neutrons and protons as well as a gas
of electrons and muons at β equilibrium. No phase transition
at high density is included here since we aim at exploring the
limits of nucleonic hypothesis for the composition of the core
of NS.

In addition, the nuclear model is requested to incorporate
the bulk properties measured from experiments on finite nu-
clei, as well as to satisfy to the NS observations in terms of
maximum observed NS mass and tidal deformability. The EoS
should naturally satisfy causality and stability conditions [63]
at all densities.

The link between NS matter and nuclear experiments
can be performed through the nuclear empirical parameters,
directly connected to the properties of the EoS. These pa-
rameters are defined as the Taylor coefficients of the binding
energy density for symmetric matter esat and for the symmetry
energy esym,

esat(n0) = Esat + 1

2
Ksatx

2 + 1

3!
Qsatx

3 + 1

4!
Zsatx

4 + O(x5),

(1)

esym(n0) = Esym + Lsymx + 1

2
Ksymx2 + 1

3!
Qsymx3

+ 1

4!
Zsymx4 + O(x5), (2)

where the Taylor expansion parameter is x = (n0 −
nsat )/(3nsat ) [64], with n0 being the isoscalar density for
protons and neutrons, n0 = nn + np. Assuming that these
two quantities are the leading ones, the binding energy in
asymmetric matter can be expressed as

e(n0, n1) = esat(n0) +
(

n1

n0

)2

esym(n0), (3)

where the isovector density is defined as n1 = nn − np. Note
that Eq. (3) neglects the small contribution beyond the
quadratic terms in isospin asymmetry.

Completing this expansion with a kinetic energy term, a
generic metamodel for nucleonic matter has recently been
proposed and was tested to be able to reproduce most of
the existing nucleonic EoS [2]. This recent approach will be
considered in the following.

A. The nuclear metamodeling

Given the assumptions previously listed, we consider a
semiagnostic approach which is mainly parametrized in terms
of the nuclear empirical parameters (describing EoS funda-
mental properties such as the nuclear incompressibility) and
can thus be easily related to experimental knowledge from
nuclear physics. At variance to fully agnostic approaches
such as piecewise polytropes [5,27–29] or the sound speed
model [25,30], the metamodel can predict proton, electron,
and muon ratios as functions of the density. These ratios
are controlled by the density dependence of the symmetry
energy, and therefore the metamodel establishes correlations
between particle ratios and nuclear empirical parameters. It
allows us to follow the β equilibrium and any path out of
equilibrium, such as the ones encountered in supernovae core
collapse. In the latter case, an extension at finite temperature
is required, while here we compute the equation of state at
zero temperature only. For the sake of consistency, we briefly
detail the main features of the metamodel. More details can be
found in Ref. [2].

Since neutrons and protons are independent particles in the
metamodel, the neutron and proton densities, nn and np, are
defined as

nn/p = 1

3π2
k3

Fn/p
, (4)

in terms of the Fermi momentum kFn/p . From nn and np, one
can define two equivalent quantities, which are the isoscalar
density (n0 = nn + np) and the isovector density (n1 = nn −
np). In the following, we will also use the density parameter
x = (n0 − nsat )/(3nsat ) and the isospin asymmetry parameter
δ = n0/n1. The two boundaries δ = 0 and 1 correspond to
symmetric matter (SM) and to neutron matter (NM), re-
spectively, while any value of δ between −1 and 1 defines
asymmetric nuclear matter.

In this work, we consider the metamodeling ELFc intro-
duced in Ref. [2]. In this metaodeling, the energy per particle
is defined as

e(n0, n1) = tFG∗(n0, n1) + v(n0, n1). (5)
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The first term is the kinetic energy density and the second term
is the interaction potential. The kinetic energy is related to the
nonrelativistic free Fermi gas (FG) as

tFG∗(n0, n1) = tFG
sat

2

(
n0

nsat

)2/3[(
1 + κsat

n0

nsat

)
f1(δ)

+ κsym
n0

nsat
f2(δ)

]
, (6)

where tFG
sat = 3h̄2/(10m)(3π2/2)2/3n2/3

sat is the kinetic energy
per nucleons in SM and at saturation, m is nucleonic mass
taken identical for neutrons and protons m = (mn + mp)/2 =
938.919 MeV/c2, giving tFG

sat = 22.1 MeV, and the interac-
tion potential can be expressed as

v(n0, n1) =
N∑

a�0

1

a!

(
csat

a + csym
a δ2

)
xaua(x), (7)

where ua(x) = 1 − (−3x)N+1−aexp(−bn0/nsat ) and b is fixed
to be b = 10ln2 ≈ 6.93. In Eq. (6), the functions f1 and f2 of
the asymmetry parameter are defined as [2]

f1(δ) = (1 + δ)5/3 + (1 − δ)5/3, (8)

f2(δ) = δ(1 + δ)5/3 − δ(1 − δ)5/3, (9)

where f1(δ) represents an extension for isospin asymmetry
and f2(δ) includes the effect of Landau effective mass defined
in Eq. (10). Besides, the parameters κsat/sym of Eq. (6) can be
directly expressed in terms of the expected Landau effective
mass at saturation density,

κsat = m

m∗
sat

− 1 = κs, in SM (δ = 0),

κsym = 1

2

[
m

m∗
n

− m

m∗
p

]
= κs − κv, in NM (δ = 1). (10)

Fixing κsat/sym, the coefficients csat/sym
a are directly related to

the empirical parameters through the following one-to-one
correspondences:

csat
a=0 = Esat − tFG

sat (1 + κsat ),

csat
a=1 = −tFG

sat (2 + 5κsat ),

csat
a=2 = Ksat − 2tFG

sat (−1 + 5κsat ),

csat
a=3 = Qsat − 2tFG

sat (4 − 5κsat ),

csat
a=4 = Zsat − 8tFG

sat (−7 + 5κsat ),

(11)

and

csym
a=0 = Esym − 5

9 tFG
sat [1 + (κsat + 3κsym)],

csym
a=1 = Lsym − 5

9 tFG
sat [2 + 5(κsat + 3κsym)],

csym
a=2 = Ksym − 10

9 tFG
sat [−1 + 5(κsat + 3κsym)],

csym
a=3 = Qsym − 10

9 tFG
sat [4 − 5(κsat + 3κsym)],

csym
a=4 = Zsym − 40

9 tFG
sat [−7 + 5(κsat + 3κsym)].

(12)

The one-to-one correspondence between the metamodel
coefficients csat/sym

a and the empirical parameters directly
bridges the analysis of the impact of the empirical parameters
on the properties of the equation of state and on the predictions
for NS properties. In the next subsection, we briefly detail how
the NS properties such as masses, radii, and tidal deformabil-
ities can be related to the nuclear equation of state assuming
general relativity (TOV and pulsation equation) [22–24,60–
62].

The advantages of the metamodel are that it is analytical,
quickly computed, and very flexible, and it can reproduce
most of existing nucleonic EoS. It keeps information concern-
ing matter composition, such as the neutron-proton ratio and
the fractions of electrons and muons. It is therefore optimal
for extensive statistical analyses which require a large number
of EoS samples.

At low densities, many-body perturbation theory based on
χEFT nuclear two- and three-body interactions have predicted
bands based on seven Hamiltonians which could equally well
reproduce NN phase shifts and the binding energy of the
deuteron [8]. These bands are represented in Fig. 1 together
with a set of models. We compare these bands with three
different models which are SLy [65], ArgonneV18 [66], and
FSUGold [64]. The binding energies of these models are in
good agreement with the χEFT bands in both symmetric
matter (SM) and neutron matter (NM). This is also true
for the pressure in SM, but there are deviations in NM for
FSUGold and SLy models, which predict a pressure above
the bands for the high-density region. The origin of these
deviation lies in the way the χEFT bands for the pressure
are defined: It is the boundary calculated from the derivative
of the binding energy predicted from the seven Hamiltonians
only. The pressure band does not exhaust all possible density
dependence for the binding energy. It is therefore possible for
models, such as FSUGold and SLy, to be inside the energy
band and outside the pressure band. The pressure band from
the χEFT estimation provides a smaller band width than the
one which would be based on all the models compatible with
the energy band. It is, however, the width compatible with the
seven Hamiltonians that we will consider in the following.

B. Neutron star equilibrium properties and tidal deformability

The solution of the hydrostatic equations in general rel-
ativity for spherical and nonrotating stars, also named the
Tollman, Oppenheimer, and Volkoff (TOV) equations, are
expressed as [60–62]

dm(r)

dr
= 4πr2ρ(r),

dP(r)

dr
= −ρc2

(
1 + P

ρc2

)
d�(r)

dr
,

d�(r)

dr
= Gm

c2r2

(
1 + 4πPr3

mc2

)(
1 − 2Gm

rc2

)−1

,

(13)

where G is the gravitational constant, c is the speed of light in
vacuum, P is the pressure, m(r) is the enclosed mass at radius
r, and ρ is the mass-energy density containing contributions
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FIG. 1. Energy (a) and pressure (b) distributions calculated by using χEFT from the Ref. [8] for both symmetric matter (SM) and neutron
matter (NM).

from the nucleon rest mass (mN ) and from the total energy per
particles (e): ρc2 = (mN c2 + e)n0.

Since there are three equations for four variables
(m, P, ρc2, and �) in Eq. (13), one need another equation to
close the system. This additional equation is provided by the
equation of state of dense matter, P(ρc2), which is evaluated
at β equilibrium for the NS conditions. NSs are formed by
a crust and a core, whereas in its present form the metamodel
only applies to uniform matter inside the core. The core EoS is
matched to the crust EoS with a cubic spline starting from an
arbitrary transition density ntr = 0.1nsat to nsat. Below ntr , we
set crust EoS to be SLY for all core EoSs. SLY is based on the
Skyrme nuclear interaction SLy4 [65], which has been applied
for the crust EOS considering a compressible liquid-drop
model [67]. We did not make an analysis for a crust EoS as
well as ntr , since we expect that the impact of the connection
between the crust and the core is small for our analysis; for
more details, see Ref. [7].

These equations are defined in the Schwarzschild metric
ds2 = e2�c2dt2 − e2λdr2 − r2(dθ2 + sin2θdφ2). The poten-
tial � and the function λ only depend on r, and the func-
tion λ is fixed by e−2λ = 1 − 2Gm/(c2r). Equations (13) are
integrated in coordinate space starting from 0 to the radius
R, fixing the boundary conditions m(0) = 0 and P(0) = Pc,
where Pc(ρ = ρc) is arbitrarily varied. The pressure P de-
creases from the center to the surface and the NS radius
is defined as the coordinate for which the condition P(r =
R) = 0 is reached. The family of solutions with unique mass
m(R) = M and radii R are generated by varying the central
density ρc.

The tidal deformability � resulting from the mutual in-
teraction between two NS is defined as the quadratic metric
perturbation in one NS generated as a response to the external
field created by its companion. The tidal deformability � can
be expressed in terms of the love number k2 as [22,23]

� = 2k2

3C5
, (14)

where C = (GM )/(c2R) is compactness of the NS for mass M
and radius R. The love number k2 is determined as

k2 = 8C5

5
(1 − 2C)2[2 + 2C(Y − 1) − Y ]

×{2C[6 − 3Y + 3C(5Y − 8)]

+ 4C3[13 − 11Y + C(3Y − 2) + 2C2(1 + Y )]

+ 3(1 − 2C)2[2 − Y + 2C(Y − 1)]ln(1 − 2C)}−1,

(15)

where Y = y(R) is the solution of pulsation equation at the
surface of the NS. The pulsation equation is expressed as
[22,23]

r
dy(r)

dr
+ y(r)2 + y(r)F (r) + Q(r) = 0, (16)

with

F (r) = 1

r − 2Gm/c2

(
r + 4πGr3

P − ρc2

)
, (17)

Q(r) = 4πGr3/c2

r − 2Gm/c2

(
5ρ + 9P

c2
+ P + ρc2

ρcs

)

− 4πGr3/c2

r − 2Gm/c2

(
6

4πGr2/c2

)
−

(
2G2r

c4

)

×
(

m + 4πr3P/c2

r − 2Gm/c2

)2

, (18)

where cs = dP/dρ is the sound speed. The pulsation equation
is solved once the density and pressure radial profiles are
defined from the solution of the TOV equations.

The wave form extracted from the LIGO-Virgo GW inter-
ferometers is in fact impacted at the fifth order by the two-NS
combined tidal deformability �̃, defined from each individual
deformabilities of the NS, �1 and �2, as

�̃ = 16

13

(M1 + 12M2)M4
1�1 + (M2 + 12M1)M4

2�2

(M1 + M2)5
, (19)
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where (M1, �1) and (M2, �2) are the masses and tidal de-
formabilities of the individual NSs (by convention M1 � M2)
[20]. If M1 = M2, this expression becomes �̃ = �1 = �2.
However, as discussed below, we shall explore the asymmetric
case in our study.

C. Bayesian statistical analysis

The relation between the empirical parameters and the
NS properties is performed within the Bayesian statistical
analysis. The core of the Bayesian analysis relies on Bayes
theorem expressing the probability associated to a given
model, represented here by its parameters {ai}, to reproduce
a set of data, P({ai} | data), also called the posterior PDF, as
[68]

P({ai} | data) ≈ P(data | {ai})P({ai}), (20)

where P(data | {ai}) is the likelihood function determined
from the data comparison between the model and the mea-
surement, and P({ai}) is the prior PDF which represents our
knowledge or bias on the model parameters. Detailed discus-
sions for the prior P({ai}) and for the likelihood probability
P(data | {ai}) are given in Secs. II C1 and II C3, respectively.

The marginal one- and two-parameter probabilities are
defined as [68]

P(a j | data) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5∏
i = 1
i �= j

∫
dai

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

P({ai} | data) , (21)

P(a j, ak | data) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

5∏
i = 1

i �= j, k

∫
dai

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

P({ai} | data) . (22)

These marginal probabilities represent the one parameter PDF
and the two-parameter correlation matrix, respectively.

1. Fixed and varied parameters

In our analysis, we evaluate the NS EOSs for each set of
empirical parameters, which are 12 free parameters in total
(10 empirical parameters and two parameters associated to
the Landau effective mass). Some of these parameters are,
however, well known and their small uncertainties do not
impact the dense matter EoS to a large extent [7]. The 12
free parameters are therefore separated into three different
groups:

(P1) the parameters which are not varied:
Esat, Esym, nsat, m∗

sat/m, and �m∗
sat/m;

(P2) the less-known parameters, which are varied on a
uniform grid: Ksat, Lsym, Ksym, Qsat, and Qsym; and

(P3) the totally unknown parameters, which do not impact
our analysis enough to be explored: Zsat and Zsym.

In Table I, we show the parameters which are not varied
(from group P1); see Ref. [7] and references therein. The
parameters such as Esat, Esym, and nsat are well known from
finite-nuclei experiments and their uncertainty does not im-

TABLE I. The prior parameters: the fixed empirical parameters
from groups P1 and P3.

Esat Esym nsat Zsat Zsym

(MeV) (MeV) (fm−3) m∗
sat/m �m∗

sat/m (MeV) (MeV)

−15.8 32.0 0.155 0.75 0.1 0 0

pact our analysis. The other parameters such as m∗
sat/m and

�m∗
sat/m are also constrained from the nuclear experiments,

to a lesser extent, but their uncertainties only weakly impact
dense matter EoS [2].

The varied parameters from the group P2 are discussed in
the next paragraph.

The empirical parameters from the group P3 are fixed to
be Zsat/sym = 0 since they do not play a major role for the
dense matter equation of state associated to NS in the mass
range between 1M� and 2M� which corresponds to possible
masses of the binary NSs from GW170817 (see Ref. [7] for
more details).

2. Discussion of the prior sets for the varied parameters

In the present analysis, the model parameters {ai} which are
varied (group P2) are Lsym, Ksat, Ksym, Qsat, and Qsym. These
empirical parameters are sampled on a uniform grid defined
in Table II. These parameters are varied between lower (Min)
and upper (Max) values, with N steps defining a constant step.
We have considered two different choices for the prior. In the
prior set 1, the boundaries of the parameters are determined
such that the likelihood probability reaches zero, or a very
small value compared to the one inside the range. In the prior
set 2, we fix the boundaries to be the ones determined from
nuclear physics experiments and reported in Ref. [2], except
for Lsym for which we allow the exploration of small values.
A detailed discussion about Lsym is made in Sec. III. Another
point to fully explore the Lsym domain is choosing sufficient
Ksym values, since they contribute the pressure at densities n >

TABLE II. The prior parameters: the empirical parameters from
group (P2), which are varied on a uniform grid for two different sce-
narios. Changes between the two sets are indicated in bold characters.
Here Min and Max are first and last values of the each parameter,
Step is an increment for each iteration, and N is the number of total
fragment. For prior sets 1 and 2, see the text for details.

Empirical Lsym Ksat Ksym Qsat Qsym

parameters (MeV) (MeV) (MeV) (MeV) (MeV)

Prior set 1
Min −10 150 −500 −1000 −2000
Max 70 280 1500 3000 2000
Step 5 10 200 400 400
N 17 14 11 11 11

Prior set 2
Min −10 180 −500 −1000 −2000
Max 70 280 300 3000 2000
Step 5 10 100 400 400
N 17 11 9 11 11
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nsat for β-equilibrated nuclear matter. On the experimental
side, the maximum limit of Ksym is unconstrained from the
nuclear physics experiments. However, the usual domain from
nuclear models is Ksym = 100 ± 100 MeV [2]. Therefore, we
chose the upper bound of Ksym larger than the usual domain
for both prior sets (see Ref. [2] for more details about the
complete analysis for Ksym).

3. Likelihood, error functions, and filters

The likelihood probability defines the ability of the model
to reproduce the data. In the present analysis, it is defined as
[68]

P(data | {ai}) = wfilter p�̃ pχEFT pISGMR , (23)

where wfilter({ai}) is a pass-band-type filter which select only
the models satisfying the necessary condition (C1) expressed
hereafter, and the probabilities p�̃, pχEFT and pISGMR are
associated to constraints (C2)–(C4) expressed hereafter. The
constraints entering into the Bayesian probability [Eq. (23)]
are

(C1) the necessary conditions that each viable EoS shall
satisfy: causality, stability, positiveness of the sym-
metry energy, and maximum observed mass Mobs

max;
(C2) p�̃, the probability associated to the ability of the

EoS to reproduce the tidal deformability extracted
from the GW170817 event [21,26,40];

(C3) pχEFT, the probability measuring the compatibility
between the metamodel and the energy and pressure
bands function of the density predicted from the
χEFT approach below saturation density [8]; and

(C4) pISGMR, the probability of a given metamodel to
be compatible with recent analysis of the ISGMR
collective mode [10,11].

The constraints (C1) are necessary constraints for all EoS,
(C2) are constraints from astrophysics impacting high densi-
ties, while (C3) and (C4) are constraints from low-density nu-
clear physics. In the following, we detail how the probabilities
associated to these constraints are estimated in practice.

Let us detail the constraints from the group (C1). Causality,
stability, and positiveness of the symmetry energy are imposed
as in Ref. [7]. The constraints are imposed up to the density
corresponding to the maximum density of the stable branch.
We also impose that all viable EoS shall have a maximum
mass Mmax � Mobs

max = 2M� [16].
We now come to the constraint (C2) associated to the tidal

deformability from GW170817. We consider three indepen-
dent GW analyses which provide different �̃ PDF. These
PDFs are displayed in Fig. 2 under the labels TD-LVC-2018,
TD-De-2018, and TD-Coughlin-2019. TD-LVC-2018 is the
result of the latest analysis from the LIGO-Virgo Collabora-
tion [21], TD-De-2018 is an independent analysis proposed in
Ref. [26], where more cycles were considered, and finally TD-
Coughlin-2019 is a recent analysis combining GW, EM, and
GRB signals in a Bayesian approach [40]. In contrast to TD-
De-2018 and TD-Coughlin-2019, TD-LVC-2018 has a double
peak; the highest one is peaked around �̃1

max ≈ 180 and the
smaller one is around �̃2

max ≈ 550. However, in TD-De-2018,

0 100 200 300 400 500 600 700 800 900
0.000

0.001

0.002

0.003

0.004

Mchirp=1.186M

P
D
F

Λ

TD-LVC-2018
TD-De-2018
TD-Coughlin-
2019

GW170817
Mtot=2.73M

FIG. 2. The tidal deformability PDF for various analyses of
GW170817: TD-LVC-2018 [21], TD-De-2018 [26], and TD-
Coughlin-2019 [40].

the only peak is �̃max ≈ 200 while in TD-Coughlin-2019 the
peak is located close to the second one, �̃max ≈ 600. The
presence of a double peak has an impact on the �̃ range at
90% confidence level: The upper boundary is 720 in the case
of TD-LVC-2018 while it is about 500 for TD-De-2018. The
lower range is about 70 for TD-LVC-2018 and TD-Le-2018
while it is raised up to about 350 for TD-Coughlin-2019.
Anticipating our results, the PDF from TD-De-2018 selects
more compact objects than the others while the PDF from
TD-Coughlin-2019 prefers less compact objects.

The probability p�̃ is calculated in the following way. For a
given parameter set {ai}, the TOV and the pulsation equations
are first solved, which provides a family {Mi,�i}, where i is
an index running over the central density. We then sample the
mass distribution for the two NS (M1, M2) by taking a set of
six masses, where M2 is distributed from 1.1M� to 1.35M�,
and M1 is calculated such that M1 + M2 = 2.73M� accurately
determined from GW170817. Note that eventually there are
fewer masses in the sample if M1 exceeds the value Mmax

for the EoS. For each sample element, the combined tidal
deformability �̃ is calculated from Eq. (19) and a probability,
pk

�̃
, is assigned from the PDF shown in Fig. 2 for the three

scenarios. The final probability p�̃ is then obtained from the
averaging over the sample elements,

p�̃ = 1

N

N∑
i=k

pk
�̃

. (24)

Note that there is no unique way to calculate p�̃. Another
choice could have been, for instance, to assign to the pa-
rameter set the maximum probability obtained for �̃, p�̃ =
maxk pk

�̃
. However, since the �̃ PDF only weakly depends

on the mass asymmetry [26], these two possible prescriptions
are almost identical. It should also be noted that in the case
of a first-order phase transition occurring in the mass range
under study, differences between these two prescriptions can
be expected: The mass asymmetry between the two NSs could
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FIG. 3. Pression posterior functions in neutron matter (NM) (a) and symmetric matter (SM) (b) obtained from the constraint C3 associated
to the χEFT bands calculated in Ref. [8].

have a strong impact on �̃ if the phase transition occurs at a
mass in between the ones of the two NS [25,69].

In the present analysis, we indeed assume that each neutron
star of the binary system has the same EoS and the same par-
ticle composition and that their particle fractions are derived
from the β-equilibrium condition. Other exotic compositions
such as pion or kaon condensation, � resonances, and hyper-
ons giving rise to hybrid-star/NS binaries will be considered
in future works.

The constraint (C3) is a nuclear physics constraint which
measures the proximity of the metamodel to the prediction
bands for the energy per particle and the pressure in SM
and NM obtained by many-body perturbation theory based on
χEFT nuclear two- and three-body interactions [8]; see Fig. 1
for illustration. We remark that the considered χEFT band is
acceptable with experimental results on finite nuclei (charge
radius, neutron skin, electric dipole polarizability, and the
weak form factor of 48Ca) [9]. Since it is calculated by using
few-body observables at nucleonic scale with their theoretical
uncertainties, we can interpret (C3) as an common expectation
of the nuclear physics.

In practice, we estimate the following error function
χ2,χEFT for each set of metamodels,

χ2
2,χEFT = 1

Ndata

Ndata∑
i=1

[
odata

i − oi({ai})

σi

]2

, (25)

where Ndata = 20 is the number of data odata
i considered here,

oi({ai}) is the prediction of the model, and σi is associated
to the uncertainties in the data and the accepted model dis-
persion. We consider five density points uniformly distributed
between 0.12 fm−3 and 0.20 fm−3. If �i is the width of the
band at each density point, we fix σi = �i/2 to ensure that
95% of the models lie inside the band. The small tolerance
of 5% of the models outside the band is there to smoothly
reduce the probability of marginal metamodels. The asso-
ciated probability is thus deduced from the usual Gaussian

expression,

pχEFT = exp
(− 1

2χ2,χEFT
)
. (26)

An example of likelihood function associated to the pres-
sion for a few densities (0.12, 0.16, and 0.20 fm−3) is shown in
Fig. 3 for SM (a) and NM (b), where only the constraint C3 is
imposed. There is a nice overlap with all models inside χEFT
bands with 95% confidence level (shaded regions of Fig. 3).

The last constraint (C4) is obtained from a recent analysis
of the ISGMR in finite nuclei [10,11]. Theoretical models de-
signed to describe finite nuclei and applied to the calculation
of the ISGMR centroid energy in 120Sn and 208Pb suggest that
the slope of the incompressibility Mc at nc = 0.11 fm−3 is
very well correlated to the experimental data and less model
dependent than Ksat. Mc is defined as

Mc = 3nc
dK (n0)

dn0

∣∣∣∣
n0=nc

, (27)

where the incompressibility K (n0) in SM (δ = 0) is, with χ

being the compressibility,

K (n0) = 9n0

χ (n0)
= 9n2

0
d2e(n0)

dn2
0

+ 18

n0
P(n0) , (28)

and the pressure is

P(n0) = n2
0

de(n0)

dn0
. (29)

It is found that Mc = 1050 MeV ± 50 MeV [10,11]. The
interesting feature of this parameter is that it is much less
model dependent that the more frequently considered incom-
pressibility modulus Ksat = K (nsat ).

In practice, we calculate the value of Mc for each of our
metamodels by assigning the following probability,

pISGMR = exp

{
−1

2

[
Mc({ai}) − 1050

25

]2
}

, (30)
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where we associate the dispersion ±50 MeV estimated in
Refs. [10,11] to the distribution of 95% of the metamodels.

III. RESULTS AND DISCUSSION

Taking advantage of the Bayesian framework, we ana-
lyze the contributions coming from the constraints (C2)–
(C4) to understand the individual contributions coming from
�̃, χEFT and ISGMR to the final posterior probability. Both
joint and sole posterior probabilities will be shown, and the
influence of the prior set and three p�̃ are also presented.
In the following, the uncertainties are defined as the 68%
confidence level around the centroid.

In the present statistical analysis, we generate a sample of
294 151 parameter sets for prior set 1 and 203 643 for prior
set 2 before the filtering (see Table II). For each set, the
probabilities p�̃, pχEFT, and pISGMR are calculated according
to Eqs. (24), (26), and (30). The total likelihood probability
is calculated from Eq. (23). The reduction from the multidi-
mension PDF to the one- or two-parameter probabilities are
obtained from marginalization; see Eqs. (21) and (22).

In the present section, we analyze the PDF for
Lsym, Ksym, Qsat, Qsym, R1.4, and P(2nsat ) and the correla-
tions between the parameters Lsym-Ksym and Ksat-Qsat. The
PDF for Ksat is not shown here since Ksat is found to only have
a weak impact on p�̃.

A. Probability distributions for the empirical parameters

We first study posterior distribution for the empirical pa-
rameters: Lsym, Ksym, Qsat, and Qsym.

1. Empirical parameter Lsym

The empirical parameter Lsym is the slope of the symmetry
energy at nsat. In Fig. 4, the detailed contributions of the con-
straints (C2)–(C4) as well as of the role of the �̃-PDF and of
the prior scenario 1 [Fig. 4(a)] or 2 [Fig. 4(b)] is shown. Note
the marked tension between the PDF associated to χEFT and
the �̃ one (TD-LVC-2018, TD-Le-2018, TD-Coughlin-2019).
Being peaked at higher values for �̃, the TD-Coughlin-2019
PDF favors slightly larger Lsym values than the two others.
The influence of the prior is weak, but interestingly, the prior
set 1 produces more peaked posteriors than the prior set 2,
which is inferred from analyses of nuclear physics models.
This could be interpreted as a signal for the marked deviations
from nuclear physics predictions: When the constraints from
nuclear physics is relaxed (mainly the prior on Ksym) in the set
1, there is a group of EoS which are clearly preferred by the
GW tidal deformability and which are located well outside the
domain for Lsym suggested by nuclear physics.

The GMR constraint has no effect on Lsym since the GMR
mainly contributes to parameters related to symmetric nu-
clear matter. The χEFT constraint predicts values for Lsym =
35+7

−10 (42+7
−16) MeV for the prior sets 1 (2), while the tidal

deformability favors low or even negative Lsym values. For
instance, TD-LVC-2018 gives Lsym = 0+5

−3 (−3+18
−3 ) MeV for

the prior sets 1 (2). As expected, the prior set 2 allows some
positive values for Lsym in the PDF shown in Fig. 4.
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FIG. 4. The generated PDFs of Lsym for the prior set 1 (a) and the
prior set 2 (b).

The joint probabilities naturally favor values for Lsym

which are intermediate between the two extremes. The
most probable value for TD-LVC-2018 (TD-De-2018 and
TD-Coughlin-2019) is Lsym = 0+12

−4 (17+11
−7 ) MeV [Lsym =

0+2
−3 (15+11

−13) MeV and Lsym = 10+7
−10 (16+15

−5 ) MeV] for the
prior sets 1 (2). The difference between the prior sets 1
[Fig. 4(a)] and 2 [Fig. 4(b)] reflects the choice for the prior
distribution: The upper bound for Ksym is fixed to be 1500
MeV for the prior set 1 and only 300 MeV for the prior set 2
(see Table II). The distribution of Lsym is thus impacted by the
knowledge from the next order empirical parameter Ksym: The
better defined Ksym, the more peaked Lsym. The correlation
between Lsym and Ksym will be analyzed in Sec. III C. Note that
the influence of the unknown high-order empirical parameters
was originally stressed in Ref. [70].

Interestingly, the empirical parameter Lsym is investigated
by a large number of experiments; see Ref. [71] and refer-
ences therein. Confronting the predictions of various nuclear
physics experiments, namely neutron skin thickness, heavy-
ion collisions, dipole polarizability, nuclear masses, giant
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dipole resonances, and isobaric analog states, the values of
Lsym vary between 30 and 70 MeV [2,26,71,72]. It is, however,
interesting to note that a few studies give for Lsym lower
values, even negative ones (see Refs. [73,74]) from the charge
radius of Sn and Pb isotopes using a droplet model. A detailed
analysis based on a few Skyrme and Gogny interactions advo-
cates also for a low values for Lsym [75]. The measurement of
the 208Pb neutron skin thickness from the PREX Collaboration
(lead radius experiment [76]) is expected to provide a model-
independent estimation of Lsym. The experiment, however, has
not yet been very conclusive, with a measured neutron skin
thickness R208

skin = 0.33+0.16
−0.18 fm.

Anticipating the results of Sec. III B, there is a strong
correlation between the marginalized probability distribution
as function of Lsym and the one as function of R1.4: A low value
of Lsym coincides with a low radius R1.4. Hence, the peak at
low Lsym observed for the tidal deformabilities TD-LVC-2018
and TD-De-2018 reflects that the �̃ PDF prefer NS with
small radii. Since the physical implications are more clear in
terms of radii, we further discuss the meaning of low radii
(equivalently low Lsym) in Sec. III B.

2. Empirical parameter Ksym

The empirical parameter Ksym encodes the curvature of the
symmetry energy at nsat. It is different from the parameter Kτ

which is defined as the curvature of the binding energy for a
fixed proton fraction [64],

Kτ = Ksym − 6Lsym − QsatLsym/Ksat . (31)

The isospin dependence of the isoscalar giant monopole res-
onance (ISGMR) is a natural observable to determine the
parameter Kτ [64]. Kτ = −550 ± 100 MeV has been ex-
tracted from the breathing mode of Sn isotopes (Refs. [77,78])
and also from isospin diffusion observables in nuclear reac-
tions (Refs. [79,80]). If Lsym and Qsat were well determined,
Eq. (31) would provide an equivalence between Kτ and Ksym.
However, the large uncertainties on Lsym and Qsat induce a
large error bar for Ksym, of the order of ±600 MeV [2].
Besides, the statistical analysis of various theoretical model
predict a value Ksym = −100 ± 100 MeV [2]. This result is
also in agreement with Ref. [31], which is GW analysis done
by using TE EoSs. On the other hand, there is an experimental
determination of Ksym by using latest ISGMR values of 90Zr,
116Sn, and 208Pb nuclei from Skyrme EDFs: Ksym = −120 ±
40 MeV from Ref. [81]. The smaller error bar than the
statistical analysis reveals the presence of correlations among
Lsym, Qsat, and Ksym, which does not vary independently from
each other.

In our analysis, we explore two priors for Ksym, one which
is pushed until the likelihood probability is quenched (prior
set 1), and one which is compatible with the expectation
Ksym = −100 ± 100 MeV (prior set 2). In Fig. 5, the posterior
PDFs for Ksym are displayed for both prior sets. The posteriors
are qualitatively similar between the prior sets 1 and 2. From
χEFT, we obtain Ksym = 15+600

−265 (10+290
−410) MeV for the prior

sets 1 (2). The tidal deformability, however, favors positive
values where TD-LVC-2018 (TD-De-2018 and TD-Coughlin-
2019) predicts Ksym = 375+∞

−400 MeV (Ksym = 390+∞
−400 and
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FIG. 5. The generated PDFs of Ksym for the prior set 1 (a) and
2 (b).

Ksym = 275+890
−330 MeV) for the prior set 1. TD-Coughlin-2019

prefer values for Ksym very slightly below the distributions
produced by TD-LVC-2018 and TD-De-2018. This can be
understood from the Lsym-Ksym anticorrelation originating in
the causality condition. Although we cannot define centroid
values of Ksym since the prior set 2 limits the posteriors to
Ksym = 300 MeV, shifting the prior set 1 to 2 adds 100 MeV
to the minimum values of Ksym. There is also a difference
between the expectations from χEFT and from the tidal
deformability, while at variance with Lsym, the differences are
here less marked. The impact of the ISGMR is also pretty
small.

Finally, the joint probabilities shown in Fig. 5 give Ksym =
440+210

−210 MeV (Ksym = 560+150
−150 MeV and Ksym = 260+240

−240
MeV) for TD-LVC-2018 (TD-De-2018 and TD-Coughlin-
2019). Considering the −2σmin value for each centroid, one
can define the lower limit for Ksym: Ksym � 18 MeV for TD-
LVC-2018, Ksym � 260 MeV for TD-De-2018, and Ksym �
−213 MeV for TD-Coughlin-2019. It should be noted that
several analysis have been done on the bounds of Ksym, pro-
viding Ksym � −500 MeV to Ksym � −250 MeV depending
on used models [82–85]. Besides, an interesting work about
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the lower limit of Ksym is the unitary gas (UG) limit for
the NM, which is in a good agreement with our predictions
[86]. Since the ground-state energy per particle in the UG is
proportional to the Fermi energy, one can describe a forbidden
zone for energy per particle of EoS in terms of the Fermi
energy for neutron matter. Using the average value of Ksat =
230 ± 20 MeV (see Ref. [2] for a complete analysis about the
parameter Ksat), a minimum limit for Ksym can be obtained:
Ksym � −255 ± 20 MeV. However, contrary to the UG, the
NM includes effective-range effects and interactions in higher
partial waves especially for densities n � nsat. Therefore, it is
expected that the lower limit of Ksym should be higher then the
one obtained from the UG.

3. Empirical parameter Qsat

The skewness Qsat is the lowest order empirical parameter
in SM which is almost unconstrained. While the incom-
pressibility modulus Ksat is well defined, the density depen-
dence of the incompressibility is poorly known and there are
very scarce experimental analyses to determine its value. An
analysis based on charge and mass radii of the Sn isotopes
concluded that either Qsat ≈ 30 MeV or Lsym ≈ 0 MeV [74].
Another analysis based on the Skyrme functionals which
are fitted according to the breathing modes concluded that
Qsat ≈ 500 MeV [87]. A systematic analysis also suggests
Qsat = 300 ± 400 MeV based on a large number of theoretical
models of the literature [2].

There are also other analyses based on various models
from the RMF and SHF frameworks in which the EoS is
constrained by using the tidal deformability of GW170817
[31,32]. More precisely, the parameter M0, defined as

M0 = M(nsat ) = 3nsat
dK (n0)

dn0

∣∣∣∣
n0=nsat

, (32)

is constrained. The following predictions were obtained for
M0: 2254 � M0 � 3631 MeV or 1926 � M0 � 3768 MeV
depending on Lsym [32] and 1526 � M0 � 4971 MeV [31].

Using the relation M0 = 12Ksat + Qsat (see Ref. [88]), one
can make a prediction for Qsat by considering adequate Ksat

value. If we consider Ksat = 230 ± 20 MeV from Ref. [2],
then −800 � Qsat � 1100 MeV for Ref. [32] and −1200 �
Qsat � 2100 MeV for Ref. [31].

In Fig. 6, the posterior PDFs of Qsat are presented. It
is clear that χEFT does not constrain Qsat. This is because
Qsat influences the EoS at densities well above saturation
density, while the data from χEFT are relevant until n0 =
0.2 fm−3. The empirical parameter Qsat is, however, better
constrained by both the tidal deformability from GW170817
and the ISGMR while the predictions from prior sets 1 and
2 are very similar. Despite that all posteriors of tidal de-
formability considering TD-LVC-2018, TD-De-2018, or TD-
Coughlin-2019 independently agree on the lower limit of Qsat

(Qmin
sat ≈ −500 MeV), the higher boundary of Qsat is con-

strained by applying both the tidal deformability and the IS-
GMR constraints. The results from joint posteriors are Qsat =
−180+1220

−175 (−160+935
−175) MeV [Qsat = −220+1130

−150 (−215+650
−150)

MeV and Qsat = 95+1365
−250 (200+1110

−445 ) MeV] for TD-LVC-2018
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FIG. 6. The generated PDFs of Qsat for the prior sets 1 (a) and
2 (b).

(TD-De-2018 and TD-Coughlin-2019) for the prior sets 1 (2),
respectively.

Furthermore, we also study the impact of switching off the
ISGMR constraint for the prior set 1 on the posterior proba-
bility in order to see its global effect on the joint posteriors;
see Fig. 7. The joint posteriors are Qsat = −135+1755

−250 MeV
(Qsat = −190+1800

−200 MeV and Qsat = −130+2000
−250 MeV) for TD-

LVC-2018 (TD-De-2018 and TD-Coughlin-2019). Removing
the ISGMR constraints increases the uncertainty on the joint
posteriors for Qsat by about 500 MeV. This shows that Mc is
an important constraint for better defining the value of Qsat.
Furthermore, a reduction of the uncertainty on Mc, by a sys-
tematical comparison of the metamodel predictions in finite
nuclei, for instance, would imply a more precise estimation
for the empirical parameter Qsat.

4. Empirical parameter Qsym

The empirical parameter Qsym controls the skewness of the
symmetry energy at nsat. An analysis based on the various
theoretical models (Skyrme Hartree Fock, relativistic Hartree
Fock, RMF, and χEFT) suggests Qsym = 0 ± 400 MeV but
still its value runs over a large range from model to model,
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FIG. 7. Same as Fig. 6 for the prior set 1 without ISGMR.

e.g., −2000 � Qsym � 2000 MeV [2]. Since Qsym contributes
to the EoS at suprasaturation densities, it is quite difficult
to estimate the value of this empirical parameter from low-
density χEFT or from terrestrial experiments in finite nu-
clei like the ISGMR. It furthermore requires systems which
probe asymmetric nuclear matter. It is therefore completely
unknown from the nuclear physics traditional approach and
one could easily understand that χEFT and ISGMR con-
straints are ineffective for constraint Qsym, as shown in Fig. 8.
The most effective constraint is provided by the tidal de-
formability, but it is interesting to remark that even if χEFT
and ISGMR does not provide constraints taken individu-
ally, the joint posterior including tidal deformability, χEFT,
and ISGMR is narrower than the probability distribution
considering �̃ alone. The joint posteriors from TD-LVC-
2018 (TD-De-2018 and TD-Coughlin-2019) favor the fol-
lowing values: Qsym = −270+1690

−1125 (−170+1375
−750 ) MeV [Qsym =

−675+1160
−595 (−375+835

−475) MeV and Qsym = 220+1940
−1575 (275+1815

−1240)
MeV) for the prior sets 1 (2). It shall also be noted that there
is a marked correlation between Ksym and Qsym: The prior set
2, considering a tighter prior for Ksym compared to the prior
set 1, also predicts a narrower peak for Qsym. In conclusion,
we point out that with a more accurate PDF for �̃, we have a
better constraint for Qsym.

B. Posterior probabilities for the radius
R1.4 and the pressure P(2nsat )

We now study the impact of the constraints on the posterior
distribution for the NS radius at 1.4M�, R1.4, and the pressure
at 2nsat, P(2nsat ).

As discussed in Sec. I, x-ray observations of NS such as
thermal emissions or x-ray bursts advocate for the following
limits of NS radii: 7.9 � R1.4 � 12.66 km [14,42–44]. More-
over, GW analysis based on the various models concluded
that 11.80 km � R1.4 � 12.80 km in Ref. [33], 12.00 km �
R1.4 � 13.70 km in Refs. [27,29], and 11 � R1.4 � 13 km
considering 100 � �̃ � 600 in Ref. [3]. While being mostly
consistent, these predictions are slightly different, reflecting
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FIG. 8. The generated PDFs of Qsym for the prior sets 1 (a) and
2 (b).

the small model dependence in the theoretical models em-
ployed.

We show in Fig. 9 the posterior PDFs for the NS radius
R1.4 for the different individual constraints and for the joint
one. The predictions from TD-LVC-2018 and TD-De-2018
are R1.4 = 10.7+2.1

−0.3 (10.5+1.3
−0.2) km for the prior sets 1 (2) at

variance with the prediction from TD-Coughlin-2019 R1.4 =
13.1+0.5

−0.5 km, which are consistent with the predictions from
nuclear physics (χEFT): R1.4 = 13.0+0.8

−1.2 (12.7+0.8
−0.6) km for

the prior sets 1 (2). If the �̃ distribution suggested by TD-
LVC-2018 and TD-De-2018 is correct, there is a difference
of about 1.5 km for the most probable radii compared to
the prediction from χEFT. This difference is larger that
the standard deviation for each PDF, indicating a possi-
ble source for tension, as also observed for the PDF of
Lsym. Finally, the joint probabilities shown in Fig. 9 predict
R1.4 = 11.0+1.3

−0.3 (11.0+1.9
−0.3) or R1.4 = 12.0+0.3

−1.3 (11.0+1.9
−0.3) km

[R1.4 = 11.0+1.3
−0.3 (11.0+1.7

−0.3) or R1.4 = 12.0+0.3
−1.3 (11.0+1.7

−0.3) km
and R1.4 = 12.9+0.4

−0.4 (12.5+0.5
−0.3) km] for TD-LVC-2018 (TD-

De-2018 and TD-Coughlin-2019) for the prior sets 1 (2).
Interestingly, the joint posteriors suggested by TD-LVC-2018
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FIG. 9. The generated PDFs of NS radius R1.4 for the prior set #1
(a) and #2 (b).

and TD-De-2018 predict a double peak, where the first one
is around 11 km and the second one is around 12 km for the
prior set 1.

Our prediction for R1.4 preferred by GW170817 only (TD-
LVC-2018 and TD-De-2018 but not TD-Coughlin-2019) is
very similar to the one recently performed in Ref. [39], where
R1.4 ≈ 11 ± 1 km is obtained from the analysis of the GW
wave forms and the constraint from the maximum mass. This
is not entirely surprising since even if the analysis is different
from ours, on the bare data in Ref. [39] and based on the
postprocessed analysis in terms of �̃ in our case, the physics
issued from GW is the same. A low value for the radius
R1.4 ≈ 11 km is marginal with nuclear physics (represented
here by the χEFT and GMR constraints). Our result suggest
that the low peak value for �̃ ≈ 200 needs a softening of
the EoS that nuclear degrees of freedom could not produce
for the typical masses estimated from GW170817, which are
around 1.3–1.5M� (coinciding to central densities of about
2–3ρsat). This softening could be obtained by the onset of
new degrees of freedom, such as pion or kaon condensation,
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FIG. 10. The generated PDFs of the pressure at 2nsat for the prior
sets 1 (a) and 2 (b).

hyperonization of matter, or a first-order phase transition to
quark matter. The requirement to reach about 2M� also limits
the softening, which could be obtained assuming a transition
to quark matter [58]. Such scenarios will therefore be explored
in the future.

It was recently proposed to analyze the constraint from the
tidal deformability from GW170817 in terms of the pressure
at 2nsat [89]. An analysis done by Ligo-Virgo Collabora-
tions [89] obtained (with 90% confidence interval) a pres-
sure P(2nsat ) = 21.80+15.76

−10.55 MeV fm−3 where the error bars
represent 90% confidence level (corresponding to P(2nsat ) =
21.80+9.58

−6.41 MeV fm−3 for 65% confidence level). Another
analysis based on χEFT [3] concluded that 15 � P(2nsat ) �
25 MeV fm−3 considering 100 � �̃ � 600.

We thus further extend this approach by also imposing
the nuclear physics constraints on top of the tidal deforma-
bility, in the same spirit of the previous plots (Fig. 10).
Additionally, we have added P(2nsat ) from Ref. [89] for
comparison. The constraints from χEFT and ISGMR generate
a rather flat distribution between the boundaries with small
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and marginal peaks. The tidal deformability imposes slightly
stronger constraints, with P(2nsat ) � 15 MeV for the prior
sets 1 and 2. It is, however, interesting to note that here also the
joint posteriors predicts a peak narrower when including all
three constraints: P(2nsat ) = 24.6+24.4

−5.0 (26.0+13.6
−5.0 ) MeV fm−3

[P(2nsat ) = 23.7+28.0
−5.0 (25.0+7.8

−5.2) MeV fm−3 and P(2nsat ) =
25.0+19.9

−5.0 (30.0+18.3
−6.7 ) MeV fm−3] for TD-LVC-2018 (TD-De-

2018 and TD-Coughlin-2019) for the prior sets 1 (2). Al-
though the centroid values of each tidal deformabilities are
quite similar between the priors, the prior set 2 includes less
uncertainty for TD-LVC-2018 and TD-De-2018. Therefore,
we conclude that the limits of the pressure at 2nsat are 19 �
P(2nsat ) � 50 MeV fm−3. Besides, considering the prior set
2, which has a tighter bound for Ksym, our prediction is in
good agreement with the one proposed by Ligo-Virgo [89].
The smaller dispersion is shown to come from the ISGMR,
χEFT, and tidal deformability considered all together. There
is, however, no inclusion of phase transition in the present
analysis, which is expected to increase the width of the
prediction [25,30].

C. Analysis of the correlations among empirical parameters

We now present a few results on the correlations among
empirical parameters originating in the different constraints
investigated in this study.

1. Lsym-Ksym correlation

We first explore the correlation between Lsym and Ksym,
see Fig. 11, which was also explored in Refs. [82–85,90–
93]. We note that the influence of the prior sets on the Lsym-
PDF, see Fig. 4, was suggesting the presence of a correla-
tion between Lsym and Ksym. Here also we find a marked
difference between the Lsym-Ksym domain preferred by the
GW constrain (low Lsym values) and the one preferred by
the χEFT one (high Lsym values). The lower bounds in Lsym

and Ksym are imposed by the stability and Mobs
max constraints,

while the upper bounds are fixed by the causality one. Note
that the Lsym-Ksym domain preferred by the TD-De-2018 �̃-
PDF is a bit smaller than the one preferred by TD-LVC-
2018. Moreover, the prior set 2 explores a smaller parameter
space than the prior set 1, see Table II, and the correlation
domain is smaller for set 2 compared to 1. Despite this main
difference, there is still a small but noticeable impact of the
prior set.

After exploring a large set of RMF and Skyrme EDFs,
the relation Ksym = β(3Esym − Lsym) + α, with β = −4.97 ±
0.07 and α = 66.80 ± 2.14 MeV, was suggested [82]. Fixing
Esym = 32 MeV (actually Esym = 32.1 ± 0.3 MeV is taken in
Ref. [82], but we keep fixed Esym = 32 MeV in our analysis;
for details see Table I and related explanations), this corre-
lation is shown in Fig. 11 with the caption Mondal 2017.
This correlation was shown to originate from the physical
condition that the energy per particle in NM should be zero
at zero density [70]. Using the metamodel, the validity of
this correlation has been confirmed and the contribution of
higher order parameter (Qsym, Qsat, Zsym, and Zsat) has also
been investigated, adding about 200 MeV uncertainty to Ksym
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FIG. 11. The values of the Lsym and Ksym inside of the 1-σ
probability for the prior sets 1 (a) and 2 (b) with the fit from Ref. [82].

[70]. There is an overlap between the Mondal 2017 correlation
line and the χEFT preferred domain, as expected. However,
the χEFT preferred domain is much larger since we have
considered only the n0 � 0.12 fm−3 energy band in NM. The
constraint at very low density is thus not included in the χEFT
preferred domain.

We have also analyzed the impact of the ISGMR con-
straints on the Lsym-Ksym correlation, but since this is a corre-
lation among isovector empirical parameter, there is no impact
of the ISGMR constraint.

Finally, the blue contours in Figs. 11 represent the 1-σ el-
lipses including both the GW and χEFT constraints together.
This ellipse is only weakly dependent on the prior sets 1 and
2. We therefore propose a correlation which reproduces the
joint probability as

Ksym = α1Lsym + β1, (33)

where α1 = −18.83+3.00
−2.00 and β1 = 616+140

−180 MeV.
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FIG. 12. The values of the Ksat and Qsat inside of the 1-σ prob-
ability for the prior sets 1 (a) and 2 (b) with a spurious correlation
found for Skyrme and Gogny EDFs from Ref [11]. Note that the
χEFT constraint is included for all joint posteriors.

2. Ksat-Qsat correlation

The second correlation we analyze here is the one between
Ksat and Qsat. The physical origin of this correlation is related
to the ISGMR constraint reflected into the parameter Mc

defined below saturation density at nc ≈ 0.11 fm−3 [10,11].
By setting n0 = nc in the isoscalar channel (δ = 0) of the
metamodel, one can obtain the following relation: Mc ≈
4.6Ksat − 0.18Qsat − 0.007Zsat [70]. By fixing Mc = 1050 ±
100 MeV, this relation induces a correlation between Ksat and
Qsat. However, a general analysis based on metamodel shows
that this correlation is rather weak from the various EDFs
and the parameter Qsat is yet unknown [70]. Since Qsat can
be constrained by the GW data, it is worth analyzing the
correlation Ksat − Qsat under the influence of GWs.

In Fig. 12, the Ksat-Qsat correlations are shown for various
constraints with a spurious correlation found for Skyrme and
Gogny EDFs from Ref. [11] as the caption Khan 2013. The
source of this spurious correlation is the density-dependent
term from Skyrme and Gogny EDFs [11]. First, it should

be stressed that the χEFT constraint is included for all joint
posteriors, but its effect was found negligible in this case. The
domain allowed from the ISGMR constraint is shown with
purple large dots, as previously discussed. A lower bound
Qsat � −500 MeV is shown, originating from the GW con-
straint discussed in Fig. 6. Finally, we represent the domain
allowed by the GW data with the “+” (TD-LVC-2018), “x”
(TD-De-2018), and “�” (TD-Coughlin-2019) symbols. There
is a nice overlap between the GW data and the ISGMR.
Furthermore, the confrontation of the GW data to the ISGMR
correlation band allows us to identify a smaller domain in
Ksat-Qsat domain, which is represented by the blue 1-σ ellipse.
However, there is a divergent result between the correlations
from Skyrme and Gogny EDFs from Ref [11] and the GW
since the GW favors −500 � Qsat � 1500 MeV and it for-
bids Qsat � −500 MeV. The origin of this divergence can
also be a hint for a phase transition.

From the 1-σ confidence interval, one can derive the fol-
lowing relation:

Ksat = α2Qsat + β2, (34)

where α2 = 0.035+0.01
−0.01 and β2 = 199+20

−30. Furthermore, it
seems that the GMR and GW constrain different parameters
at the same time. While the GW is constraining Qsat, the
GMR impacts Ksat. Consequently, joint posteriors predict
170 (180) � Ksat � 250 (240) MeV and −500 (−500) �
Qsat � 1200 (1000) MeV for the prior sets 1 (2), respectively.
An increased resolution of both constraints shall lead to more
accurate determinations of Ksat and Qsat.

IV. CONCLUSIONS

In this paper, we have investigated the impact of various
constraints on the EoS combining a semiagnostic metamodel
approach and Bayesian statistics. We have analyzed the im-
pact of the prior by comparing two different prior sets and
contrasted three independent PDF for �̃.

Our main results are the presence of marked tensions
between various analyses of the GW signal from GW170817
depending on the inclusion or absence of multimessenger
additional constraints, and marked tensions between astro-
physical and nuclear physics constraints.

Let us start with the impact of the considered �̃-PDF. If
we assuming the PDF from Refs. [26] (TD-De-2018), the
posteriors favor Lsym = 0+2

−2 MeV and Ksym = 390+∞
−400 MeV,

while if we assume the PDF resulting from a multimessen-
ger analysis (TD-Coughlin-2019) [40], the posteriors favor
Lsym = 10+10

−10 MeV and Ksym = 275+890
−330 MeV. These numbers

are for the prior set 1. The posterior predictions based on
the �̃-PDF from Ref. [21] (TD-LVC-2018) are intermediate
between these two cases. There is also a marked tension
between the radius predictions R1.4 since R1.4 = 10.7+2.1

−0.3 km
for the TD-De-2018 and TD-LVC-2018 �̃-PDF, while it is
R1.4 = 13.1+0.5

−0.5 km for the TD-Coughlin-2019 �̃-PDF. Note
that the radius R1.4 predicted by the �̃-PDF from Refs. [21,26]
is consistent with another recent reanalysis of GW170817
[39]. These �̃-PDFs are, however, more consistent in their
predictions for the pressure and we have found P(2nsat ) =
45+35

−25 MeV fm−3 for prior set 1.
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TABLE III. Centroid, σMin and σmax values of posterior PDFs for prior set 1.

Empirical parameters and
neutron star observables Lsym (MeV) Ksym (MeV) Qsat (MeV) Qsym (MeV) R1.4 (km) P(2nsat ) (MeV fm−3)

TD-LVC-2018 0+5
−3 375+∞

−400 −101+∞
−299 −521+∞

−755 10.7+2.1
−0.3 45+35

−25

TD-De-2018 0+2
−2 390+∞

−400 −144+∞
−293 −340+∞

−1000 10.7+2.1
−0.3 45+35

−25

TD-Coughlin-2019 10+10
−10 275+890

−330 −101+∞
−299 502+∞

−946 13.1+0.5
−0.5 45+35

−25

χEFT 35+7
−10 15+600

−265 13+0.8
−1.2 12+23

−4

GMR 5+∞
−500 1614+881

−∞ 372+2000
−2000 12.8+1.5

−1.5

TD-LVC-2018+χEFT+GMR 0+12
−4 440+210

−210 −180+1222
−175 −271+1690

−1126 11+1.3
−0.2 or 12+0.3

−1.2 25+24
−5

TD-De-2018+χEFT+GMR 0+2
−3 560+150

−150 −220+1130
−250 −677+1159

−597 11+1.2
−0.2 or 12+0.2

−1.2 24+28
−5

TD-Coughlin-2019+χ EFT+GMR 10+7
−10 260+240

−240 93+1365
−250 218+1942

−1576 12.9+0.4
−0.4 25+20

−5

These predictions are also in marked tension with the pos-
teriors from χEFT which predicts Lsym = 35+7

−10 MeV, Ksym =
15+600

−265 MeV, R1.4 = 13.0+0.8
−1.2 km, and P(2nsat ) = 12+23

−4 MeV
fm−3 for prior set 1. It is interesting to remark that there is
a marked tension in the values for Lsym between all �̃-PDF
analyses and the χEFT one. However, for the radius R1.4, the
multimessenger �̃-PDF, which is peaked at �̃ ≈ 600, is in
good agreement with χEFT predictions (see Table III for an
overview).

Finally, we have analyzed the Lsym-Ksym and Ksat-Qsat

correlations under the influence of GW170817, χEFT, and
ISGMR constraints and proposed fits for our joint probability
correlations.

The tensions presented here between the posterior predic-
tions are marked, but still consistent at 2–3σ . The reduction
of the uncertainties in our predictions requires a reduction of
the observational or experimental uncertainties, so increasing
the accuracy on the determination of tidal deformability from
GW, as well as Mc from the ISGMR, will lead to better
determinations of Ksat and Qsat and NS properties. Increasing

the number of BNS GW signals is also a way to refine our
present analysis and conclude on the strength of the tension
between multiphysics constraints.
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