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We present the neutron elastic scattering amplitude for an arbitrarily polarized target in an irreducible
spherical-tensor representation. The general approach for the description of neutron spin dynamics for propaga-
tion through the medium with an arbitrary polarization is discussed in relation to the search for a time-reversal

invariance violation in neutron scattering.
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I. INTRODUCTION

With the opportunity to measure time-reversal invariance-
violating (TRIV) effects in nuclear reactions by the transmis-
sion of polarized neutrons through a polarized target [1-5], it
is important to have a complete description of the propagation
of neutron spin through an arbitrarily polarized target. These
TRIV effects are proportional to the vector polarization of
a nuclear target. However, in a general case, to describe the
polarization of a target with spin / requires 2/ tensor mo-
menta [6-8]. Therefore, only for I = 1/2 it is sufficient to con-
sider vector polarization (the first-rank tensor) for a complete
description of the target polarization. Despite the fact that
the recent proposals for searches of TRIV effects in neutron-
nucleus scattering (see, for example, Ref. [5] and references
therein) demonstrated the existence of a class of experiments
that are free from false asymmetries, to design the experiment
and to control the possible systematic effects one has to have
a detailed description of neutron spin dynamics in targets with
arbitrary polarization. The propagation of polarized neutrons
through a polarized target in relation to TRIV experiments has
been studied in many papers (see, for example, Refs. [5,9—
14] and references therein); however, these studies have been
done with the focus on the case of a vector-polarized target.
However, even for a 100% vector-polarized target with spin
I > 1/2, the higher-rank tensor polarizations may coexist
and be rather large. Therefore, even if these higher-order
polarizations cannot mimic TRIV effects, they can change the
neutron spin dynamics, which can lead to a suppression of
TRIV observables. Thus, the open and important question for
the design of new experiments and for future data analysis is
how these high-rank tensor polarizations affect neutron spin
dynamics inside the polarized target.
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In this article we give a systematic approach for the de-
scription of low-energy neutron spin propagation in the target
with arbitrary polarization using irreducible spherical-tensor
representation for target polarizations. Also, as examples,
we present the complete expressions for neutron scattering
amplitude in irreducible spherical-tensor representation for
the case of a nuclear target with spin / = 7/2 and the detailed
analysis of neutron scattering on '*La. Finally, we apply the
developed approach for a general analysis of neutron spin
rotation in a target with arbitrary polarization.

II. SCATTERING AMPLITUDE IN IRREDUCIBLE
SPHERICAL TENSOR REPRESENTATION

A general expression for the forward elastic scattering
amplitude with p and M, projections of neutron (s = 1/2) and
target spins on a quantization axis z, can be written as

i

S = oS Vi, (0, ) (s IM'|S'm) (Smy|spIM)
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where primed parameters correspond to the outgoing channel,
and the angles 6 and ¢ describe a direction of the neutron mo-
mentum l_cl. The matrix R is related to the scattering matrix S as
R =1 — S, which in the integral of motion representation [15]
is

(S''a|S”|S10)815 Sy $(E' — E), 2)

where J and M are the total spin and its projection, S is the
channel spin, / is the orbital momentum, and « represents the
other internal quantum numbers.
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Then, for arbitrary target polarization described by the polarization density matrix py, the scattering amplitude can be
calculated as

f = "Tr(fum pym)- 3

To describe polarization of the tensor-polarized target, it is convenient to use the expansion [7] of the density polarization matrix

in terms of the statistical tensors 7,,:
[2g + 1 ,
PumM = qEK m (IMqK |IM >th. (4)

In this expression each tensor f,, corresponds to tensor polarization of the target of rank ¢, and thus for the case of the unpolarized
target all statistical tensors vanish except #gg.

For the choice of the spin direction of the target along the quantization axis z, the elastic scattering amplitude (5) can be
presented as an expansion in terms of spherical-tensor polarizations 7, with a corresponding weight of w,:
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For a description of neutron polarization it is convenient to introduce the following function:
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where ¥ and j are the components of neutron spinor (;). To describe an arbitrary orientation of neutron spin in spherical
coordinates, one can choose

¥ =cos(B/2)e @2, §=sin(B/2)e/?, (7)

where B and « are polar and azimuth angles for spin direction relative to the quantization axis z. Then, the elastic scattering
amplitude for polarized neutrons and for the spherical-tensor polarization Pq’ [as defined in Eq. (A6)] of the target is

. 21 I
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with ¢/ defined by Eq. (A11).
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It should be noted that, usually in nuclear physics, spherical tensors (which we define as 7., in Appendix A) have different
normalization [6,8,16] compare to fy in Eq. (4), defined in Ref. [7]. Therefore for the sake of convenience we present further
expressions for amplitudes and angular coefficients in terms of expansions in Ty.

To describe the amplitude for arbitrary target’s and neutron’s spin orientations, we use the convention that the direction of
the target spin is always parallel to the z axis, and the neutron momentum belongs to the y-z plane, which implies that the angle
¢ = /2 and the neutron momentum direction is described by the angle 6. Then, assuming that &, I, and k = l?/ k| are unit
vectors in the corresponding directions, we can write the following relations:

(k-T)=coso, G-I) =cos 83,
[k x I =sinf, (G- [k xI]) = cosa sinf sin B. 9)

(G - k) = cosO cos B + sin 6 sin B sinc,

Using these relations one can expand the scattering amplitude (8) in terms of irreducible tensors constructed from the products
of the neutron spin &, the target spin I, and the neutron momentum k. In general, only the first order of neutron spin and the
powers of the target spin up to the value of (27) can contribute in this expansion; the power of the neutron momentum is not
bounded. However, because we consider scattering of low-energy neutrons with only contributions from s and p partial waves
(resonances), we can restrict ourselves to terms that have at most two powers of k. Then, the amplitude (8) can be written as

f=A+B@E -D+CG -kb+D @ -lhxI)+H & -D+K'@ - k-1
@ -k -]

+G @ - lkx INk-T)+By@& -D[k-Dk-T)— k- BT -D]+---, (10
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1
3

where the first line contains target spin-independent terms
(A’, C') and terms proportional to the vector polarization of
the target (B, D', H', K’), while the second and the third
lines contain E’, F’, and G’ terms, which are proportional
to the tensor polarization of the second rank, and the term
Bj, which is proportional to the third rank of the target
polarization. The terms C’, D', H', and F’ represent P-odd of
the amplitude, and D’ and G’ terms violate the time-reversal
invariance. (The expressions for these coefficients for specific
values of the target spins / and their projections M on the axis
z are given in Appendix B.)

For parity-conserving parts of the amplitude (8) and, as a
consequence, of the amplitude (10), the matrix elements for
slow neutrons can be written in the Breit-Wigner resonance
approximation as [3]

Fig = (S'IK|R'|SIK)

e (S/ ) r» (S )
Zm kWK e,-[a,K(s;()H;K(SK)]

"E_Ex +ilx/)2

K

— 2ie™ SxSk) sin 8, (Sk S)), (11)

where Eg, 'k, and Fl”K are the energy, the total width, and
the partial neutron width of the Kth nuclear compound res-
onance; E is the neutron energy; and &, is the potential
scattering phase shift. For p-wave resonances we keep only
the resonance term, because for low-energy neutrons &; ~
(kRp)**! (where Ry is nucleus radius), and, as a conse-
quence, the contribution from p-wave potential scattering is
negligible.

The matrix elements for parity violating (PV) and TRIV
interactions for slow neutrons can be written in the Breit-
Wigner resonance approximation with one s-wave resonance
and one p-wave resonance as [3,17]

[
(Fyus) = (STIR|SI)
B TS (—iv + w)/TT(S)
T (E—E +ily2) E —Ey +iT,/2)
x o (8] (12)

where / # [’, and v and w are real and imaginary parts of the
matrix elements for PV and TRIV mixing between s- and p-
wave compound resonances,

v+ iw = —(gs|Vp + Vpylo,), (13)

due to Vp (PV) and Vpy (TRIV) interactions.

In general, the matrix element Eq. (12) has a sum over a
number of close resonances, similar to the sum in Eq. (11).
However, we are usually interested in a description of
symmetry-violating effects in the vicinity of p-wave reso-
nances. In that case, only a contribution from that particular
p-wave resonance is important; therefore we can use the two-
resonance approximation (12), which resulted from a mixture
of the nearest s- and p-wave resonances. It should be noted
that, in general, a p-wave resonance can be mixed with two
or more s-wave resonances. In that case, Eq. (12) should be
modified to the sum of amplitudes over all mixing s-wave
resonances. Fortunately, the two-resonance approximation has
been proven to be good enough to describe practically all
observed PV effects in neutron scattering (see Refs. [18] and
references therein).

Because we are interested in applications of our results for
the analysis of TRIV effects that are proportional to vector
polarization of the target(c - k x T ]) correlation), we choose
the initial geometry where vector polarization of the target has
the simplest form: the neutron spin & is parallel to the x axis,
the target spin I is parallel to the z axis (the quantization axis),
and the neutron momentum X is going in the direction of the
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y axis. Therefore, for our choice of the coordinate system, the
angle’s values in Eq. (8) are 8 = w /2 and ¢ = 7 /2.

III. ANALYSIS OF THE SCATTERING WITH THE
TARGET SPINI =17/2

To understand the structure of the amplitude (10), let us
consider an example for a scattering on the target with spin
I =7/2. In general, to completely describe polarization of
the nucleus with a spin I, we need a set of spherical tensors
up to the rank of ¢ = 2/, which results in g =7 for I = 7/2.

J

fip=PlA +C'G-k)+P{B@E-DH+D@G-[

However, for low-energy neutron scattering, the tensor struc-
ture of the amplitude is much simpler. This is because only s-
and p-wave resonances are important, and as a consequence,
one cannot have tensor terms in the amplitude built from a
momentum vector with a rank higher then 2 (for discussion
of the possible contributions from d-wave resonances, see
Appendix C). This results in a constraint that the rank of the
target spin tensor has a maximum value of g = 3.

Evaluation of Eq. (8) forg =0,9g=1,¢g=2,and g =3
with target spin 7/2 (see Appendix D) leads to results that can
be summarized, in terms of a linear combination of the tensors
already listed in Eq. (10), as

~

IN+H(k-D+K G- -k)k-D)

X
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where the primed coefficients are defined by the following expressions:
A= 3&(76, 0|R*|3,0) + 9(4, O[R*4, 0) + 7(3, 1|R*|3, 1) +9(3, 1|R*3, 1) + 7(4, 1|R*|4, 1) + 9(4, 1|R*|4, 1)), (15)
C = @(7((3, 0IR*|3, 1) + (3, 1|R?|3, 0)) — 7+/3((3, 0|R*|4, 1) + (4, 1|R?|3, 0))
+3v21((4,01R*3, 1) + (3, 1|R*|4,0)) — 3/15((4, 0|R*|4, 1) + (4, 1|R*|4, 0))), (16)
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32k b 9 9 b 4 b 9 4ﬁ 9 b 9 9
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3i
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+ (4,1|R*[3,1)) = 5(3, 1|R*|3, 1) + g<4, 1IR"4,1) ), (21
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G = (7,/§(<3,1|R3|4,1>—<4,1|R3|3,1>)—3f7(<3,1|R4|4,1>—<4,1|R4|3,1>)>, (23)
3245k 3

B, = 9i <7<3,1|R3|3,1>+(<3,1|R3|4,1>+—7 (4,1|R3|3,1))+z(4,1|R3|4,1)—3\/7((3,1|R4|4,1)+(4,1|R4|3, 1))
256k V3 3 5

21
—3(3, 1|RY3,1) — ?<4, 1|1R*|4, 1)).

Because we use a rather particular spin value I = 7/2, the
above expressions present a pattern for a general amplitude
structure.

IV. SCATTERING OF POLARIZED NEUTRONS ON
POLARIZED "¥La TARGET

Let us apply the obtained results for the case of '*’La,
which has a spin I = 7/2, and consider scattering of polarized
neutrons on the polarized '*La target in the vicinity of the p-
wave resonance E, = 0.734 eV. The resonance structure [19]
of 3°La shows that there are two nearest s-wave resonances
with Ejg = —48.63 eV and E; = 72.3 eV, and with spins J =
4 and J = 3, correspondingly. Because the p-wave resonance
has spin J = 4, it can be mixed only with the negative-energy
s0 resonance. Therefore, we can neglect symmetry-violating
amplitudes with a total spin J = 3. Thus, there are only four
parity-violating amplitudes with a total spin J = 4:

(40[R*|31) /i T "
= e ’
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Fn . .
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xsysI'”
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xsysI™”
GURBY) = i p (26)
E—E,+il,/2

(24)

(

that make main contributions in the vicinity of the p-wave res-
onance. Also, for slow neutrons we can neglect exponentials
with phases in the above expressions.

For the case of phenomenological TRIV and parity-
conserving interactions (TVPC), corresponding to the term
G/, there are four possible amplitudes for the '*’La target
that contribute to Eq. (23) by the two matrix element differ-
ences ((3,2|R}|4,0) — (4,0|R}|3,2)) and ({3, 1|R}|4, 1) —
(4, 1|R‘}|3, 1)). Assuming only contributions from a com-
pound resonance mixing (see detailed discussions in
Refs. [20-22]), one can write these differences as follows:

(3, 11R}14, 1) — (4, 1|R73, 1))
v { [P @] = [P@i ]
(E - Epl + lrpl/z)(E - Ep2 + leZ/z) ’
((3,2|R714, 0) — (4, 0|R713,2))
v {[ryr@r]” - [r@uren]”)

= . . e, (27)
(E —Eq+ilq/2)(E — E; +il'y/2)

1/2

where v7” and v$¢ are phenomenological TVPC matrix ele-
ments [21], and I'(S); are partial neutron decay widths for
k’s resonance (where k is s, pl, p2, or d) corresponding
to the spin channel S. We can see from these expressions
that, for the existence of an already very small coefficient G’
(due to a naturally small value of phenomenological TVPC
interactions [23]), one has to have either an additional p-wave
resonance or an additional d-wave resonance. Because we
are interested in the region in the vicinity of the p-wave
resonance, the possible contributions from the s-d mixture
can be neglected; therefore, only the first difference of matrix
elements in the above expression can be taken into account.
For the completeness of the description of the neutron propa-
gation through the polarized target we provide the expression
for the G’ coefficient; however, we neglect TVPC correla-
tions in the further analysis. (For experimental constraint of
this term from neutron scattering on aligned holmium, see
Refs. [24,25].)

Then, the coefficients in the amplitude (14) for 139 a are
the following:

, -1 I "%
A, =717 - +9 -
32k E _Esl +ZF51/2 E — Eso +lrs()/2
fo— + L Oa £7a0), 28
E—E,+il,2) " 16 0T "tk
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(37

where ayy and a,; are neutron scattering lengths with the total
spins J/ = 4 and J = 3, correspondingly.

We can see that not all these correlations are equally impor-
tant for the analysis of neutron spin propagation through the
polarized target for experiments to measure the D’ correlation.
Correlations A’ and B’ are related to strong spin-independent
and spin-dependent backgrounds, correspondingly, and C’
is related to a weak spin-dependent background. However,
despite the fact that the values of the H" and K’ coefficients are
about the same order of magnitude as C’, they are proportional
to the (k - I) term. Therefore, they can be well controlled by

a precise alignment of the target spin to be perpendicular to
the direction of the neutron beam. The coefficients E’ and F’
are also of the order of magnitude of C’; however, they are
proportional to the second order of the tensor polarization P,
and, therefore, can be minimized by creating a pure vector
polarization. Term G’ is very small as is discussed above, and
it is also proportional to the tensor polarization P,. Moreover,
G’ is proportional to the k-1 product, which gives an
additional way to suppress it by an alignment of the target
spin. Finally, Bj, being of the same order as E’, is proportional
to the third order of the tensor polarization P;, which usually
is small.

V. NEUTRON SPIN ROTATION

Using expressions for the scattering amplitude f [see, for
example, Egs. (10), (D2), (D4), (D6), (D8), and (14)], we
can describe the transmission of polarized neutrons through
polarized medium and in the external magnetic field B by
Schrodinger’s equation (see, for example, Refs. [10,11,26]
and references therein) with the following effective Hamilto-
nian (Fermi potential):

27rfz2

H = Nf — —( - B), (38)

n

where m,, is the neutron mass, N is the number of scatter-
ing centers per unit volume, and p is the neutron magnetic
moment. Then the evolution operator that relates the initial
neutron spinor to the spinor at the distance y is

U=e i, (39)

where v is the neutron velocity. Following the approach of
Stodolsky [10], by representing the amplitude in the form of
a 2 x 2 matrix in neutron-spin space as f = a + (& -b) and
using the formula exp(io - l;) =cosb+i(d - l;)(sin b)/|b|, we
can calculate coefficients A(y), B(y), etc., which correspond
to A’, B/, etc., in Egs. (10) and (14) at y = 0. For the case of
I > 3/2, and in particular for I = 7/2, this parametrization
leads to

/ 1o P /|:""A" 1:| P3Bé
a=PRA' +PH (k- D+ PE| (k-Dk-D= 3 |- ==,
bi = PyC'(k); — pete(B)i/2 + P{B'I; + D'k x I;

AA o PN 1 .
+K'(kyitk - D} + PZ{F’[I,-(k - g(kx}
+ G'lk x Ii(k - i)} + P3B;{1,»[<12 Dk - D]
20 D| 1k T3 + b
4 . - 1 .
—5k- 1)[1(k 1>—§<k);]}, (40)

where jiey = um, /(4w h>N). (For spin I = 1 we should as-
sign P; =0 in the above expression, and for the case of
I = 1/2 we have both , =0 and P; = 0.)
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One can see that, for the perfect alignment of the magnetic
field along the z and the neutron momentum along the y axis,
Eq. (40) transforms to

PE + P3B,3

a:P()A/—f, b] :PlD/[IQXi]l,

by = PC' — 2
3

The parameter a defers from its value in Ref. [10] by the
second term, which can be ignored because it is suppressed by
a factor (kR)?> and numerically by small values of the tensor
polarizations. The parameters b, and b, are exactly the same
as for a “simple” spin amplitude in Ref. [10]. Therefore, the
only important correction to the analyses in Refs. [10,26] of
spin rotation in the target with 7 > 1/2 is the second term of
b, (for the target with I = 1/2 only vector polarization exists,
and P2 = P3 = 0)

Thus, for the analysis of neutron spin rotation we can
use the results of Ref. [10] by changing the parameter b,
according to Eq. (41) and by changing the coordinate system
in Refs. [10,11] as follows: x — z, y — x, and z — y. Alter-
natively, one can use the explicit expression for the evolution
operator (39) as a function of the distance y, which can be
written as

by = —pe(B)3/2 + PiB'.  (41)

(o

b
U(y)=e><p(iay)[COS(ﬂy)+i 5 )sin(ﬂy)], (42)

where « = ya, B; = yb;, y = 2nhN/(m,v), and B = |B|.

It should be noted that the parameter a contributes to a
general attenuation of the neutron beam, but the value of
b is washing out the neutron spin component of the ampli-
tude. Therefore, the smaller value means better sensitivity for
spin-related observables (the TRIV effect, in particular). The
largest part of b come from the b3 component, which can be
reduced by adjusting the external magnetic field (see Ref. [14]
and references therein). The second large part comes from b,
which also can be reduced by adjusting the value of the second
rank of the target polarization P;.

VI. CONCLUSIONS

We have developed a general systematic approach for the
description of low-energy neutron spin propagation in the
target with arbitrary polarization using irrecusable spherical-
tensor representation for target polarizations. Applying this
technique for the case of slow neutrons, when only s- and
p-wave resonances are important, we demonstrated that for
any value of the target spin only terms up to the third rank of
tensor polarization are present in the scattering amplitude, in
comparison to the 2/th rank of tensor polarization in a general
case. This is because the low power of momenta (up to a
second rank tensor in our case) cannot be coupled to a higher
rank of spin tensors. Therefore, even for targets with a large
value of spin, the number of irreducible terms in the scattering
amplitude is less than or equal to ten. For a target with spin
I = 1/2 only six irreducible terms exist.

The analysis of neuron spin propagation shows that only
seven terms from the ten possible terms are numerically

important for the description of the neutron spin propagation,
and this number can even be decreased to four for the target
with/ =1/2.

The obtained results provide the recipe for how to extend
the existent “conventional” approach for the description of
neutron spin dynamics in a vector-polarized target in the case
of an arbitrarily polarized target.

Another important observation is related to the fact that
the second-rank tensor polarization of the target can be used
for the cancellation of neutron spin rotation due to weak
interaction. This, combined with the possible cancellation of
the strong spin-spin interaction by an external magnetic field,
gives the opportunity for essential increasing of the sensitivity
in the search for TRIV.

Finally, using the obtained formalism, we presented the
detailed description of neutron spin propagation in arbitrarily
polarized '*La, which is one of the candidates for the target
for future TRIV experiments.
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APPENDIX A: SPIN POLARIZATION

To specify polarization in the spherical representation we
use the statistical tensors ?Kq, which are defined as the expec-
tation values of irreducible tensor spin operators:

Ty = (Teg)- (A1)

The spin operator corresponding to the spin j is de-
fined [16] by
(T o = (i1 Ljm) = N2k + Wjmkgqljm).  (A2)

It should be noted that the tensors 7., have different nor-
malization in comparison to the tensors f,, in Eq. (4), which
are defined as [7]

2k 41
2j+1

(tkgImm = (jmkgqljm'). (A3)

We define the population of each magnetic substate m of
the spin I as

1
Ny = (Im|Im), > Ny =1.

m=—1

(A4)

Then we can calculate
I

T = > (Iqltjllq).
g=—1I

(AS5)

for k in the range of 1 < k < 21.
Because the vector polarization P; is commonly defined to
be proportional to T/, we write

P = cl7, (A6)
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where the constant ¢} is obtained from the requirement that
Pl =1forN; = 1:

J 1
=775 (A7)
(tl ,0) I
Then the vector polarization is uniquely defined as
=1
T
Pl =_—1—, (A8)
(Tl ,0) 17
and the general tensor polarizations are
Pl =ci7t, (A9)

with the parameters ck determined from the condition that
P! =1 for N; = 1. Thus polarization for arbitrary cases can
be uniquely defined as

-1
Tk

(Tk,O)II ’

with the normalization coefficients

Pl = (A10)

1 _ 1 QI—k)! QI +k+ 1)
(t/y), ~J@TDRk+DY\ @) ant
(A1)

This leads to explicit expressions for P/ as follows:

_N717

(S]]

P! =Ny —N_y,
P) = N; — 2Ny + N_y,

3
P12=N%+%N1__N1_N 37

N

3
P?=N:—Ni—N ;| +N 3,

2 2 T2 T2
3
P32=N;—3N1+3N 1 —N 3,

3 3 -5 -3

2 2

P12=N2+%N]_%N—I_N—25
P22=N2—%N]—NO_%N—]+N—17

P} =N, — 2N, +2N_; — N_y,
P{ = Ny — 4N; + 6Ny — 4N_; + N_y,

P? =Ns+3N; +3N1 — N | —IN 3 —N s,
: : : -2 2 72

5
P?=Ns —iN:—iNi—3IN | —IN 3+ N 5,
: -2 2 72

5
P =Ns——Ne—‘§‘Nl+‘5—‘N 1 +IN 3 —N s,
2 -2 2 72
5
P42=N§—3N§+2N1+2N 1 —3N 3 +N 5,
2 2 2 -2 2 7
5
P =N;s —5N; + 10N, — 10N_ 1+5N 3 —N s,

2

ﬁ—m+Am—M IN <IN —Noa,

P = N3 — 3Ny — $No — §N_1 + N_s,

P; =N;—N,— N, +N_y +N_, —N_3,
P} =Ns—IN,+ Ny + 2Ny + IN_; — IN_, + N_3,

P} = N3 — 4N, + 5N; —SN_; +4N_, — N_3,
P} = N3 — 6N, + 15N} — 20Ny + I5SN_; — 6N_» + N_3,
7
2 _ 5 3 1 1 3
P, —N%+7N%+7N%+7N%—7N_% 7N_3
—3N s =N 7.
2 2
7
2 _ 1 3 5 5 3
+IN s +N 7,
T2 2
7
P} =N; —3Ns —=N3 —3N1 +3N_1 +N 3
- - 2 T2
+%N 5_N Ty
2 72
7
P} =N; — 2Ny — 3N; + 3Ny + 3N —%N_%
— SN s +N 7,
T2 2
7
P =N; — 2Ny — Ny + 2Ni — BN 1+ UN 3
2
+2N s —N 7,
-2 72
7
2

P6 = N7 —5Ns +9N3 —5Ni1 —5N | +9N 3
3 2 2 3 -5 -5

—5N 5 +N 7,
2 72
7
P7 =N; —7Ns +2IN; —35N1 +35N_1 —2IN 3
2 2 E 75 ,E
+7N s — N 7.
2 72

APPENDIX B: SOME USEFUL EXPRESSIONS WITH FIXED VALUES OF M

For numerical calculations it may be convenient to have expressions for A’, B', etc., coefficients for specific values of the
projection of the target spins on the z axis. Using Eq. (1), one can get these expressions for a particular value of the target spin /.
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For example, for the target spin / = 1/2 and the spin projection M = +1/2,

i

Al i = gqo, 0|R%|0, 0) 4+ 3(1, O|R'|1, 0) + 3(0, 1|R"(0, 1) + (1, 1|R°|1, 1) + 3(1, 1|R'|1, 1)). (B1)

: >
-1
2
1 1
1) =2v5(=,1
2 2> f<2

3

_,1>

2

1 3.3 3| 51
— 1) +25(2, 1|R2 |2, 1) = 2v/5( 2, 1]R? | =,
Rt R E

For the target spin / = 1 and the spin projection M = =1,

AL = L 2010R%10+4o§0
=L 120k 2’ 2’ 2’

1 3 1| .
+5\/§<§, 1‘R5 z, 1> + 4o<§, 1‘R3

R0 +20 U 1lr?
2’ 2’

R}

+5~/§<%, 1‘Ri

|

—_
—_——

+

(98]

[N}
—_—
N W

—_—

=

1w

.03
3 1>> (B2)

For the target spin / = 1 and the spin projection M = 0,

A= — (20l olrt L 0} 4 a0(3. 0|r?
107 120k 2’ 2’ 2’

1 3 1| sl L
—10v2( =, 1[R2 (2, 1)+ 40{ =, 1|R? | =, 1) + 4v/5( =, 1|R? |2, 1
of<2 13 >+ 0<2 > >+ J5<2 5 >
3|1 3 .13 3| 5|1 5|3
—10v2( 2 1Rz = 1)+ 10( 2, 1Rz |2, 1) + 4v/5( 2, 1|R? | =, 1 2RI B
of<2, > >+ 0<2, > >+ J§<2, > >+56< , ‘ |5 >) (B3)

or for the target spin / > 1 and the spin projection M,
Al = i 2021 + 1) 1= olr-t| (1 - L 0)+2( + )21 +1) +1)0
M 421 + 1)%k 2) 2) 2)
3 2 _ 2
6[21° +2M~ — I(1 4+ 2M~*)] 1 Rt 1 r
2
=2
2

QI —1) I=3
3+ 17 - 3M?) 1 | 1 1
_¢(1+1)<21—1>[<(1_5)’1 <I+5)’1>+<<I+5>’1
(1=2)1)
I—=),1
2

2
3(1+212+13—M2+1M2)<< 1)
+ ,1
+3(1+12—3M2)[< I 1) |
VIQI +3) < 2)
1 ! 1 B4
(r+3) 1)} B9

I — —
1 2
1 ! 1 1 ! 1
(*5)’ >+<( *5)’
2 3 2 2

3+ 1P +2M +1M)<(1+ 1)11

(1-3)9)

I—-1,0

2

1
d+1) 2 <I+§’1>
1 ! 0 6|1 ! 1
(*z) >+ <(‘z>’

2 3 a2 e
+6(1+6I +2I° —4M= +1(5 — 2M ))<<I+l>,1
(1 DN ((n 1)1
+2>, >+<< +2 )

I +3) 2
1 ! 1 1 ! 1
( +z)’ >+<( *z)’
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1
R 2

For the target spin/ > 1 withM =1,

i | 1
A= ——— 1211+ 1){(I— = ).O[R":
! 4(21+1)2k{ @I+ )<< 2)’0 ’

RT3

+2(1+1)<21+1><(1+%),o

-3
=y
=y

RI-: RI-:

)

2

Rl+% R1+%

_ MR(, _ _> !
JIQI £ 3) 2)
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31*(3 +21) 1 ) 1 1
+I+—1<<I+2) 1 <I+§>,l>+3(21 +I+1)<<I—§),1 <1—§),1>

6217 +51+1)
+T<(’+z) I+3 “>} B

For the target spin / = 1/2 and the spin projection M,

RI—2 RI*+z

R1+2

/ iM 0 1 1 0
By = —EGO,OIR 10, 0) — (L, O|R"[L, 0) + 3(0, 1{R"|0, 1) — (1, 1|R"|L, 1)). (B6)

For the target spin / = 1,

} iM 1|
By = —( —20( =, 0|R?
120k 2 2

5 1 B7
1)) o7

For the target spin / > 1,

B, - M 2021 + 1) <1 l)o
’M_4(21+1)2k{ + [< t3)

_6(212+21—1—2M2)<( 1) |

I—— )
Q-1 2

317 +21 —1—-2M?) <I 1)1
T Ja+hai-0n [< )

_3(1+1+12+M2)<<1_1) :
I 2)
+3(212+21—1—2M2)[<< _1) .

VIQ2I+3) 2)

31 +1+174+M?) 1
LTSS <(1+5)’1

[EHEREE

e r-2)9]
2]

(-2

[+

1 621 + 21 — 1 — 2M?) 1
<I+§>’1>_ @I+3) <(1+5>’1

1
RI+S

1 1
R17§ R1+§

I+ ! 1
2 b
(B3)
For the target spin/ > 1 and M = I,

e Catl (T R CORN LR
ol ()
o e ]
N Y
R T

+61(2]—1) I+ 1 |
2143 2)
For the target spin I = 1/2 and its projections on the z axis, M = £+1/2,

81—k(<0,0|R°|1, 1) — V/3(1, 0[R"|0, 1) + /6(1, 0]R'[1, 1) + (1, 1|R°[0, 0) — /3(0, 1|R'|1, 0) + V/6(1, 1|R'[1, 0)).

RI*3

1|R—z

R1+2 Rl+2

1
RIFS

C{/z ==
(B10)
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For the target spin I > 1/2,

. iv3 412 — M?) 1
Cim = 82 + 1)3/2k{_ 20 — 1 [((1_ E)’O

e Dl
< (

2(12 +1+M2 [<

0|RI—2

i
2
welrn (r+3)-0
V2 +3 2

Then, for the target spin/ > 1/2and M =1,

N

~

I

—_— N =
N————"

=

—_—

| IS D SN

+

ey

i el
e e -3 {2
ol e )

e e+ )]
(3]
E /I

Rtz 1|R"*2

RI*2 1|RI*2

The general expression for D’ is

/o \/§M 1 I+% 1 1 I+ 1
= s (2o (=) ) (= 2) | (e 2) o)

e -2

1
2
where M is a projection of spin / on the z axis.

It should be noted that for the fixed value M some of the above coefficients contain a mixture from different types of the target
polarizations. It can be clearly seen from the case of M = I that the 100% population of this level contributes to all possible
tensor polarizations P, up to the rank ¢ = 2/ (see Appendix A).

APPENDIX C: d-WAVE CONTRIBUTIONS

To estimate contributions from d waves, let us consider that E’ and F’ coefficients obtained the scattering amplitude related
to the tensor polarization ¢ with d waves:

f20(0,¢.x,y) = ,/ 21+1 Z Yim(0, @)N (x, y){(IM20|IM)

JMII'SS'm

111 1 pd NS+ w Ll
x (S'l'a’|R|Sla) (—1) (2]+1)m(ZOZO|LO) < ¢ It e
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The expression for E’ for the tensor-polarized Ty target with I = 7/2 is

E,,=— i (51/21 (3, 1|1R%3, 1) — 151/ 3 (3 1|1R*|3, 1)—11\/7<4 1R 4, 1)
2T s12/2k 2 ’ 6" ’
— Z 3 3 i 4 4
3 2((3, R4, 1) + (4, 1IR3, 1)+ 9 ((3, 1IR*14, 1) + (4, 1|R*|3, 1))

33 55 /
4, 1|RY4, 1) + ——(3,2|R*|3,2) + — 32R432
+ 2( IR >+\/_< IR + IR*(3,2)

+54/14((3, 0|R?|3, 2) + (3, 2|R%|3,0)) + 3%((4, 0|R4|3, 2) + (3, 2|R*}4, 0))

15
—V42((3,0|R%|4,2) + (4, 2|R%|3,0)) — T (3,2|R*|4,2) + (4,2|R*|3,2))

3 [33
- ﬁ(<3, 2|R*|14,2) + (4, 2|R*|3, 2)) + 3/66((4, O|R*|4, 2) + (4, 2|R*|4, 0))

11 195 [3
S (4,21RY4,2) + — =

One can see that the E’ coefficient is equal to zero at s-wave resonances and depends on p-wave and d-wave resonances.
However, contributions from d-wave resonances are suppressed in the low-energy region by a factor (kR) in comparison to
p-wave resonances (where R is a nuclear radius). Moreover, they behave in the vicinity of p-wave resonances as a flat (energy-
independent) background. Therefore d-wave contributions are negligible in the vicinity of low-energy p-wave resonances.

The expression for F’ for the tensor-polarized target with I = 7/2 is

(4,2|R"4, 2)). (C2)

i 121 3
E = — - R3 1 1R3 —_ (4 R4 1 1R44
7/2 128k< 3 ({3, 0|R?|3, 1) + (3, 1|R7|3, 0)) ﬁ(( LOIR*|3, 1) + (3, 1|1R*4, 0))

+\/z(<3, 0|R|4, 1) + (4, 1|R%|3,0)) — 3\/17—0“4, O|R*4, 1) + (4, 1|R*|4, 0))

15 3 3 2 3 3
+ = (G 1IR3, 2) + (3. 2173, 1)) — 10,/ == ({4, 1IR(3, 2) + (3, 2[R7[4. 1))

V14
+ i((3, 1IRY3,2) + (3, 2|R*|3, 1)) + 2\/2((4, 11R*3,2) + (3, 2|R*|4, 1))
714 7V's
—\@«3, R4, 2) + (4, 2IR°|3, 1) + %(<4, 1R’[4,2) + (4,2IR°|4, 1))
+17—2\/272(<3, 11RY4,2) 4+ (4, 2|R*|3, 1)) — —f( 4, 1|1R*4,2) + (4, 2|R*|4, 1>)> (C3)

We can see that the F’ coefficient is defined by P-odd mixtures of s-wave and p-wave resonances and of p-wave and d-wave
resonances. Therefore, contributions from d-wave resonances are suppressed in low-energy regions by a factor (kR)? and can be
neglected.

APPENDIX D: NONZERO CONTRIBUTIONS IN A SPHERICAL TENSOR EXPANSION OF THE AMPLITUDE IN EQ. (8)

The fy for ¢ = 0 reads as follows:

fo = k{2(7<3 0|R*|3,0) 4+ 9(4, O|R*|4, 0) + 7(3, 1|R?|3, 1) + 9(3, 1|R*|3, 1) + 7(4, 1|R*|4, 1) + 9(4, 1|R*|4, 1))

64
+17((3,0|R%|3, 1) + (3, 1|R%|3, 0)) — 7v/3((3, 0|R*|4, 1) + (4, 1|R%|3, 0))

+3v21((4, 0|R*(3, 1) + (3, 1|R*|4, 0)) — 3v/15((4, O|R*|4, 1) + (4, 1|R*|4, 0))]

X [cos(B)cos(f) + sin(a) sin(B) sin(6)]} (D1)
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or

fo = @{2(7@ 0|R%|3, 0) + 9(4, O|R*|4,0) + 7(3, 1|R*|3, 1) + 9(3, 1|R*|3, 1) + 7(4, 1|R*|4, 1) + 9(4, 1|R*|4, 1))

+[7((3, 0IR*|3, 1) + (3, 1|R[3,0)) — 7v/3((3, O|R*[4, 1) + (4, 1|R?|3,0))
+3v21((4, 0|R*|3, 1) + (3, 1|R*|4, 0)) — 3v/15((4, O|R*|4, 1) + (4, 1|R*|4, O))](G - k)}. (D2)
The f for g = 1 reads as follows:

21 7
fi= ( (3,0|R?|3,0) — 7(4, O|R*4, 0+ -3, 1IR3, 1>+Z¢§<<3, 1IR%|4, 1) + (4, 11R%|3, 1))

32k

9 91 39
— = 1|RY4, 1 4, 1|RY3, 1) — —= (4, 1|R3 4, 1) + = (3, 1|R*I3, 1) —
20 35((3, 1IR*|4, 1) + (4, 1IR*|3, 1)) 12<, IR|4, >+4(3, IR*[3, 1) 20

63 \ )
— (4, 1|R"|4, 1) | cos(B)

7 3 _ 3 4 _ 4 : .
+ﬁ<7§(<3,om 14, 1) — (4, 1|1R*|3, 0)) + +/21((4, O|R*|3, 1) — (3, 1|R*|4, 0>)> cos(a) sin(B) sin(8)

_ v 3 3 T 3 3
P (21((3 OIR’|3, 1) + (3, 1|R"(3,0)) ﬁ((S,OlR |4, 1) + (4, 1|R°|3, 0))

+V21((4,01R*|3, 1) + (3, 1|R*|4, 0)) + 7/15((4, O|R*|4, 1) + (4, 1|R*|4, 0))) cos(6)

3i

- m(m, 1IR3, 1) — 7v/3((3, 1IR*|4, 1) + (4, 1|R|3, 1))

77 9
+ m«t, 1IR?|4, 1) — 3(3, 1|RY|3, 1) + §~/35<<3, 1[R*|4, 1) + (4, 1|R*3, 1))

— 75—7(4, 1|R*|4, 1)) [cos(B) cos(8) + sin(a) sin(B) sin(8)] cos(H) (D3)
or

] 21 7
fi = 3;k( (3,01R*|3,0) — 7(4, 0|R*|4, 0) + 73 1IR*[3, 1) +Zﬁ<<3, 1[R?|4, 1) + (4, 1IR3, 1))

9 91 39 63 .
— %«/35«3, 1R*|4, 1) + (4, 1|1RY3, 1)) — E<4’ 1R} |4, 1) + Z<3, 1R*|3,1) — %<4, 1|R*|4, 1))(& -

1 7 3 _ 3 4 _ 4 > P T
+—16k <—ﬁ(<3,0lR [4,1) — (4, 1|R7|3,0)) + v21({4,0|R"(3, 1) — (3, 1|R"|4, 0>)>(o [k x I])
_ _ 3 3 _ l 3 3

ik (21(<3 OIR?3, 1) + (3, 1|R7|3, 0)) 7 (3,0lR"|4, 1) + (4, 1|R"|3,0))

-

+ /2104, 0[R*|3, 1) + (3, 1|R*|4, 0)) + 7/15((4, O|R*|4, 1) + (4, 1|R*|4, o>)>(/2 )

3i
— 12;k <7<3, 1R?3, 1) — 73/3((3, 1|IR}|4, 1) + (4, 1|R*|3, 1))
77 3 . 9 . . 77 . Lo -
+m<4 1|R°|4,1) — 3(3, 1|R"|3, 1) +§v35(<3,1|R 14, 1) + (4, 1|R |3,1>)—?<4,1|R [4,1) )(& - k)(k -T). (D4)
The f, for g = 2 reads as follows:
3i 35
35((3, 0|R%|3, 1) + (3, 1|R%|3, 0 = ((3,0|R*4, 1 4,1|R*|3,0
fzmk(«||><||>)+ﬁ(||)+(||))

—5V21((4, 0|R*|3, 1) + (3, 1|R*|4, 0)) — 7v/15((4, O|R*|4, 1) + (4, 1|R*|4, o>))

X (COS(,B) cos(f) — %[cos(ﬂ) cos(f) + sin(a) sin(B) sin(@)])
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+ 9 35( 11R3|3, 1) 7 (3, 1|R3|4, 1) + (4, 1|R*|3, 1))
256k \ 3 7’ ’ V3 ’ ’ ’
77 3 3 . "

—3<4, 1IR’|4,1) + 5«/35(<3, 1R*|4,1) + (4, 1|R*|3, 1))

_ 4 Z 4 2 _l _ 3 \/? 3 _ 3
5(3, 1|R*|3, 1) + 5 (4, 1|R™|4, 1))(005 @) 3) 275k (7 3((3, 1|1R74,1) — (4, 1|R"|3, 1))

—3V7((3, 1IRY4, 1) — (4, 1|R*|3, 1))) sin(B) sin(#) cos() cos(at) (D5)
or

3i 35
= —(35(3,0|R*3, 1 3,11R%3,0 ~—((3,0|R*4, 1 4,1|1R*|3,0
f 320k( ((3,0I1R’[3, 1) + (3, 1|R| >)+¢§(< IR°|4, 1) + (4, 1|R|3, 0))

—5v21((4,0|R*3, 1) + (3, 1|R*4, 0)) — 7v/15((4, O|R*|4, 1) + (4, 1|R*|4, ())))

IO i9 (35 ; 7 ; ;
x| @ Dik-D =36 0D |+ 550 36 R = (G R4 1) + @ 1R, 1)

— %4, 1IR?4, 1) + g@«l 1RY4, 1) + (4, 1IRY3, 1))
4 77 4 ~ = A -, 1 ~ ~ - -
=503, 1IR3, 1) + < (4, 1IR'I4, 1)) (k- Dk = 2B -1)

3
32/5k
The f3 for g = 3 reads as follows:

(7\/§(<3, R4, 1) — (4, 1|R[3, 1)) — 3v/7((3, 1|R*|4, 1) — (4, 1|R*|3, 1))) G -lkxI)k-T). (D6)

3i 7 7 7
=— 73, 1IR?|3, 1) + —((3, 1|R3|4, 1) + (4, 1|R*|3, 1 -4,1R34,1—3\/j 3, 1|1RY4, 1) + (4, 1|RY|3, 1
Ve 512k<< |R”| >+\/§(< IR’[4,1) + (4, 1|R’| ))+3( [R°[4, 1) 5(( [R*|4, 1) + (4, 1|R"|3, 1))
21
—3(3, 1|R4|3, 1) — ?(4, 1|R4|4, 1))[005(,8) 4 3 cos(B)cos(260) — 4 cos(h) sin(a) sin(B) sin(6)] D7)
or
fs = i 7(3, 1|1R*|3, 1) + l(<3 1R |4, 1) + (4, 1|R*[3, 1)) + z<4 1IR3 |4, 1) — 3\/7«3 1IR*|4, 1) + (4, 1IR3, 1))
256k b bl ﬁ 9 b 9 9 3 9 9 5 9 9 9 9
4 21 4 R 1~ ~ - o
—3(3,1|R"|3,1) — ?(4, 1R 4, 1) )3 (@ -I)|(k-I)k-1I)— §(k kYU - 1)
2~ S| L oA o A N L P
X +§(k~1) (a~1)(k-l)§+(o-k)(lo1) _3( -1) (cr-I)(k~I)—§(a~k)(I-I) . (D8)
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