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Structure and composition of the inner crust of neutron stars from Gogny interactions
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The detailed knowledge of the inner crust properties of neutron stars might be important to explain different
phenomena such as pulsar glitches or the possibility of an r-process site in neutron star mergers. It has been
shown in the literature that quantal effects like shell correction or pairing may play a relevant role to determine
the composition of the inner crust of the neutron star. In this paper we construct the equation of state of the
inner crust using the finite-range Gogny interactions, where the mean field and the pairing field are calculated
with same interaction. We have used the semiclassical variational Wigner-Kirkwood method along with shell
and pairing corrections calculated with the Strutinsky integral method and the BCS approximation, respectively.
Our results are compared with those of some popular models from the literature. We report a unified equation
of state of the inner crust and core computed with the D1M* Gogny force, which was specifically fabricated for
astrophysical calculations.
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I. INTRODUCTION

The structure of a neutron star (NS) can be described
mainly by a homogeneous core encompassed by two in-
homogeneous concentric shells [1]. The outermost region,
called the “outer crust,” is formed by a lattice of neutron-
rich nuclei permeated by an electron gas. The equation of
state (EoS) in this region is mainly determined by nuclear
masses, which can be taken from the experiment or, when
unknown, from successful mass models. When the density
reaches a value ∼0.0003 fm−3 the neutrons start to drip
from the nuclei [1–3], the lattice structure still remains but
now permeated by neutron and electron gases. This region
is called the “inner crust,” which further transforms into a
homogeneous core around a density ∼0.08 fm−3. It has been
suggested that near the transition to the core in the bottom
layers of the inner crust matter may arrange in geometrical
structures different from the spherical configuration in order
to reduce the Coulomb energy. These structures may exist
in various shapes embedded in a neutron and electron fluid
giving rise to the so-called “pasta phase” (see chap. 3 of
Ref. [1] and references therein for comprehensive details).
The presence of the free neutron gas lying in the continuum
makes a Hartree-Fock (HF) calculation in this region of the
NS very complicated. Since the seminal paper of Negele and
Vautherin [4], there are several HF calculations performed in
the inner crust of NSs within the framework of the spherical
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Wigner-Seitz (WS) approximation [5–12], which are mainly
devoted to study the superfluid properties of the star. More
sophisticated three-dimensional HF calculations, often at fi-
nite temperature and fixed proton fraction, have recently been
carried out [13–18]. Also calculations based on Monte Carlo
techniques and molecular dynamics calculations, which do
not impose periodicity or symmetry of the system unlike
the WS approximation, have been reported in the literature
[19–22]. However, these calculations usually do not provide
the complete EoS in the inner crust. Thus, simplified methods
of semiclassical type, based on the Thomas-Fermi approxi-
mation with nonrelativistic [13,23–30] or relativistic [31–36]
interactions as well as the compressible liquid drop model
(CLDM) calculations [37,38], are often used for systematic
studies of the inner crust.

Although the mass and the thickness of the NS crust is
a small fraction of their total values, which are basically
determined by the core, the crust has a relevant role in some
observed astrophysical phenomena such as pulsar glitches,
quasiperiodic oscillations in soft γ -ray repeaters, thermal
relaxation in soft x-ray transients, etc. [1,39–45]. The crust
might also be an r-process site in NS mergers [46–49].
Therefore, it is very important to draw a clear picture of
the structure and composition of the crust. A large number
of theoretical studies of the inner crust of NSs have been
carried out with Skyrme interactions or relativistic mean-field
parametrizations. In this work we intend to do this analysis
using the finite-range Gogny interactions [50,51]. The reason
behind this is twofold. In one hand, we wanted to extend
the advantage of using newly proposed Gogny forces [52,53]
which are able to predict maximum masses of NSs about
2M�, in agreement with the observational data [54–56]. On
the other hand, unlike Skyrme and RMF interactions, Gogny

2469-9985/2020/102(1)/015802(18) 015802-1 ©2020 American Physical Society

https://orcid.org/0000-0002-9238-6144
https://orcid.org/0000-0002-4156-3067
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.015802&domain=pdf&date_stamp=2020-10-22
https://doi.org/10.1103/PhysRevC.102.015802


MONDAL, VIÑAS, CENTELLES, AND DE PHYSICAL REVIEW C 102, 015802 (2020)

forces describe simultaneously the mean-field and the pairing
field, which may have some impact on the study of the crust.

The D1 family of Gogny interactions consists of two finite-
range terms plus a density-dependent zero-range contribution.
In particular, the D1S interaction [51] has been used to
perform large-scale Hartree-Fock-Bogoliubov (HFB) calcula-
tions [57,58] of ground-state properties of finite nuclei along
the whole periodic table. The D1S interaction has also been
widely used for dealing with fission properties [59] and has
become a benchmark for the study of deformation and pairing
properties of finite nuclei. More recent Gogny parametriza-
tions, namely D1N [60] and D1M [61], have been proposed.
They take into account the microscopic neutron matter EoS
of Friedman and Pandharipande in the fit of their parameters,
which improves the description of the isovector properties.
In particular, the D1M interaction is able to reproduce more
than 2000 experimental masses with a rms deviation of only
798 keV [61]. However, in spite the success of the Gogny
forces in describing finite nuclei, their extrapolation to the
NS domain has been less successful. It has been shown
earlier [52,62] that the Tolman-Oppenheimer-Volkov (TOV)
equations, which give the NS mass-radius relationship, have
no solution using the EoS built up with the D1S force. If one
uses the D1N Gogny force [60], then the maximum mass is
around 1.2M� and with the D1M Gogny interaction [61] it
is about 1.7M�. For both these cases the predicted maximum
mass is much lower than the observed values of about 2M�
[54–56]. In order to overcome this limitation, two new Gogny
interactions aimed to describe NS properties have been built
up recently. These new parametrizations, called D1M∗ [53]
and D1M∗∗ [63], are obtained by modifying the D1M force in
such a way that they reproduce finite-nuclei data with quality
similar to that found using the D1M force and, at the same
time, predict a maximum mass of NS of about 2M� [53,63].

In the astrophysical context, our previous studies using the
modified D1M forces have been mainly applied for describ-
ing the core of the star. In addition to the NS mass-radius
relationship, we have also studied the moment of inertia
[52,53] as well as the tidal deformability [64,65]. We have
also performed a detailed analysis of the crust-core transition
using both the thermodynamical and dynamical methods [66].
Some of these calculations need the knowledge of the EoS
in the crust region. When necessary, and due to the lack of
the crustal EoS computed with the Gogny forces, we have
used a polytropic form of the type P = a + bε4/3, where P
is the pressure and ε is the mass-energy density [53,64]. The
parameters a and b are determined in such a way that the
pressure be continuous at the inner crust-core and inner-outer
crust transition points. At present, our aim is to establish the
EoS in the inner crust with the same Gogny interaction used
to describe the core.

In our calculations of the inner crust we use the WS
approximation, which assumes that the space can be described
by noninteracting electrically neutral cells containing each
one a single nuclear cluster surrounded by electron and neu-
tron gases. We restrict ourselves to spherical nuclear clusters,
which smoothly transform to homogeneous core at the tran-
sition density without the pasta phases. There are two rea-
sons for that. First, considering only spherical nuclei, quantal

calculations including pairing correlations can be performed
in a rather simple way. Second, as discussed, e.g., in
Ref. [3,26], having spherical nuclei or pasta structures in
the region of the inner crust close to the core-crust transi-
tion density has very little impact on the EoS of the NS.
Another simplification used in many calculations of the in-
ner crust of NSs is to perform semiclassical calculations of
Thomas-Fermi type in the representative WS cell assuming
a mixture of neutrons, protons and electrons in charge and
beta equilibrium (see Ref. [26] for a detailed discussion).
Quantal effects, mainly proton shell corrections and proton
pairing correlations, can be added in a perturbative way in a
microscopic-macroscopic (Mic-Mac) description of the inner
crust of the NS. In particular, large-scale calculations of this
type have been carried out by the Brussels-Montreal group
[24,25,29,67–69] using the BSk family of Skyrme forces
[70]. The WS approximation induces, however, spurious shell
effects in the spectrum of unbound neutrons [71]. To avoid this
difficulty, as was also done in the pioneering paper of Negele
and Vautherin [4], one can neglect the neutron shell effects,
which are much smaller than the proton shell correction
[71]. Regarding pairing correlations, we must emphasize the
advantage of using Gogny forces, in which pairing is treated
with the same interaction employed to describe the mean field.

Because of the reasons above we have chosen a Mic-Mac
approach to establish the EoS in the inner crust using Gogny
forces. We first compute the semiclassical EoS within the so-
called variational Wigner-Kirkwood approach [72–74] using
trial neutron and proton densities of the type proposed in
Ref. [24]. This calculation includes the h̄2 contributions to
the kinetic, exchange and spin-orbit energies perturbatively
[75,76]. In a second step, the proton shell corrections are
incorporated through the so called Strutinsky integral method
[24]. Finally, the proton pairing correlations are calculated
in the BCS approximation with the corresponding Gogny
interaction.

The paper is organized as follows. In the second section
the basic theory concerning the variational Wigner-Kirkwood
approach in the case of finite-range interactions is discussed.
In the same section, the shell correction and the treatment
of the pairing correlations are briefly summarized. The third
section is devoted to the discussion of the results of the inner
crust obtained in this work. Finally, our conclusions are given
in the last section. Some of the details of our calculations are
given in the Appendices.

II. EoS OF INNER CRUST OF NEUTRON STAR

The mass formula has been a very useful tool for dealing
with the average behavior of nuclear masses from the early
days of nuclear physics. The success of the mass formula lies
in the fact that the quantal effects, i.e., the shell correction
and pairing correlations, can be treated perturbatively because
they are small as compared with the part that varies smoothly
with mass number A and atomic number Z . The perturbative
treatment of the shell correction in finite nuclei was estab-
lished by Strutinsky [77]. The average part of the energy
can be extracted from a quantal mean-field HFB calculation
using the so-called Strutinsky smoothing method [77], which
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is a well-defined mathematical procedure that removes the
quantal effects. However, this method, in general, is difficult
to handle in the case of realistic mean-field potentials that may
not vanish at the edge of the WS cells. The reason behind
this difficulty is that the Strutinsky smoothing requires the
knowledge of the single-particle spectrum at least in three
major shells above the Fermi level. For realistic potentials this
situation requires taking account of states in the continuum,
which is difficult to handle in practice.

To avoid the problem related to continuum, an alterna-
tive technique consists of computing the average energy of
a nucleus using the Wigner-Kirkwood (WK) h̄ expansion
of the one-body partition function [72,78–82], from where
the smooth part of the energy of a system, i.e., the energy
without the quantal effects, can easily be derived avoiding
the problems related to the continuum. An important prop-
erty of the WK expansion of the energy in powers of h̄
concerns its variational content. For a set of noninteracting
fermions in an external potential, the variational solution that
minimizes the WK energy at each order of h̄, is just the
WK expansion of the particle density at the same h̄ order.
This method of solving the variational equation by sorting
out properly the different powers of h̄ expansion is called
the variational Wigner-Kirkwood (VWK) theory [72,74]. It
is important to point out that in this variational method,
the VWK energy at a given order of h̄ is just the sum of
the energies up to that order calculated with the densities
computed up to the previous order. For example, calculation
of the VWK energy up to h̄2 order, i.e., sum of the variational
Thomas-Fermi (TF) energy (h̄0 order) and the perturbative
h̄2 contribution, only requires the explicit knowledge of the
TF densities.

A. Variational Wigner-Kirkwood method for finite
nuclei with the Gogny force

The Gogny force of the D1 family including the spin-orbit
interaction can be written as

V (�r1, �r2) =
∑
i=1,2

(Wi + BiPσ − HiPτ − MiPσ Pτ )e
− r2

μ2
i

+ t3(1 + x3Pσ )ρα ( �R)δ(�r)

+ iWLS(�σ1 + �σ2)[ �k′ × δ(�r)�k], (1)

where �r = �r1 − �r2 and �R = (�r1 + �r2)/2 are the relative and
the center-of-mass coordinates, and μ1 � 0.5−0.7 fm and
μ2 � 1.2 fm are the ranges of the two Gaussian form
factors, which simulate the short- and long-range compo-
nents of the force, respectively. The last term in Eq. (1)
is the spin-orbit interaction, which is of zero range with
strength WLS as in the case of Skyrme forces. The quan-
tity �k = ( �∇1 − �∇2)/2i is the relative momentum and �k′ its
complex conjugate.

The total energy of a nucleus in the VWK approximation
can be obtained starting from the interaction given in Eq. (1)
and using the corresponding extended Thomas-Fermi density
matrix [75] (see also Appendix A for more details), which

allows to write the VWK energy to h̄2 order as [75,83]:

EVWK = EVWK,0 + EVWK,2 =
∫

d �RH

=
∫

d �R[Hkin + Hnucl
dir + Hnucl

exch + Hcoul + HSO
]

=
∫

d �R[Hkin,0 + Hnucl
dir + Hnucl

exch,0 + Hcoul
]

+
∫

d �R[Hkin,2 + Hnucl
exch,2 + HSO

]
, (2)

where we have split the energy into a TF (h̄0) part and a h̄2

correction. One can see that the h̄2 corrections enter into the
kinetic energy and spin-orbit energy densities Hkin and HSO,
respectively, as it happens for zero-range forces [82], and also
in the exchange energy due to the finite range of the force.

In order to find the semiclassical energy and the density
profiles in the VWK approach up to h̄2 order, one needs to
solve first the equation of motion for the TF problem,

δ

δρq

[
EVWK,0 − μq

∫
ρq( �R)d �R

]
= 0, (3)

where μq is the chemical potential with q = n for neutrons
and p for protons that ensures the right number of particles.
Using the solutions of Eq. (3) one can calculate both the TF
(EVWK,0) as well as the h̄2 correction (EVWK,2) of the VWK
energy. In the present work, however, instead of solving the
full variational equation [Eq. (3)], we perform a restricted
variational calculation minimizing the TF energy using trial
densities of Fermi type. This technique has been successfully
applied in many finite nuclei calculations with Skyrme forces
[82]. It is shown in Ref. [84] that the differences between
the semiclassical energies obtained either by solving self-
consistently the equations of motion or by means of a re-
stricted variational approach are very small. This fact justifies
the use of this simpler technique, which, in addition, is still
more stable numerically. In the case of finite nuclei the profile
of the trial neutron and proton density functions used to
minimize the energy [Eq. (2)] is chosen as a Fermi distribution
for each kind of particles,

ρq(r) = ρ0,q

1 + exp
( r−Cq

aq

) , (4)

where the radii Cq and diffuseness aq are the variational
parameters and the strengths ρ0,q are determined by normal-
ization to the number of particles of each type.

B. Restoring quantal effects: Shell and pairing corrections

It has been mentioned in the previous subsection that the
VWK method provides the average energy of the nucleus. To
obtain the quantal energy in a Mic-Mac approach one needs
to add perturbatively the shell effects and, in the case of open
shell nuclei, also incorporate the energy due to the pairing
correlations. To compute the shell correction we use the so-
called Strutinsky integral method [25], which states that for
each type of particles the shell correction can be estimated as
the difference between the quantal and semiclassical energies
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in the corresponding semiclassical single-particle potential
treated as an external one:

E shell
q =

∑
i

ε̃i,q −
∫

d �R
[

h̄2

2m̃∗
q

τ̃q + ρ̃qŨq + �̃Jq · �̃W q

]
, (5)

where, the single-particle energies ε̃i,q are the eigenvalues of
the Schrödinger equation as follows:[

−�∇ h̄2

2m̃∗
q

�∇ + Ũq − i �̃W q · ( �∇ × �σ )

]
φi,q = ε̃i,qφi,q, (6)

for each type of particles (q = n, p).

In Eqs. (5) and (6) the quantities ρ̃q, τ̃q, and �̃Jq are
the particle, kinetic energy and spin densities, respectively.
The effective mass, central, and spin-orbit potentials are de-

noted by m̃∗
q , Ũq, and �̃W q, respectively. All these smooth

densities and fields mentioned above are evaluated with the
semiclassical solutions of the restricted variational approach
applied to the TF energy. It is also worthwhile to note that
the Schrödinger equation (6) is obtained from the quasilocal
reduction of the energy density associated to a finite range
forces in the framework of the nonlocal density functional
theory (DFT) [76] as explained in Appendix A.

Pairing correlations are taken into account at the BCS level
in a perturbative way using the single-particle levels obtained
from Eq. (6). This implies that the single-particle gaps obey,
for each type of particles, the following set of coupled gap
equations:


i = −
∑

k

v
pair
iī,kk̄


k

2Ek
, (7)

where the indices i ≡ nl j and k ≡ n′l ′ j′ denote the corre-
sponding single-particle levels, v

pair
iī,kk̄

are the pairing matrix
elements calculated with the Gogny force (for more details
see Appendix B of Ref. [10]) and Ek =

√
(̃εk − μ)2 + 
2

k are
the quasiparticle energies. Once the gap equations are solved,
the pairing energy and the occupation number of each level
can be computed as

Epair = −1

4

∑
k


2
k

Ek
(8)

and

ñ2
k = 1

2

[
1 − ε̃k − μ

Ek

]
, (9)

respectively.
Notice that the shell and pairing corrections are calculated

simultaneously, implying that the occupation probabilities
[Eq. (9)] need to be included in the calculation of the shell
correction and the total energy of a nucleus in this case is
given by

E = EVWK +
∑

q

[
E shell

q + Epair
q

]
. (10)

C. VWK method with shell and pairing corrections in
Wigner-Seitz cells

To deal with the inner crust of neutron star we have adopted
the WS approximation. As mentioned before, we do not delve
into the possibilities of pasta phase in the inner crust matter
in the present calculation. We restrict ourselves to a spherical
WS approximation to describe the building blocks of the inner
crust. For a given density in the WS cell, we look for the
configuration (N, Z) of the WS cell with a given number of
protons and electrons that fulfills the β-equilibrium condition
given by

μn = μp + μe, (11)

where, μn, μp, and μe are the neutron, proton and elec-
tron chemical potentials, respectively. For a given average
density and proton number we start with a trial number of
neutrons and compute the difference dβ = μn − μp − μe. If
this quantity does not vanish, then we change the number of
neutrons governed by the deviation of dβ from zero using
Newton-Raphson method. This eventually changes the size
of the cell because the total number of nucleons determines
the radius of the WS cell. This procedure is iterated until
dβ approaches zero with some chosen accuracy. Once this
configuration (neutron, proton, and electron content) of the the
WS cell is determined, the radius of the cell is also decided. To
obtain the energy we apply the techniques similar to the ones
used to compute the energy of finite nuclei as described in the
Sec. II A and Appendix B. The pressure associated to the WS
cell is computed as explained in Ref. [25]. There is, however,
a small change in the form of the trial density for baryons used
to solve the equations of motion [Eq. (3)], which is taken from
Ref. [25],

ρq(r) = ρB,q + ρ0,q

1 + exp
{(Cq−RWS

r−RWS

)2 − 1
}
exp

( r−Cq

aq

) , (12)

where the first term represents a background density through-
out the WS cell and the usual Fermi distribution has an extra
damping factor modulated by the radius of the WS cell RWS.
This damping ensures that all the density derivatives vanish at
the edge of the WS cell, which implies a smooth matching of
the adjacent cells justifying the WS approximation of the inner
crust. We recover the quantal effects of protons in terms of
shell and pairing corrections in the same fashion as described
in the Sec. II B.

For a set density we repeat the procedure described above
for even numbers of protons varying from Z = 14 to Z =
100. The optimal configuration (neutron, proton, and electron
content) giving the minimum energy is designated to give
the description of the inner crust at a particular density. It is
worthwhile to mention here that in our calculation the number
of neutrons is not integer to achieve β equilibrium inside the
WS cell. The charge neutrality of a WS cell is maintained
by considering an electron gas distributed uniformly in the
whole cell in such a way that the number of electrons equal to
that of protons in the cell. The contribution of the electrons to
the energy of the cell is taken into account considering them
to be ultrarelativistic and including the direct and exchange
Coulomb energy at the Slater level.
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FIG. 1. Relative difference between binding energies calculated
from VWKSP approach with HFB method in harmonic oscillator
basis and their experimental values for ∼160 even-even nuclei spread
across the whole nuclear chart using D1M, D1S, and D1M* Gogny
forces.

III. RESULTS AND DISCUSSIONS

A. Finite nuclei

Before applying the VWK method with shell and pairing
correction (VWKSP) to the inner crust, we take recourse to
testing it for finite nuclei. For this purpose we have used three
different Gogny forces, namely, D1S, D1M, and D1M∗. We
want to recall here that all three forces mentioned previously
belong to D1 family of Gogny forces with the interaction
given by Eq. (1). As it was pointed out before, the new
D1M∗ force was built with the aim to be able to predict a
maximum NS mass of about 2M� and, at the same time,
describe finite nuclei with a quality similar to that found using
the D1M interaction. To this end, starting with the D1M force,
the eight parameters that determine the finite-range part of
the force were modified as follows. The saturation density,
binding energy per nucleon, incompressibility coefficient and
effective mass in symmetric nuclear matter, as well as the
symmetry energy at a subsaturation density (ρ = 0.1 fm−3)
in the isovector sector, were kept fixed to the values predicted
by the D1M force. The two combinations of Wi, Bi, Hi and
Mi (i = 1, 2), which determine the strength of the pairing
force in the S = 0, T = 1 channel, were also kept at the same
value as in the original D1M force. In this way seven out of the
eight parameters were determined. The last parameter, chosen
to be B1, was used to modify the slope of the symmetry energy
at saturation, which in turn determines the maximum mass of
the neutron star. Finally, the strength of the zero-range part of
the force and the spin-orbit strength in Eq. (1) were fine tuned
for improving the description of finite nuclei (see Ref. [53] for
further details).

We have calculated the binding energies of a set of even-
even spherical nuclei and compared them with their experi-
mental values in Fig. 1(a). In this figure we plot the relative
difference in the binding energy for ∼160 even-even nuclei
spread across the entire nuclear chart, calculated with the

VWKSP method using the Gogny forces mentioned before
from their experimental values. One can observe that the
differences for the lighter nuclei are on the higher side com-
pared to those for heavier nuclei. This is a typical feature
of the mean-field approximation, which works better with
a relatively large number of particles in the system. From
this panel we see that for mass numbers larger than A ∼ 30
the VWKSP energies are scattered around the experimental
values reproducing them within a 2% of accuracy. In order
to validate our VWKSP method to predict binding energies,
we compare our results with the ones obtained using the
standard HFB method, which is the benchmark for the theoret-
ical ground-state binding energies with effective forces. The
relative differences between the HFB and VWKSP methods
are plotted in Fig. 1(b). They differences are quite small, less
than 2% almost throughout the entire nuclear chart apart from
few nuclei in the lighter region. In Table I, a representative
subset of these nuclei is provided with their binding energies
computed with VWKSP method using the D1M* interaction
and their comparison with the experimental values as well as
with the corresponding HFB results. Overall the agreement is
satisfactory. These tests in the finite nuclear sector provide us
the much needed confidence to apply VWKSP method for the
case of inner crust of NS.

B. Inner crust of neutron stars

We start the calculation of inner crust by choosing different
average densities ρav ranging from 0.0003 fm−3 to 0.08 fm−3.
Some of the choices are taken from the article by Negele
and Vautherin [4]. For each average density we search the
optimal configuration, i.e., neutron and proton numbers which
minimize the energy per particle in the WS cell using the
VWKSP method. To this end, we proceed in two steps. In the
first one, for an even proton number Z we determine the neu-
tron number N from the β-equilibrium condition [Eq. (11)],
which also determines the radius of WS cell. In the second
step we scan the energy per particle as a function of Z to
obtain the global minimum. In Fig. 2(a), we plot the energy
per particle (subtracted by free nucleon mass, mn = 939 MeV)
as a function of radius of the WS cell, RWS, for an average
density ρav = 0.07 fm−3 using the D1M* interaction. We
plot the same quantity as a function of proton number Z in
Fig. 2(b). The orange lines with circles represent the pure
TF calculation. Being a semiclassical calculation in nature,
the energy per particle varies smoothly with N and Z in this
case. The blue lines with the squares represent the VWK
calculation, where the h̄2 correction is added to the TF energy
perturbatively. The green lines with triangles correspond to
the results when the shell correction is added further, perturba-
tively. Clearly this quantal effect makes the graphs unsmooth
in nature and distinct local minima appear at conventional
magic numbers like Z = 20 or 40, but there also appear few
other magic numbers at Z = 58, 70, 92, and 138 (the latest
not shown in Fig. 2). The red lines with diamonds correspond
to added pairing energy on top of the shell correction. This
somewhat smoothens the lines compared to those only with
shell correction. The global minimum appears at Z = 40
after incorporation of all the corrections, which describes
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FIG. 2. Binding energy per particle subtracted by the free nu-
cleon mass for inner crust of neutron star calculated with D1M* force
as a function of radius of the WS cell in panel (a) and as a function
of proton number Z in panel (b) at average density ρav = 0.07 fm−3.

the optimal configuration of the crust at ρav = 0.07 fm−3

calculated with the D1M* interaction. This systematic study
demonstrates the importance of quantal effects to determine
the configuration of the inner crust of neutron star. Notice
that the local minima, which correspond to magic proton
numbers, are unaffected by pairing correlations as they have
an impact only on the open-shell nuclei lying in between
the minima. One can notice from Fig. 2 that with increase
in proton number the size of the WS cell does not increase
linearly. When the proton number increases in a WS cell of
given density, the neutron number also increases to maintain
the β equilibrium and, therefore, the size of the cell, which is
determined by the mass number, also grows.

In Fig. 3 we plot the energy per particle subtracted by the
free nucleon mass as a function of proton number Z for four
different ρav values using the D1M* interaction. The green
lines with the triangles correspond to VWK calculation along
with shell correction added perturbatively and the red lines
with diamonds correspond to VWKSP calculation, which also
includes pairing effects. The general feature one can observe
here is that addition of pairing somewhat smoothens the quan-
tal effects throughout the average density range considered
in the four panels. At ρav = 0.0006 fm−3 [see Fig. 3(a)]
only with shell correction, one can observe the appearance
of conventional magic numbers like Z = 20, 28, 40, 50.
However, there is also a hint of local minimum at Z = 58.
Due to the presence of the neutron gas, the appearance of the

magic numbers similar to those of finite nuclei gets blurred by
the time one reaches a higher average density [for example,
ρav = 0.00891 fm−3 in Fig. 3(b)] and the appearance of magic
numbers like Z = 28 or 50 gets completely washed away
when one reaches even higher average density [say, ρav =
0.0475 fm−3 depicted in Fig. 3(c)]. The global minima appear
at Z = 40 for average densities to ∼0.08 fm−3, where the
minimum shifts to Z = 92 [see Fig. 3(d)]. One can also notice
that the effects of shell correction get diluted when one shifts
to higher average densities (notice that the vertical scales of
the panels of Fig. 3 are different for different panels). Overall,
the inclusion of quantal effects in the energy is quite crucial
for the inner crust of neutron star. We must mention here is
that, as a general feature, the semiclassical energy per particle
in a WS cell varies very slowly with the proton number. In
spite of the larger fluctuations after incorporation of shell and
pairing energy emerge, the values of the total energy of the
system are very similar for varying number of protons. This
implies that determination of minimal energy configuration
corresponding to the inner crust of neutron star is a delicate
problem from the numerical point of view.

In Fig. 4 we plot the density profiles for neutrons and
protons inside the WS cell at four different ρav values as the
ones considered in Fig. 3 corresponding to their minimum
energy configuration computed with the D1M* Gogny force.
The black solid lines correspond to the neutron density profile
and the red lines denote the ones for protons. For each average
density we mention the number of protons corresponding to
the minimum energy configuration described before in Fig. 3.
By close inspection one can notice that at an average density
as low as 0.0006 fm−3 [depicted in Fig. 4(a)], the density
profiles for both protons and neutrons resemble very much
to those in finite nuclei, maintaining a constant density from
the center to certain extent and then fall down in a very short
distance as compared with the size of the WS cell. Although
not visible in Fig. 4(a), the neutron density profile maintains
a feeble presence throughout the whole WS cell due to the
neutron gas, unlike finite nuclei where it vanishes. The proton
density profile behaves differently and vanishes inside the
WS cell, because at such low average densities there are no
dripped protons in the inner crust. With increasing average
density of the WS cell, the neutron gas becomes more and
more prominent. More quantitatively, if we take the case of
lowest average density ρav = 0.0006 fm−3 considered here,
the neutron and proton densities remain constant, respectively,
at ∼0.095 fm−3 and ∼0.045 fm−3 from the center of the WS
cell to about radius r ∼ 8 fm and they fall almost to zero at
r ∼ 10 fm. For a large average density such as 0.0789 fm−3

[represented in Fig. 4(d)], the neutron density profile reaches

TABLE I. Binding energies of 10 different nuclei across the nuclear chart calculated with VWKSP method and compared with their
experimental values along with the ones calculated with HFB method in harmonic oscillator basis using D1M* Gogny force.

Nucl.(A
Z XN) 32

12Mg20
40
20Ca20

50
20Ca30

90
40Zr50

100
50 Sn50

142
62 Sm80

176
80 Hg96

208
82 Pb126

216
84 Po132

224
92 U132

Expt. −249.849 −342.052 −427.490 −783.892 −824.794 −1176.614 −1369.743 −1636.430 −1675.904 −1710.285
VWKSP −251.665 −338.010 −429.318 −784.834 −818.355 −1174.188 −1357.301 −1636.241 −1679.186 −1708.199
HFB −248.848 −342.546 −424.996 −783.138 −826.542 −1174.549 −1364.428 −1636.729 −1671.738 −1706.392
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FIG. 3. Binding energy per particle for inner crust of neutron star subtracted by free nucleon mass calculated at different average densities
mentioned in different panels using VWK approach with shell correction and pairing are plotted as a function of proton number Z for D1M*
Gogny force in the spherical WS approximation.

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

ρn
ρp

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

r (fm)

ρ 
 (f

m
-3

)

ρav = 0.0006 fm-3 ρav = 0.00891 fm-3

ρav = 0.0789 fm-3

ρav = 0.0475 fm-3

(a) (b)

(d)(c)

Z = 40 Z = 40

Z = 40

Z = 92
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FIG. 5. Same as Fig. 3 but for neutron and proton potentials inside the WS cell.

0.09 fm−3 at the center and attenuates to 0.065 fm−3

at r ∼ 17 fm. However, in this case the proton density remains
constant at 0.01 fm−3 starting from the center and vanishes
at r ∼ 17 fm. So, the WS cell is filled with dense neutron
gas for this case and protons tend to spread in the whole
WS cell. A gradual evolution can be observed through the
intermediate average densities depicted in Fig. 4. The central
value of the neutron density remains roughly constant and the
diffuseness increases when the ρav in the WS cell increases.
However, the proton densities behave a little bit differently;
the central density decreases and the diffuseness increases
when the average density grows. This is because at high
average densities, protons tend to maintain an almost uniform
distribution in the whole WS cell in an attempt to reduce the
Coulomb energy.

In Fig. 5 we plot the single-particle potentials for neutrons
and protons inside the WS cell corresponding to the minimum
energy configurations for the different average densities con-
sidered in Figs. 3 and 4 computed using the D1M* interaction.
As indicated in the figure, these potentials consist of the
self-consistent TF part plus the h̄2 and the spin-orbit contribu-
tions to the mean field added perturbatively (see Appendix A
for further details). These proton potentials also include the
contribution from Coulomb interaction taking into account
the contribution of the electrons. We use this form as Uq

(q = n for neutrons and p for protons) of the potential in
the Schrödinger equation (6), which allows one to find the
single-particle levels needed to compute the shell and pairing
corrections to the semiclassical energy through the Strutinsky
integral method and BCS approximation, respectively. These
potentials, however, show trends different from the case of

finite nuclei, especially in larger average densities. This is
due to the presence of the denser neutron and electron gases,
which deeply modify the potentials. The depths of the proton
potentials decrease with increase in the average density of the
WS cell. For example, at average density ρav = 0.0006 fm−3

[in Fig. 5(a)], the depth of the proton potential is ∼ − 65 MeV
and even has a Coulomb barrier of ∼10 MeV before attenu-
ating at r ∼ 20 fm. Because of the screening of the proton
potential in the crust by electrons, the Coulomb potential is
reduced compared to the case of terrestrial finite nuclei. The
depth of the neutron potential is ∼ − 65 MeV and it goes to a
constant value corresponding to the single-particle potential
of the neutron gas at r ∼ 10 fm. On the other extreme of
considered average density ρav = 0.0789 fm−3 [represented
in Fig. 5(d)], the depth of the proton potential is ∼ − 85 MeV
at the center of the cell, which freezes to ∼ − 70 MeV at r ∼
17 fm making the effective depth of only about ∼ − 15 MeV.
For neutrons, the potential at the center is ∼ − 40 MeV and
attenuates to ∼ − 25 MeV at ∼17 fm. Unlike finite nuclei
this situation is very unique, which is due to the existence
of the neutron gas that has an important impact not only on
the neutrons but also on the protons contained in the WS cell.
On the other hand, the frozen value of the neutron potential
is much smaller compared to those of protons. This indicates
to the smaller chemical potential for neutrons compared to
those for protons throughout the whole region of inner crust
of neutron stars (see Table II for further details).

In Table II, we summarize the value of WS radius, neutron
number N and proton number Z corresponding to their β-
equilibrium configuration, the energy per particle subtracted
by the free nucleon mass, pressure and the chemical poten-

015802-8



STRUCTURE AND COMPOSITION OF THE INNER CRUST … PHYSICAL REVIEW C 102, 015802 (2020)

TABLE II. Radius of the WS cell RW S , its corresponding neutron number N , proton number Z , energy per particle subtracted by nucleon
mass E/A − mn, pressure P, chemical potentials of neutron (μn), proton (μp), and electron (μe) at different average densities ρav of inner crust
of NS corresponding to the minimum energy configuration for D1S, D1M, and D1M* Gogny interactions. We have used mn = 939 MeV.

ρav RW S N Z E/A − mn P μn μp μe

(fm−3) (fm) (MeV) (MeV fm−3) (MeV) (MeV) (MeV)

D1S 0.0004 50.0488 170.0538 40 −0.85386 0.00052 0.5105 −25.0660 25.5769
0.0006 48.1364 240.3249 40 −0.36003 0.00067 0.8037 −25.7910 26.5951
0.000879 46.1657 322.2734 40 0.05280 0.00092 1.1274 −26.6055 27.7329
0.00159 42.6967 478.4050 40 0.66983 0.00170 1.7578 −28.2341 29.9917
0.00373 36.8371 741.0056 40 1.67778 0.00505 3.0441 −31.7328 34.7766
0.00577 33.5312 871.1931 40 2.31735 0.00926 3.9311 −34.2858 38.2171
0.00891 30.1276 980.6055 40 3.07788 0.01714 5.0082 −37.5434 42.5520
0.0204 23.6452 1089.6526 40 4.98537 0.05594 7.7295 −46.5564 54.2863
0.03 20.7605 1084.4102 40 6.13499 0.09690 9.3633 −52.5260 61.8894
0.0475 17.5449 1034.5676 40 7.77519 0.18563 11.6701 −61.7009 73.3706
0.06 12.7870 505.4683 20 8.73363 0.25872 12.9645 −67.4367 80.4012

D1M 0.0004 48.7506 154.1277 40 −0.86383 0.00057 0.4688 −25.7906 26.2594
0.0006 46.7373 216.5842 40 −0.36546 0.00073 0.7844 −26.6088 27.3930
0.000879 44.6674 288.1330 40 0.05627 0.00100 1.1325 −27.5327 28.6653
0.00159 41.0245 419.8488 40 0.69759 0.00185 1.8132 −29.4046 31.2174
0.00373 34.9033 624.3484 40 1.76817 0.00548 3.2011 −33.5087 36.7096
0.00577 31.5165 716.6228 40 2.45137 0.00995 4.1402 −36.5290 40.6694
0.00891 28.1298 790.7460 40 3.25485 0.01801 5.2393 −40.3485 45.5880
0.0204 25.1930 1308.3346 58 5.16037 0.05291 7.7310 −49.7482 57.4793
0.03 22.3713 1348.9628 58 6.19822 0.08396 8.9590 −55.8469 64.8064
0.0475 19.4933 1415.8068 58 7.52030 0.14037 10.4099 −64.1245 74.5343
0.06 18.2139 1460.6204 58 8.21455 0.18126 11.1399 −68.7630 79.9025
0.0789 19.5763 2387.4758 92 9.04198 0.24948 12.0330 −74.6456 86.6787

D1M* 0.0004 49.0468 157.6882 40 −0.74943 0.00056 0.4855 −25.6148 26.1005
0.0006 47.0450 221.6858 40 −0.27892 0.00072 0.7993 −26.4144 27.2135
0.000879 44.9802 295.0745 40 0.12384 0.00098 1.1463 −27.3191 28.4656
0.00159 41.3408 430.5692 40 0.74518 0.00183 1.8248 −29.1535 30.9779
0.00373 35.2332 643.3648 40 1.79723 0.00543 3.2033 −33.1619 36.3650
0.00577 31.8661 742.0830 40 2.47121 0.00983 4.1300 −36.0917 40.2217
0.00891 28.5108 824.9535 40 3.26236 0.01770 5.2060 −39.7706 44.9766
0.0204 22.6141 948.2304 40 5.12315 0.05114 7.5829 −49.2004 56.7834
0.03 20.2603 1005.0806 40 6.12660 0.08046 8.7544 −54.6898 63.4438
0.0475 17.8000 1082.1295 40 7.40033 0.13496 10.1676 −62.1776 72.3449
0.06 16.6427 1118.5374 40 8.07662 0.17845 10.9405 −66.5598 77.5002
0.07 15.8808 1134.3594 40 8.53993 0.22176 11.5152 −69.8479 81.3629
0.0789 20.0985 2591.2263 92 8.92225 0.26701 12.0208 −72.7213 84.7418

tials for neutron, proton and electron respectively, for all the
average densities considered in the present work using the
D1S, D1M, and D1M* interactions. For the D1S interaction,
apart from ρav = 0.06 fm−3, for all other average densities
the minimum energy configuration appears at Z = 40 and it
becomes Z = 20 for ρav = 0.06 fm−3. For D1M interaction
over the growing ρav minimum energy configuration shifts
from Z = 40 to Z = 58 at ρav = 0.0204 fm−3 and at ρav =
0.0789 fm−3 it appears at Z = 92. For D1M* for all lower
average densities the minimum energy configuration corre-
sponds to Z = 40 that shifts to Z = 92 at ρav = 0.0789 fm−3,
which is almost the transition density estimated by our inner
crust calculation using the D1M* interaction.

We have seen that when shell effects are added to the
semiclassical calculation of the energy per particle in WS cells
in the inner crust of neutron stars, several local minima appear

as a function of the proton number considered in the cell.
The atomic numbers corresponding to these minima depend
on the average density of the WS cell and change from the
standard magic numbers in finite nuclei to the major shell
closures in a spherical box or in a Woods-Saxon potential
without spin-orbit contribution. To get more insight about
this evolution of magic numbers predicted in WS cells, we
consider two specific average densities from the two ends
of the density range considered, namely ρav = 0.0004 fm−3

and ρav = 0.07 fm−3 and compute their optimal configura-
tions using the D1M* interaction. From Table II one can see
that, for both these average densities the minimum energy
configuration corresponds to Z = 40. In Fig. 6(a) we plot the
proton potentials for the aforementioned average densities.
For ρav = 0.0004 fm−3 the single-particle proton potential
resembles very much to the ones corresponding to finite
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FIG. 6. Single-particle potential, spin-orbit potential and density distributions are compared for protons in inner crust of neutron star at
ρav = 0.0004 fm−3 and 0.07 fm−3, respectively, in panels (a)–(c) calculated with D1M* interaction. The boxes are truncated at r = 20 fm for
better comparison. In panels (d)–(e), the single-particle energy levels for protons calculated with the same interaction are compared. Possible
appearance of magic numbers are encircled.

nuclei. The protons seem to be concentrated in a small region
of the WS cell upto about ∼5 fm. They are affected very little
by the diluted electron gas, which is smeared throughout the
whole WS cell [see Fig. 6(c)]. For the higher average density
considered in this example (ρav = 0.07 fm−3) the radius of
the WS cell is much smaller, RWS ∼ 16 fm. This significantly
reduces the Coulomb effects in the WS cell. In this scenario
the proton potential is almost due to the nuclear part, which
is deep and almost uniform. It is attenuated from ∼ − 85
MeV at the center to ∼ − 70 MeV at the edge, which is quite
similar to a shallow Woods-Saxon potential with a large radius
and diffuseness. The form factors of the spin-orbit potential
[Eq. (A18)] are also very different at these two average
densities considered. This is due to the fact that they are
determined by the gradients of the neutron and proton densi-
ties, which are much larger for ρav = 0.0004 fm−3 compared
to those for ρav = 0.07 fm−3. These spin-orbit potentials are
displayed in Fig. 6(b). The spin-orbit potential is similar to the
cases of finite nuclei for the lower average density considered
here, however, it is strongly damped and shifted outwards
for the case of ρav = 0.07 fm−3, which is in agreement with
previous findings for the change of the spin-orbit potential
near the neutron drip-line [85–87]. As a consequence of the
different mean-field Up and spin-orbit potential Wp entering
in the Schrödinger equation [Eq. (6)], the level schemes are

very different for these two average densities. For ρav =
0.0004 fm−3 the magicity appears at Z = 20, 40, 50, or 82, as
in standard nuclei, with quite strong gaps. In the high density
case, however, as the spin-orbit effect gets much more diluted,
the magicity is quite similar to the one on a shallow Woods-
Saxon potential without spin-orbit with major shell closures
at Z = 20, 40, 58, 70, 92, 112, etc. This is demonstrated in
Figs. 6(d) and 6(e).

We plot in Fig. 7(a) the number of protons and the total
number of baryons in Fig. 7(b) within the WS cell correspond-
ing to the β-equilibrium configuration as a function of the
crustal average density. We compare the results obtained with
the Gogny forces used in this work with other calculations
existing in the literature at the WS level. We include in the
figure only those calculations where the search of the β-
equilibrium configuration consistent with the interaction used
in the calculation has been performed and where the shell cor-
rections have been explicitly taken into account. The number
of protons of the selected configurations [see Fig. 7(a)] lie in
the range between Z = 20 and 50 for most of the interactions,
with preferences at Z = 20, 40, or 50. D1M stands out among
all the interactions considered, having a preference at Z = 58
for most of the configurations in the density range considered.
The configuration corresponding to ρav ∼ 0.08 fm−3 reaches
Z = 92 for D1M and D1M*, which is quite different from the
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FIG. 7. Proton number Z and total number of nucleons A corre-
sponding to the β-equilibrium configuration as a function of the inner
crust density ρav for D1M, D1S, and D1M* interactions in panels
(a) and (b), respectively. We also provide the respective numbers
predicted by the calculation of Negele and Vautherin (N-V) [4], P1,
P2 [7], and BSk22–BSk26 [29] for comparison.

others, though it was also predicted by the calculation using
the BSk25 Skyrme force [29]. The total number of baryons
shown in Fig. 7(b) depends a great deal on the symmetry
energy of the respective interactions. This is the reason why
even with the same proton numbers, different interactions
predict different neutron content. We want to mention here
that there exist in the literature some other studies of the
inner crust within the WS approximation using Skyrme [8,9]
or Gogny [10] interactions. However, these works, mainly
devoted to the study of the pairing properties in the inner
crust, use the configurations obtained by Negele and Vautherin
[4] without searching for the β-equilibrated configurations
associated with the force.

In Figs. 8 and 9, we plot the energy per particle sub-
tracted by the nucleon mass and the pressure, respectively,
as a function of the density in the range relevant for the
inner crust of neutron stars for the Gogny D1S, D1M, and
D1M* interactions. For comparison we also provide the same
quantities obtained with the Compressible Liquid Drop Model
of Baym-Bethe-Pethick (BBP)[2], the Skyrme Sly4 [88], and
Ska [89] interactions and with the BCPM energy density
functional [90–92], which is derived using a microscopic
interaction from Brueckner calculations with two and three-
body forces supplemented by a phenomenological term. The
energy per particle seems to be on the higher side of the
figure for all the Gogny interactions compared to the test
calculations. Specially at higher densities of the inner crust,
D1S predicts higher energies, whereas D1M and D1M* come
down in the regime of the Sly4 interaction. As far as the
pressure is concerned (Fig. 9), at the higher densities D1M
and D1M* have a lowering trend compared to others. On
the contrary, D1S produces higher pressure. The numerical
values of the energy per particle subtracted by the nucleon
mass, the pressure as well as the neutron, proton and electron
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FIG. 8. Energy per particle for inner crust of neutron star sub-
tracted by free nucleon massas a function of density for D1M, D1S,
and D1M* Gogny forces along with few very successful interactions
like BBP, Sly4, BCPM, and Ska.

chemical potentials computed with the D1S, D1M, and D1M*
Gogny forces are also reported in Table II. We want to mention
here that, if we plot the pressure as a function of density
for the Gogny forces computed semiclassically with TF or
VWK method, the results are almost indistinguishable from
the ones we have plotted in Fig. 9 obtained with VWKSP
method, which also includes shell and pairing corrections.
This points out to the fact that the composition of the inner
crust does not play a significant role in the equation of state of
the neutron star, which in turn determines its global properties.
Out of the three interactions considered here, only D1M* can
predict neutron stars with masses of 2M�. We provide the
combined EoS of core and inner crust calculated with the
D1M* interaction in Appendix C.
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FIG. 9. Pressure as a function of density for the inner crust of
neutron star using the same set of interactions as Fig. 8.
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IV. SUMMARY AND CONCLUSIONS

In summary, we have constructed the EoS of the inner
crust of neutron stars using the finite-range Gogny forces D1S,
D1M, and D1M*. For this purpose, we have implemented
the semiclassical variational Wigner-Kirkwood method in the
spherical Wigner-Seitz approximation. Further, we use the
Strutinsky integral method to add perturbatively the effects of
the quantal shell corrections for protons. Pairing correlations
are added in the BCS approach with the same Gogny force as
the mean field. Details about the theory used in this work are
provided in Appendices A and B.

It is found that the quantal effects play a significant role
to determine the specific composition of the inner crust of
the neutron star. We have seen that in the inner crust of
neutron stars the usual shell structures of terrestrial nuclei get
washed away at higher average densities, where shell closures
are similar to the ones of a Woods-Saxon potential well
without the spin-orbit term. In contrast to the composition, we
have noticed that the equation of state (pressure-vs.-density
relation) of the inner crust does not get much influenced by
the shell and pairing effects in the inner crust. Therefore, the
global properties of the star such as the mass and radius do

not get affected either. However, for low-mass neutron stars
(below the canonical mass of 1.4M�), the stellar radius can
change by a considerable amount depending on the treatment
of the inner crust of neutron stars [93], which points out
the importance of describing the crust and the core with
the same interaction. We have compared our results for the
energy and pressure with the ones provided by some popular
models of the inner crust available in the literature. In our
calculations, special attention is paid to the D1M* interaction,
which was proposed for astrophysical calculations. We have
obtained a unified EoS for inner crust and core in Appendix C,
which can be used for astrophysical simulations using
the D1M* force.
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APPENDIX A: THE VARIATIONAL WIGNER-KIRKWOOD METHOD WITH SHELL AND PARING CORRECTIONS

The quasilocal energy density functional theory for a finite-range force, established in Ref. [76] (also see Refs. [83,94,95]),
allows one to write the energy density in a quasilocal form as

H ≡ H(ρn, ρp, τn, τp, �Jn, �Jp), (A1)

where the local particle, kinetic energy, and spin densities entering in (A1) are obtained in the spirit of the Kohn-Sham scheme
from a Slater determinant wave function of single-particle orbitals φi as

ρq(�r) =
Aq∑

i=1

∑
σ

|φi(�r, σ, q)|2, τq(�r) =
Aq∑

i=1

∑
σ

| �∇φi(�r, σ, q)|2,

�J (�r) = i
Aq∑

i=1

∑
σσ ′

φ∗(�r, σ, q)[(�σ )σσ ′ × �∇]φi(�r, σ, q). (A2)

The orbitals φi that determine these densities (A2) are the solutions of the single-particle equations

hφi =
{

−�∇ h̄2

2m∗
q (�r)

�∇ + Uq(�r) − i �Wq(�r)( �∇ × �σ )

}
φi = εiφi. (A3)

The effective mass m∗
q , the mean-field Uq, and spin-orbit potential �Wq in (A3) are defined as

h̄2

2m∗
q

= δH
δτq

, Uq = δH
δρq

, �Wq = δH
δ �Jq

. (A4)

They are computed from the energy density (A1) with the definitions (A2) by applying the variational principle to the single-
particle orbitals φi.

In the case of the Gogny interaction (1) the quasilocal energy density (A1) can be written as

H = h̄2

2m
(τn + τp) + Hdir + Hexch + Hzr + Hcoul + HSO, (A5)

where the different contributions are given by

Hdir = 1

2

2∑
i=1

∫
d �r′

{(
Wi + Bi

2

)
ρ(�r)ρ(�r′) −

(
Hi + Mi

2

)
[ρn(�r)ρn(�r′) + ρp(�r)ρp(�r′)]

}
e
− (�r− �r′ )2

μ2
i , (A6)

Hzr = t3
4

ρα (�r)
{
(2 + x3)ρ2(�r) − (2x3 + 1)

[
ρ2

n (�r) + ρ2
p(�r)

]}
, (A7)
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Hcoul = 1

2

∫
d �r′ ρp(�r)ρp(�r′)

| �r − �r′ | − 3

4

(
3

π

) 1
3

ρ
4
3
p (�r), (A8)

HSO = −1

2
W0[ρ(�r) �∇ · �J + ρn(�r) �∇ · �Jn + ρp(�r) �∇ · �Jp]. (A9)

Here ρ = ρn + ρp and �J = �Jn + �Jp are the total particle and spin densities, respectively.
In the quasilocal reduction of the energy density we shall write the exchange contribution in a local form. To this end, we

have to do some approximation to the one-body density matrix, similar to those performed in Refs. [96–99]. In this work we use
the extended Thomas-Fermi density matrix derived in Ref. [75], which has been applied to compute the quantal energy of finite
nuclei in the quasilocal approximation in Refs. [76,83]. Using this approximation we can write the exchange energy density as
a sum of the Thomas-Fermi (Slater) term

Hexch,0 = −1

2

∑
i

∫
d�se

− s2

μ2
i

((
Bi + Wi

2

) {[
ρn(�r)

3 j1(kFn s)

kFn s

]2

+
[
ρp(�r)

3 j1(kFps)

kFps

]2
}

−
(

Mi + Hi

2

)
ρn(�r)

3 j1(kFn s)

kFn s
ρp(�r)

3 j1(kFps)

kFps

)
, (A10)

where kFq = [3π2ρq(�r)]1/3 is the local Fermi momentum for each type of nucleon and j1 is the spherical Bessel function, plus a
corrective h̄2 contribution, which reads

Hexch,2 =
∑

q

h̄2

2mq

{
( fq − 1)

(
τq − 3

5
k2

Fq
ρq − 1

4

ρq

)
+kFq fqk

[
1

27

( �∇ρq)2

ρq
− 1

36

ρq

]}
. (A11)

In this equation

fq ≡ fq(�r, k)k=kFq
and fqk ≡

[
∂ f (�r, k)

∂k

]
k=kFq

(A12)

are the inverse of the position and momentum-dependent effective mass and its derivative with respect to the momentum, both
computed at the corresponding local Fermi momentum for each kind of nucleons. The quantity fq(�r, k) that enters in Eq. (A11)
is defined as

fq(�r, k) = 1 + m

h̄2k

∂Uexch,q(�r, k)

∂k
, (A13)

where Uexch,q is the Wigner transform of the single-particle exchange potential in the TF approximation, which can be written as

Uexch,q(�r, k) = −
∑

i

∫
d�se−i�k·�se

− s2

μ2
i

{(
Bi + Wi

2

)
ρq(�r)

3 j1(kFq s)

kFq s
−

(
Mi + Hi

2

)[
ρq(�r)

3 j1(kFq s)

kFq s
+ρq′ (�r)

3 j1(kFq′ s)

kFq′ s

]}
, (A14)

where, q = n, p and q′ = p, n. Notice that the exchange potential at TF level is a function not only of the momentum k of the
nucleon of type q, but also of the position via the dependence of the TF exchange potential on the local Fermi momentum of
both, neutrons and protons, kFn (�r) and kFp (�r), respectively.

Combining the total kinetic energy density with the h̄2 part of the exchange energy density (A11), one can sort out explicitly
the effective mass contribution, which at pure TF level is hidden in the exchange term. In this way we can write

Ẽ =
∑

q

(
h̄2

2m
fqτq + h̄2

2m

{
(1 − fq)τq,0 − 1

4
fq
ρq + kFq fqk

[
1

27

( �∇ρq)2

ρq
− 1

36

ρq

]})
, (A15)

where τq = τq,0 + τq,2 contains the pure TF and h̄2 contributions.
In the h̄2 contribution to the exchange energy (A11), τq is the semiclassical kinetic energy density for each type of particles,

which is obtained from the semiclassical ETF density matrix [75,83] as

τq(�r) =
(

1

4

R − 
s

)
ρ̃q( �R, s)

∣∣∣∣
s=0

= 3

5
k2

Fq
sq + 1

36

( �∇ρq)2

ρq

[
1 + 2

3
kFq

fqk

fq
+ 2

3
k2

Fq

fqkk

fq
− 1

3
k2

Fq

f 2
qk

f 2
q

]

+1

4

ρ

[
1 + 2

9
kFq

fqk

fq

]
+ 1

6
ρq


 fq

fq
+ 1

6

�∇ρq · �∇ fq

fq

[
1 − 1

3
kFq

fqk

fq

]
+ 1

9

�∇ρq · �∇ fqk

fq
− 1

12
ρq

( �∇ fq)2

f 2
q

, (A16)

which is a functional of the two kind of local densities ρq and ρq′ , the latest due to the presence of effective mass terms in (A16).
Therefore, including h̄2 corrections the energy density (A5) becomes a functional of the particle densities only.
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As explained in Ref. [83], the spin-orbit interaction provides an additional term to the semiclassical ETF density matrix,
which allows one to calculate the semiclassical spin density as

�Jq( �R) = −iTr

{[
�σ ×

( �∇R

2
+ �∇s

)](
− im

2h̄2

)
ρq

fq
�σ · ( �Wq × �s)

3 j1(kFq s)

kFq s

}
s=0

= −2m

h̄2

ρq �Wq

fq
, (A17)

where the spin-orbit potential �Wq [see third equation in (A4)] is given by

�Wq(�r) = 1
2W0[ �∇ρ + �∇ρq]. (A18)

The spin-orbit term in the density matrix also provides another contribution to the kinetic energy density (A16) given by

τq,SO = 1

2

(
2m

h̄2

)2
ρ

f 2
q

W 2
q . (A19)

Using the spin-density (A17) in the spin-orbit energy density (A9) and performing a suitable partial integration, one can write
the semiclassical spin-orbit energy density, which is actually a h̄2 order quantity, as

HSO = �Jn · �Wn + �Jp · �Wp = −2m

h̄2

[
ρnW 2

n

fn
+ ρpW 2

p

fp

]
. (A20)

APPENDIX B: THE SINGLE-PARTICLE POTENTIAL

In order to describe the quantal energy of a nucleus using a finite-range interaction within a Mic-Mac frame, we shall add
perturbatively to the macroscopic part given by the semiclassical energy the shell and pairing corrections. For each type of
particles these quantal effects are obtained starting from the mean field obtained semiclassically by performing the variation
of the energy density (A5) with respect to the neutron or proton densities [see second equation (A4)]. The h̄0 (TF) part of the
single-particle potential consists of the direct and zero-range contributions, which read

Udir,q =
2∑

i=1

∫
d �r′

{(
Wi + Bi

2

)
ρ(�r′) −

(
Hi + Mi

2

)
ρn(�r′)

}
e
− (�r− �r′ )2

μ2
i , (B1)

Uzr,q = t3
2

ρα (�r)[(2 + x3)ρ(�r) − (2x3 + 1)ρq(�r)] + t3α

2
ρα−1(�r)

[
(2 + x3)ρ2(�r) − (2x3 + 1)

(
ρ2

n (�r) + ρ2
p(�r)

)]
, (B2)

plus the exchange term given by Eq. (A10), i.e.,

Uq,0 = Udir,q + Uexch,q + Uzr,q (B3)

and, in the case of protons, also including the contribution of the Coulomb potential

Ucoul =
∫

d �r′ ρp(�r′)

|�r − �r′| −
(

3

π

) 1
3

ρ
1
3
p (�r). (B4)

Next we compute the h̄2 contribution to the single-particle potential. Notice that the spin-orbit energy (A9) is also a h̄2-order
quantity that depends on the particle and spin densities for each type of particles. As mentioned before, the neutron and proton
spin-orbit potentials, defined by Eq. (A18), come from the variation of Eq. (A9) with respect to the spin densities. The spin-
orbit energy in Eq. (A9) also contributes to the mean field of each type of particles through its variation with respect to the
corresponding particle density, which is given as

USO = − 1
2W0[ �∇ · �J (�r) + �∇ · �Jq(�r)]. (B5)

Therefore, in order to include the spin-orbit contributions in our formalism, which are essential for describing properly the shell
effects through the Strutinsky integral method, the semiclassical expansion of the energy should be pushed, at least, up to h̄2

order.
To obtain the nuclear part of the h̄2 contribution to the single-particle potential, one needs to perform the variation of the

combination of the kinetic and second-order exchange energy densities Ẽ (A15) with respect to the neutron or proton densities
ρq. To perform this variation one needs to treat the τq as an independent variable in Ẽ . So, this h̄2 contribution to the single-particle
potential is given by

Uq,2 = δẼ
δρq

= h̄2

2m

(
δ fq

δρq
τq + δ fq′

δρq
τq′

)
+ h̄2

2m

δ

δρq
{(1 − fq)τq,0 + (1 − fq′ )τq′,0}

+ h̄2

2m

δ

δρq

{
−1

4
fq
ρq − 1

4
fq′
ρq′ + kFq fqk

[
1

27

( �∇ρq)2

ρq
− 1

36

ρq

]
+ kFq′ fq′k

[
1

27

( �∇ρq′ )2

ρq′
− 1

36

ρq′

]}
. (B6)
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Now, with the definitions fq ≡ fq(k = kFq , kFq , kFq′ ) and fq′ ≡ fq′ (k = kFq′ , kFq′ , kFq ), one can easily obtain

∂ fq

∂ρq
= ∂ fq

∂kFq

∂kFq

∂ρq
= ( fqk + fqkFq

)
1

3

kFq

ρq
and

∂ fq′

∂ρq
= fq′kFq

1

3

kFq

ρq
. (B7)

Using this the variation of the first term in Eq. (B6) is given by,

h̄2

2m

(
δ fq

δρq
τq + δ fq′

δρq
τq′

)
= h̄2

2m

1

3

kFq

ρq

{(
fqk + fqkFq

)
τq + fq′kFq

τq′
}
. (B8)

Now taking into account that, τq,0 = 3
5 (3π2)2/3ρ5/3

q , one can write after some algebraic simplifications,

h̄2

2m

δ

δρq
{(1 − fq)τq,0 + (1 − fq′ )τq′,0} = h̄2

2m

1

3ρq

[
5

{
1 − fq − 1

5
kFq ( fqk + fqkFq

)

}
τq,0 − fq′kFq

kFqτq′,0

]
. (B9)

Combining Eq. (B9) and (B8) one gets,

h̄2

2m

[
δ fq

δρq
τq + δ fq′

δρq
τq′ + (1 − fq)τq,0 + (1 − fq′ )τq′,0

]
= h̄2

2m

1

3ρq

[
5{1 − fq}τq,0 + kFq

(
fqk + fqkFq

)
τq,2 + kFq fq′kFq

τq′,2
]
,

(B10)

where in this equation we use the local kinetic energy density τq,2 = 1
36

( �∇ρq )2

ρq
+ 1

3
ρq. As explained in Refs. [75] and [83], one

obtains almost the same h̄2-order energy if in the full kinetic energy density (B10) the h̄2 contribution is replaced by its local
counterpart.

The contributions of the remaining pieces of Eq. (B6), which correspond to the h̄2-part of the single-particle potential are
given after some algebraic steps by

h̄2

2m

δ

δρq

{
−1

4
fq
ρq − 1

4
fq′
ρq′ + kFq fqk

[
1

27

( �∇ρq)2

ρq
− 1

36

ρq

]
+ kFq′ fq′k

[
1

27

( �∇ρq′ )2

ρq′
− 1

36

ρq′

]}

=
{[

2kFq

(
fqk + fqkFq

) − k2
Fq

(
fqkk + 2 fqkkFq

+ fqkFq kFq

)] + 1

324

[
10kFq fqk − 4k2

Fq

(
fqkk + fqkkFq

)
− k3

Fq

(
fqkkk + 2 fqkkkFq

+ fqkkFq kFq

)]} ( �∇ρq)2

ρ2
q

−
{

1

6
kFq

(
fqk + fqkFq

) + 1

108

[
10kFq fqk + 2k2

Fq

(
fqkk + fqkkFq

)]}
ρq

ρq
− 1

162

[
14kFq kFq′ fqkkFq′ + k2

Fq
kFq′ fqkkkFq′

] �∇ρq

ρq

�∇ρq′

ρq′

+ 1

324

[
4kFq kFq′ fq′kkFq

ρq′

ρq
+ 18kFq′ fqkFq′ − 9k2

Fq′ fqkFq′ kFq′ + 2kFq kFq′ fqkkFq′ − k2
Fq′ kFq fqkkFq′ kFq′

]
( �∇ρq′ )2

ρ2
q′

− 1

108

[(
9kFq fq′kFq

+ kFq kFq′ fq′kkFq

)ρq′

ρq
+ 9kFq′ fqkFq′ + kFq kFq′ fqkkFq′

]

ρq′

ρq′
. (B11)

Here we have used under the integral sign the rules of functional derivative as

δF [ρ]

δρ
= ∂ f

∂ρ
+

N∑
i=1

(−1)i∇ (i) ∂ f

∂[∇ (i)ρ]
, (B12)

where the functional F [ρ(r)] is defined as

F [ρ(r)] =
∫

f (�r, ρ(�r), �∇ρ(�r), �∇ (2)ρ(�r) · · · )d�r. (B13)

Now, to obtain the binding energy of a set of nuclei including shell and pairing effects, as close as possible to the full HF or
HFB values overall, a scaling parameter βKE has been introduced in the h̄2 part of the kinetic energy density τq. Incorporating
this parameter, the kinetic energy density now becomes

HKE =
∑

q

h̄2

2m
fq(τq,0 + βKEτq,2), (B14)
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and the potential part corresponding to the h̄2 term given in Eq. (B10) containing τq,2 and τq′,2 is modified as βKEτq,2 and βKEτq′,2,
respectively. Following this procedure, we find βKE = 1.45, 1.4, and 1.75 for D1S, D1M, and D1M* interactions, respectively.

APPENDIX C: EOS FOR D1M*

In Table III EoS of D1M* is provided for core and inner crust of NS.

TABLE III. Equation of state for inner crust and core of NS obtained with D1M* interaction. Here we have used E = E
A ρ. Xp, Xe, and Xμ

are proton, electron, and muon fraction in the medium, respectively.

ρ E/A − mn P E P Xp Xe Xμ

(fm−3) (MeV) (MeV fm−3) (g cm−3) (erg cm−3)

Crust 0.0004 −0.74943 0.00056 6.6903 × 1011 8.9472 × 1029 0.20234 0.20234 0.00000
0.0006 −0.27892 0.00072 1.0040 × 1012 1.1545 × 1030 0.15285 0.15285 0.00000
0.000879 0.12384 0.00098 1.4716 × 1012 1.5760 × 1030 0.11938 0.11938 0.00000
0.00159 0.74518 0.00183 2.6636 × 1012 2.9277 × 1030 0.08500 0.08500 0.00000
0.00373 1.79723 0.00543 6.2557 × 1012 8.6995 × 1030 0.05853 0.05853 0.00000
0.00577 2.47121 0.00983 9.6839 × 1012 1.5749 × 1031 0.05115 0.05115 0.00000
0.00891 3.26236 0.01770 1.4966 × 1013 2.8359 × 1031 0.04624 0.04624 0.00000
0.0204 5.12315 0.05114 3.4334 × 1013 8.1938 × 1031 0.04048 0.04048 0.00000
0.03 6.12660 0.08046 5.0545 × 1013 1.2891 × 1032 0.03827 0.03827 0.00000
0.0475 7.40033 0.13496 8.0138 × 1013 2.1623 × 1032 0.03565 0.03565 0.00000
0.06 8.07662 0.17845 1.0130 × 1014 2.8591 × 1032 0.03453 0.03453 0.00000
0.07 8.53993 0.22176 1.1824 × 1014 3.5529 × 1032 0.03406 0.03406 0.00000
0.0789 8.92225 0.26701 1.3333 × 1014 4.2779 × 1032 0.03429 0.03429 0.00000

Core 0.0838 9.11446 0.27042 1.4164 × 1014 4.3326 × 1032 0.03502 0.03502 0.00000
0.09 9.35675 0.32190 1.5215 × 1014 5.1573 × 1032 0.03612 0.03612 0.00000
0.10 9.76819 0.42733 1.6913 × 1014 6.8466 × 1032 0.03765 0.03765 0.00000
0.11 10.21459 0.56487 1.8613 × 1014 9.0502 × 1032 0.03893 0.03893 0.00000
0.12 10.70424 0.73946 2.0316 × 1014 1.1848 × 1033 0.04000 0.04000 0.00000
0.13 11.23588 0.95653 2.2021 × 1014 1.5325 × 1033 0.04090 0.04082 0.00008
0.14 11.77626 1.22382 2.3729 × 1014 1.9608 × 1033 0.04166 0.04098 0.00068
0.15 12.36780 1.54275 2.5440 × 1014 2.4718 × 1033 0.04232 0.04090 0.00141
0.16 13.02104 1.91706 2.7154 × 1014 3.0715 × 1033 0.04288 0.04072 0.00216
0.17 13.73982 2.35077 2.8873 × 1014 3.7663 × 1033 0.04337 0.04048 0.00289
0.18 14.52609 2.84784 3.0597 × 1014 4.5627 × 1033 0.04379 0.04021 0.00358
0.21 17.29766 4.75742 3.5800 × 1014 7.6222 × 1033 0.04483 0.03938 0.00545
0.24 20.69063 7.36949 4.1059 × 1014 1.1807 × 1034 0.04567 0.03864 0.00704
0.27 24.69654 10.77234 4.6385 × 1014 1.7259 × 1034 0.04647 0.03804 0.00843
0.30 29.29993 15.04513 5.1785 × 1014 2.4105 × 1034 0.04732 0.03763 0.00969
0.33 34.48178 20.25854 5.7268 × 1014 3.2458 × 1034 0.04830 0.03741 0.01089
0.36 40.22117 26.47535 6.2842 × 1014 4.2418 × 1034 0.04945 0.03739 0.01207
0.39 46.49613 33.75094 6.8515 × 1014 5.4075 × 1034 0.05083 0.03756 0.01327
0.42 53.28414 42.13356 7.4294 × 1014 6.7505 × 1034 0.05246 0.03794 0.01451
0.45 60.56242 51.66452 8.0185 × 1014 8.2776 × 1034 0.05437 0.03853 0.01584
0.48 68.30797 62.37829 8.6193 × 1014 9.9941 × 1034 0.05661 0.03934 0.01727
0.51 76.49773 74.30242 9.2325 × 1014 1.1905 × 1035 0.05920 0.04038 0.01882
0.54 85.10850 87.45746 9.8585 × 1014 1.4012 × 1035 0.06217 0.04165 0.02053
0.57 94.11700 101.85674 1.0498 × 1015 1.6319 × 1035 0.06556 0.04316 0.02240
0.60 103.49989 117.50632 1.1151 × 1015 1.8827 × 1035 0.06940 0.04493 0.02447
0.63 113.23382 134.40496 1.1817 × 1015 2.1534 × 1035 0.07371 0.04697 0.02674
0.66 123.29558 152.54446 1.2499 × 1015 2.4440 × 1035 0.07851 0.04928 0.02923
0.69 133.66233 171.91034 1.3194 × 1015 2.7543 × 1035 0.08381 0.05186 0.03195
0.72 144.31192 192.48320 1.3904 × 1015 3.0839 × 1035 0.08961 0.05470 0.03491
0.75 155.22325 214.24048 1.4630 × 1015 3.4325 × 1035 0.09589 0.05780 0.03809
0.78 166.37673 237.15886 1.5370 × 1015 3.7997 × 1035 0.10262 0.06113 0.04148
0.81 177.75459 261.21683 1.6125 × 1015 4.1852 × 1035 0.10974 0.06467 0.04507
0.84 189.34119 286.39706 1.6896 × 1015 4.5886 × 1035 0.11718 0.06837 0.04881

015802-16



STRUCTURE AND COMPOSITION OF THE INNER CRUST … PHYSICAL REVIEW C 102, 015802 (2020)

TABLE III. (Continued.)

ρ E/A − mn P E P Xp Xe Xμ

(fm−3) (MeV) (MeV fm−3) (g cm−3) (erg cm−3)

0.87 201.12315 312.68832 1.7682 × 1015 5.0098 × 1035 0.12488 0.07220 0.05268
0.90 213.08924 340.08655 1.8484 × 1015 5.4488 × 1035 0.13275 0.07612 0.05663
0.93 225.23028 368.59505 1.9301 × 1015 5.9055 × 1035 0.14070 0.08007 0.06063
0.96 237.53882 398.22395 2.0135 × 1015 6.3803 × 1035 0.14868 0.08403 0.06464
0.99 250.00888 428.98910 2.0984 × 1015 6.8732 × 1035 0.15660 0.08796 0.06863
1.02 262.63561 460.91087 2.1850 × 1015 7.3846 × 1035 0.16442 0.09184 0.07258
1.05 275.41506 494.01278 2.2731 × 1015 7.9150 × 1035 0.17208 0.09563 0.07645
1.08 288.34398 528.32039 2.3630 × 1015 8.4646 × 1035 0.17956 0.09933 0.08023
1.11 301.41961 563.86039 2.4545 × 1015 9.0340 × 1035 0.18683 0.10292 0.08391
1.14 314.63960 600.65982 2.5477 × 1015 9.6236 × 1035 0.19387 0.10639 0.08749
1.17 328.00187 638.74563 2.6426 × 1015 1.0234 × 1036 0.20067 0.10973 0.09094
1.20 341.50460 678.14433 2.7392 × 1015 1.0865 × 1036 0.20723 0.11295 0.09428
1.23 355.14611 718.88173 2.8376 × 1015 1.1518 × 1036 0.21354 0.11605 0.09749
1.26 368.92487 760.98288 2.9378 × 1015 1.2192 × 1036 0.21961 0.11902 0.10059
1.29 382.83948 804.47197 3.0397 × 1015 1.2889 × 1036 0.22544 0.12187 0.10356
1.32 396.88859 849.37238 3.1435 × 1015 1.3608 × 1036 0.23103 0.12460 0.10643
1.35 411.07097 895.70663 3.2491 × 1015 1.4351 × 1036 0.23640 0.12722 0.10918
1.38 425.38542 943.49646 3.3565 × 1015 1.5116 × 1036 0.24155 0.12973 0.11182
1.41 439.83081 992.76285 3.4658 × 1015 1.5906 × 1036 0.24648 0.13213 0.11435
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