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Incoherent ρ meson photoproduction in ultraperipheral nuclear collisions
at the CERN Large Hadron Collider
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Using the Gribov-Glauber model for photon-nucleus scattering and a generalization of the vector meson
dominance model for the hadronic structure of the photon, we make predictions for the cross section of
incoherent ρ photoproduction in Pb-Pb ultraperipheral collisions in the Large Hadron Collider kinematics. We
find that the effect of the inelastic nuclear shadowing is significant and leads to an additional 25% suppression
of the incoherent cross section. Comparing our predictions to those of the STARlight Monte Carlo framework,
we observe very significant differences.
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I. INTRODUCTION

Ultraperipheral collisions (UPCs) of heavy ions at the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) give an opportunity to explore high-energy
nuclear physics with beams of quasireal photons [1]. Indeed,
UPCs of relativistic ions are characterized by large transverse
distances b (impact parameters) between the centers of collid-
ing nuclei of radii RA and RB, b � RA + RB, so that the strong
nucleus-nucleus interaction is suppressed leading to domi-
nance of the photon-nucleus interactions involving quasireal
photons emitted by the colliding nuclei. These photons have
a wide energy spectrum extending into a TeV range for the
LHC beam energies (in the target nucleus rest frame) and
the high flux scaling as Z2 (Ze is the electric charge of the
photon-emitting nucleus). Among many exciting directions
of UPC studies, coherent and incoherent photoproduction of
light vector mesons on nuclei allow one to investigate soft
meson-nucleus interactions at high energies in the kinematic
domain unavailable with fixed nuclear targets. While it is
generally understood and accepted that the strong suppres-
sion of cross sections of high-energy soft hadron-nucleus
scattering is due to the nuclear shadowing effect arising
as the result of multiple interactions of the projectile with
target nucleons [2–4], the practical implementation of this
mechanism in coherent and incoherent photoproduction of
light vector mesons in UPCs differs in the literature [5–16].
In particular, the open questions include the generalization
of the naive vector meson dominance (VMD) model to the
case of photon-nucleus interactions, the comparatively large
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uncertainty in the experimentally determined magnitude of the
vector meson-nucleon cross section, and the size and energy
dependence of the inelastic (Gribov) shadowing correction.
Also, attempts to calculate the nuclear cross sections with
a precision better than 10% immediately raise the issues of
the dependence of the nuclear cross section on the choice of
the nuclear wave function, the role of short-range nucleon-
nucleon correlations, and the finite range (radius) of hadron-
nucleon interactions.

This paper extends our earlier work [8] on coherent ρ

meson photoproduction on nuclei in UPCs of heavy ions
in the kinematics of the LHC to the case of incoherent ρ

photoproduction (the target nucleus breaks up), where dif-
ferences among scarce theoretical predictions seem to be
very significant. Also, such an analysis is topical in view
of anticipated LHC experimental data on this process. In
particular, we calculate the incoherent PbPb → ρPbA′ UPC
cross section (A′ stands for the products of dissociation of the
nuclear target) as a function of the rapidity y at the invariant
center-of-mass energy

√
sNN = 5.02 TeV and as a function of√

sNN at the central rapidity y = 0. We also present our results
for the incoherent photoproduction cross section γ Pb → ρA′
as a function of the photon-nucleon energy Wγ p.

Our results show that within the adopted model for the
hadronic structure of the incident photon, the effect of the
inelastic nuclear shadowing in the incoherent cross sections
is significant. This observation complements a similar con-
clusion in the coherent case [8], which was confirmed by
a comparison of our calculations with the ALICE measure-
ments [17,18]. We also find very significant differences of our
results for the incoherent photoproduction cross section from
predictions of the STARlight Monte Carlo framework, which
is frequently used in the UPC experimental data processing
and analysis [14].

The remainder of the paper is structured as follows. In
Sec. II, we present expressions for the UPC, incoherent,
and coherent nuclear photoproduction cross sections, which
we used in our analysis. Our predictions for the resulting
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cross sections in the LHC kinematics, their discussion, and
comparison to the STARlight model are given in Sec. III.
Finally, we summarize and draw conclusions in Sec. IV.

II. INCOHERENT VECTOR MESON PHOTOPRODUCTION
IN HEAVY-ION ULTRAPERIPHERAL COLLISIONS

In the case of incoherent photoproduction of ρ mesons in
symmetric UPCs of ions A and using the equivalent photon
approximation [19], the UPC cross section can be written in
the following form [1]:

dσAA→ρAA′

dy
= Nγ /A(y)σγ A→ρA′ (y) + Nγ /A(−y)σγ A→ρA′ (−y),

(1)

where Nγ /A(y) is the photon flux; y is the rapidity of the
produced ρ meson. Because each ion can serve as a source
of photons and a target, Eq. (1) contains two contributions
corresponding to the right-moving photon source (first term)
and the left-moving source (second term), respectively. Equa-
tion (1) implies the situation (experimental setup), when the
final state contains only a (reconstructed) ρ meson, two large
rapidity gaps, and no special requirement is imposed on the
number of forward nucleons, which are emitted in the nuclear
breakup. However, requiring that UPCs are accompanied by
forward neutron emission detected by zero-degree calorime-
ters (ZDCs) allows one to disentangle with a high probability

and a reasonable accuracy the two terms in Eq. (1); see the
discussion in Ref. [20].

The photon flux Nγ /A(y) in Eq. (1) is given by the convo-
lution of the photon flux produced by a fast moving ion at the
distance �b from its center, Nγ /A(ω, �b) [21], with the probability
not to have strong interactions at given �b, �AA(b),

Nγ /A(y) =
∫

d2�b Nγ /A(ω, �b)�AA(�b), (2)

where

�AA(�b) = exp

(
−σNN

∫
d2�b1TA(�b1) TA(�b − �b1)

)
. (3)

In Eq. (3), TA(�b) = A
∫ ∞
−∞ dzρA(�b, z) is the nuclear optical

density, where ρA is the nuclear density, which we calculated
using the Hartree-Fock-Skyrme approach [22]; σNN is the
energy-dependent nucleon-nucleon total cross section [23].

Combining the vector meson dominance (VMD) model for
the γ N → ρN amplitude with the high-energy optical limit
of the Glauber model and using the completeness (closure) of
the nuclear final states A′, the expression for the cross section
of incoherent photoproduction of ρ mesons (and other vector
mesons amenable to the VMD model) can be presented in the
following form [24]:

σ Glauber
γ A→ρA′ =

(
e

fρ

)2 ∫
d2�b[〈0|�†

A(b)�A(b)|0〉 − 〈0|�†
A(b)|0〉〈0|�A(b)|0〉], (4)

where fρ is the photon-meson coupling fixed by the ρ → e+e− decay width, f 2
ρ /(4π ) = 2.01 ± 0.1; the notation 〈| . . . |〉 stands

for the integration with the ground-state nuclear wave function squared (nuclear density). In Eq. (4), �A(b) is the ρ-nucleus
scattering amplitude in the impact parameter space (profile function),

�A(b) = 1 −
A∏

i=1

(1 − �N (b − si )), (5)

which is expressed through the ρ-nucleon amplitudes �N ,

�N (b − si ) = σρN

4πB
e−(b−si )2/(2B), (6)

where si is the transverse coordinate of the ith nucleon; σρN is the total ρ meson-nucleon cross section; B is the slope of the t
dependence of the ρN → ρN cross section. Note that in the high-energy limit, one can safely neglect the longitudinal momentum
transfer to nucleons and the nucleon ordering. Substituting Eqs. (5) and (6) in Eq. (4) and assuming independent nucleons in the
nuclear wave function, one obtains

〈0|�†
A(b)�A(b)|0〉 − 〈0|�†

A(b)|0〉〈0|�A(b)|0〉 =
(

1 − σρN

A
TA(b) + σ 2

ρN

16πBA
TA(b)

)A

−
(

1 − σρN

2A
TA(b)

)2A

= exp

[
−σρN TA(b) + σ 2

ρN

16πB
TA(b)

]
− exp

[−σρN TA(b)
] =

(
1 − exp

[
− σ 2

ρN

16πB
TA(b)

])
exp

[
−σρN TA(b) + σ 2

ρN

16πB
TA(b)

]

≈ σ 2
ρN

16πB
TA(b) exp

[
−

(
σρN − σ 2

ρN

16πB

)
TA(b)

]
. (7)

In the last line, we expanded in powers of the elastic
ρ-nucleon cross section σ el

ρN = σ 2
ρN/(16πB) and kept the

leading contribution corresponding to the so-called one-step ρ

photoproduction process. In the derivation of Eq. (7), we used
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that the nuclear density ρA(b, z) is a much slower function
of the transverse coordinate b than �N , which allowed us
to express the answer in a compact form in terms of TA(b).
Therefore, the final expression for the γ A → ρA′ quasielastic
incoherent cross section reads

σ Glauber
γ A→ρA′ =

(
e

fρ

)2 σ 2
ρN

16πB

∫
d2�b TA(b)e−σ in

ρN TA(b)

= σγ p→ρp

∫
d2�b TA(b)e−σ in

ρN TA(b), (8)

where σ in
ρN = σρN − σ el

ρN is the inelastic ρ meson-nucleon
cross section; σγ p→ρp = (e/ fρ )2σ el

ρN is the elastic photopro-
duction cross section on the nucleon in the VMD model.
Equation (8) has a clear physical meaning and interpretation:
photoproduction of ρ mesons takes place on any of A nucleons
of the target, whose distribution in the transverse plane is
given by TA(b), and the produced ρ meson can further interact
with the rest of target nucleons. While elastic interactions are
allowed, the inelastic re-scattering would destroy the final-
state ρ meson and, hence, should be rejected; the probability
not to have inelastic scattering is given by exp[−σ in

ρN TA(b)].
Equation (8) was derived assuming independent nucleons

in the ground-state nuclear wave function. One can readily go
beyond this approximation and take into account the effect
of short-range nucleon-nucleon corrections (SRCs) in the nu-
clear wave function [25–27]. While the SRCs can noticeably
modify the t dependence of the incoherent cross section, the
t-integrated cross section is influenced weakly. Hence, this
effect can be safely neglected in our analysis.

Equation (8) implies that nuclear shadowing arises from
rescattering of a single state with the cross section σρN , i.e.,
that the effect of diffractively produced states leading to the in-
elastic (Gribov) correction is neglected. A convenient way to
take into account the inelastic shadowing correction is offered
by the formalism of cross section fluctuations capturing the
composite hadronic structure of the photon; see, e.g., [8,9,20].
In this approach [28–31], the key quantity is the distribution
P(σ ) giving the probability for the hadronic component of
the photon to interact with the nucleon with the cross section
σ . Following the analysis of Refs. [8,9], we parametrize this

distribution in the following form:

P(σ ) = C

1 + (σ/σ0)2
e−[(σ/σ0 )2−1]2/�2

. (9)

The free parameters C, σ0, and � are found from the con-
straints on the first three moments of the distribution P(σ ):∫ ∞

0
dσP(σ ) = 1,

∫ ∞

0
dσP(σ )σ = σ̂ρN (Wγ p),

∫ ∞

0
dσP(σ )σ 2 = [σ̂ρN (Wγ p)]2

(
1 + ωσ (Wγ p)

)
. (10)

The first equation is the probability conservation. The second
equation constrains the average value of P(σ ) and implies
that the hadronic fluctuations of the photon should lead to
the effective ρ-nucleon cross section σ̂ρN . As discussed in
Ref. [8], the σ̂ρN effective cross section determined from the fit
to the available data on the forward dσγ p→ρp(t = 0)/dt cross
section using the VMD relation,

σ̂ρN (Wγ p) =
(

f 2
ρ

4παem
16πdσγ p→ρp(Wγ p, t = 0)/dt

)1/2

,

(11)

turns out to be somewhat smaller than an estimate based on the
constituent quark model because of an enhanced contribution
of small-σ fluctuations. It is reflected in the form of P(σ ) in
Eq. (9) and generally leads to a violation of the naive VMD
model. The third equation of Eq. (10) constrains the dispersion
of P(σ ), which is parametrized by ωσ . In our analysis, follow-
ing Ref. [8], we relate it to the corresponding parameter for the
pion and use ωσ = 0.3 ± 0.05. This uncertainty in ωσ leads to
the uncertainty of our predictions of the nuclear cross sections,
which we show by red shaded bands in Figs. 4 and 6 below.

In incoherent ρ photoproduction on nuclei, hadronic fluc-
tuations of the photon act at the level of the γ A → ρA′
amplitude. The corresponding quasielastic incoherent cross
section can be readily obtained by generalizing the derivation
of Eq. (8) [the superscript “GG” stands for Gribov Glauber],

σ GG
γ A→ρA′ =

(
e

fρ

)2 ∫
d2�b

∫
dσP(σ )

∫
dσ ′P(σ ′)

σσ ′

16πB
TA(b) exp

[
−σ + σ ′

2
TA(b) + σσ ′

16πB
TA(b)

]

=
(

e

fρ

)2 ∫
d2�b TA(b)

(∫
dσP(σ )

σ√
16πB

exp

[
−σ in

2
TA(b)

])2

. (12)

To present the answer in a compact form, in the expo-
nential factor in the first line we used that σσ ′/(16πB) =
[σ 2/(16πB) + σ ′2/(16πB)]/2 − (σ − σ ′)2/(32πB) and ne-
glected the contribution of the second term, whose contribu-
tion is small because both σ and σ ′ are distributed (fluctuate)
around the same average cross section. Neglecting hadronic
fluctuations of the photon, i.e., replacing P(σ ) by the δ func-
tion in Eq. (12), one obtains the Glauber model expression of
Eq. (8).

For comparison and completeness, we also give the
cross section of coherent ρ photoproduction in the same
approach [8],

σ GG
γ A→ρA =

(
e

fρ

)2 ∫
d2�b

∣∣∣∣
∫

dσP(σ )(1 − e− σ
2 TA(�b) )

∣∣∣∣
2

. (13)

In the absence of the fluctuations, i.e., using P(σ ) = δ(σ −
σρN ) in Eq. (13), one obtains the standard expression for the
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coherent ρ photoproduction cross section in the optical limit
of the Glauber model.

III. RESULTS, DISCUSSION, AND COMPARISON
TO STARLIGHT

As follows from the final expressions for the cross section
of incoherent ρ photoproduction on heavy nuclei [see Eqs. (8)
and (12)], predictions for the nuclear cross section directly
depend either on the t-integrated σγ p→ρp(Wγ p) cross section
on the proton or on the differential dσγ p→ρp(Wγ p, t = 0)/dt
cross section extrapolated to t = 0; additionally, the effect of
nuclear attenuation (shadowing) depends on the slope B of the
t dependence of the γ p → ρp cross section. In our analysis,
we calculate the photoproduction cross section on the proton,

dσγ p→ρp(Wγ p, t )

dt
= |Tγ p→ρp|2, (14)

using the Donnachie-Landshoff (DL) model [32,33] account-
ing for contributions of the soft DL Pomeron (P), Reggeon
(R), and hard pomeron (H) exchanges in the amplitude
Tγ p→ρp,

Tγ p→ρp(s, t ) = iFp(t )Gρ (t )[CPe− 1
2 iπαP (t )(2α′

Ps)αP (t )−1

+CRe− 1
2 iπαR (t )(2α′

Rs)αR (t )−1] + TH (s, t ), (15)

where F p
1 (t ) and Gρ (t ) are the proton Dirac and the γ ρ vertex

form factors; αP(t ) = αP(0) + α′
Pt is the soft Pomeron trajec-

tory; αR(t ) = αR(0) + α′
Rt is the Reggeon trajectory; s = W 2

γ p.
In our calculations, we have used the values of αP(0) = 1.093,
α′

P = 0.25 GeV−2, and αR(0) = 0.5, α′
R = 0.93 GeV−2 for

the intercepts and the slopes of the soft Pomeron and Reggeon
trajectories, respectively. Also, we slightly readjusted the val-
ues of the normalization constants CP and CR to describe better
the energy dependence of the experimental total and forward
cross sections of the γ p → ρp process measured in a wide
range of energies. The parameters fixing the contribution of
the hard Pomeron exchange were taken from [32,33]. Note
that the DL hard Pomeron gives a significant contribution
to dσγ p→ρp(Wγ p, t )/dt only for large −t > 1 GeV2 and at
energies much higher than the considered range. Because our
calculation of the γ p → ρp photoproduction cross section
relies on the vector meson dominance (VMD) and the use of
Eq. (15), we refer to this approach as the modified DL (mDL)
model.

Figure 1 shows the σγ p→ρp cross section as a function of
the photon-proton energy Wγ p: over a broad range of Wγ p, our
mDL model given by the solid curve describes well the avail-
able data obtained with fixed targets (SLAC [34], CERN [35],
FNAL [36]), at the HERA lepton-proton collider [37–39], and
in the proton-nucleus (pA) ultraperipheral collisions (UPCs)
by the CMS collaboration at the LHC [40]. Note that the theo-
retical cross section was linearly extrapolated to the threshold
for Wγ p < 2 GeV. It is important to point out that the analysis
of the 2020 H1 data gives α′

P = 0.233+0.067
−0.074 GeV−2 [39],

which agrees with the value used in the mDL model (15)
employed in our calculations.

The dσγ p→ρp(Wγ p)/dt differential cross section in the
mDL model with α′

P = 0.15 GeV−2 and α′
P = 0.25 GeV−2

5
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p(
W

p)
(
b)

2 5 10 2 5 102 2

W p (GeV)

fixed target data FNAL, DESY, SLAC
ZEUS97
H1-2002
H1-2006
H1-2020
CMS
mDL P (t) =1.093+0.25 t

FIG. 1. The σγ p→ρp cross section as a function of the photon-
proton energy Wγ p: the mDL model vs the available fixed target,
HERA, and pA UPC at the LHC data.

values of the slope the Pomeron trajectory is shown in Fig. 2.
The results of the model are compared to the H1 data [38] at
Wγ p = 62.4 GeV (a) and the CMS data [40] at Wγ p = 59.2
GeV (b). These values of Wγ p correspond to the photon-
nucleon energy in ρ photoproduction at y = 0 in Pb-Pb UPCs
at

√
sNN = 5.02 TeV. One can see from this figure that

while the H1 data favors a steeper |t | dependence with the
α′

P = 0.25 GeV−2 slope of the Pomeron trajectory, the recent
CMS data [40] seems to prefer the lower value of the slope,
α′

P = 0.15 GeV−2. This illustrates the current uncertainty in
the value of the dσγ p→ρp(Wγ p, t )/dt cross section serving as
input for the calculation of the cross section of incoherent ρ

photoproduction on nuclei.
Our predictions for the cross sections of ρ photoproduction

in nucleus-nucleus UPCs in the LHC kinematics are presented
in Figs. 3–6.
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p p
mDL P (t) =1.093+ P t
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FIG. 2. The dσγ p→ρp(Wγ p)/dt differential cross section in the
mDL model with α′

P = 0.15 GeV−2 and α′
P = 0.25 GeV−2 values

of the slope the Pomeron trajectory vs the H1 data [38] at Wγ p =
62.4 GeV (a) and the CMS data [40] at Wγ p = 59.2 GeV (b).

015208-4



INCOHERENT ρ MESON PHOTOPRODUCTION IN … PHYSICAL REVIEW C 102, 015208 (2020)

10-2
2

5
10-1

2

5

1
2

5

10
2

5

(W
N
)(
m
b)

1 2 5 10 2 5 102 2 5

W N (GeV)

incoherent Pb-> Pb GGM
GM
IA

FIG. 3. The σγ A→ρA′ (Wγ p) incoherent cross section as a func-
tion of Wγ p in the Gribov-Glauber model (red solid curve labeled
“GGM”), the Glauber model (blue dashed curve labeled “GM”), and
the impulse approximation (green dot-dashed curve).

Figure 3 shows the γ A → ρA′ incoherent cross section
as a function of the photon-nucleon energy Wγ p. The three
curves correspond to the results of the calculations using the
Gribov-Glauber model of Eq. (12) (the red solid curve labeled
“GGM”), the Glauber model of Eq. (8) (the blue dashed curve
labeled “GM”), and the impulse approximation (the green
dot-dashed curve), where one neglects the effect of nuclear
attenuation, σ IA

γ A→ρA′ = Aσγ p→ρp. One can see from the figure
that the effect of nuclear shadowing is very large and leads to
the suppression of the incoherent cross section compared to
the impulse approximation by the factor of 10. Also, one can
see that the inelastic nuclear shadowing additionally reduces
the incoherent cross section by about 25% in a broad range
of Wγ p. Note that in our calculations in the Gribov-Glauber
model, in the interval 20 � Wγ p � 200 GeV we used the nom-
inal central value for the parameter quantifying the photon
hadronic fluctuations, ωσ = 0.3.

For Wγ p > 200 GeV, based on data on inelastic diffraction
in antiproton-proton and proton-proton scattering at Tevatron
and LHC energies, it is expected that ωσ decreases with an
increase of energy and eventually vanishes at asymptotically
high energies because of an onset of the so-called black disk
limit [8]. This results in a gradual decrease of inelastic nuclear
shadowing for very large Wγ p leading to convergence of the
red solid and blue dashed curves. The uncertainty in ωσ leads
to a small, of the order of 5%, uncertainty in the predicted
incoherent cross section, which is significantly smaller than
the difference among the three curves shown in this figure.

Figure 4 shows the incoherent UPC cross section (1) as
a function of the ρ meson rapidity y at

√
sNN = 5.02 TeV.

The red solid curve corresponds to σγ A→ρA′ in the Gribov-
Glauber model; the blue dashed curve is the result of the
Glauber model, c.f. Fig. 3 and its discussion. The shaded
band shows the theoretical uncertainty of our predictions due
to the uncertainty in the value of ωσ , which we take to be
ωσ = 0.3 ± 0.05 [8]. The black dot-dashed curve is the result

10

2

5

102

2

5

d
/d
y
(m
b)

-6 -4 -2 0 2 4 6
y

incoherent PbPb->PbPb
=5.02 TeV

GM
GGM
STARlight

√
sNN

FIG. 4. The incoherent UPC cross section dσAA→ρAA′/dy as a
function of the ρ meson rapidity y at

√
sNN = 5.02 TeV. Shown are

predictions of the Gribov-Glauber (red solid curve with a shaded
band), Glauber (blue dashed), and STARlight (black dot-dashed
curve) models.

of the STARlight model [14]. One can see that over essentially
the entire range of y, the predictions of the Gribov-Glauber
model lie dramatically lower than those of the STARlight
model.

In the STARlight framework, it is assumed that the cross
section of incoherent photoproduction of vector mesons on
nuclear targets is proportional to the ratio of the inelastic
ρA and ρN cross sections and is given by the following
expression:

σ
STARlight
γ A→ρA′ = σγ p→ρp

σ in
ρN

σ in
ρA =

(
e

fρ

)2 σ el
ρN

σ in
ρN

σ in
ρA, (16)

where σ in
ρA is calculated in the Glauber model,

σ in
ρA =

∫
d2�b(1 − e−σρN TA(b) ). (17)

Equation (16) does not correspond to the Glauber expression
for the quasielastic incoherent γ A → ρA′ cross section. As
follows from unitary of the Glauber theory, the inelastic ρA
cross section can be presented by a sum of partial cross
sections of the inelastic interactions of the produced ρ meson
with Neff nucleons (1 � Neff � A) [41], which lead to the
final state with a much higher multiplicity than that in the
incoherent cross section studied in UPCs. As a result, the
STARlight predictions for the cross section of incoherent
photoproduction of ρ mesons in Pb-Pb UPCs at

√
sNN =

5.02 TeV significantly overestimate those obtained in our
GGM approach (see also Table I).

It is also illustrated by Fig. 5, which shows the incoherent
dσAA→ρAA′/dy UPC cross sections as a function of the center-
of-mass energy WNN = √

sNN at the central rapidity y = 0 and
compares the results of the Gribov-Glauber and STARlight
models. One can see from this figure that the STARlight
predictions are several-fold larger than those of the Gribov-
Glauber model.
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TABLE I. Predictions for the incoherent dσAA→ρAA′/dy and co-
herent dσAA→ρAA/dy cross sections (in mb) of ρ photoproduction
in Pb-Pb UPCs at

√
sNN = 5.02 TeV and y = 0 in the framework

presented in this paper (GM and GGM) and the STARlight model.

GM GGM STARlight

Incoherent, mb 58 44 192
Coherent, mb 840 570 440

The quasielastic incoherent cross sections of Eqs. (8)
and (12) do not include the contribution of ρ photoproduc-
tion with nucleon dissociation, γ N → ρY , where Y denotes
the hadronic system with mass MY . If this contribution is
not rejected experimentally, it will increase the incoherent
cross section. The effect can be taken into account using
the approach developed for incoherent J/ψ photoproduction
on nuclei [42]. Using this method, the cross section of in-
coherent ρ photoproduction on nuclei, which includes both
elastic and nucleon-dissociative photoproduction on target
nucleons, can be presented in the following form [compare to
Eq. (12)]:

σ GG
γ A→ρA′+Y =

(
1 + σγ p→ρY

σγ p→ρp

)(
e

fρ

)2 ∫
d2�b TA(b)

×
(∫

dσP(σ )
σ√

16πB
exp

[
−σ in

2
TA(b)

])2

,

(18)

where σγ p→ρp and σγ p→ρY are the t-integrated cross sec-
tions of elastic and nucleon-dissociative ρ photoproduction on
the proton, respectively. Using the ZEUS analysis of elastic
and proton-dissociative ρ0 photoproduction at HERA [37]

50

100

150

200

d
(y
=0
)/d
y
(m
b)

1000 2000 3000 4000 5000
WNN (GeV)

PbPb->PbPb
GGM incoherent
STARlight incoherent

FIG. 5. The incoherent UPC cross sections as a function of
WNN = √

sNN at y = 0 in the Gribov-Glauber (red solid) and
STARlight (black dot-dashed) models. The red shaded band shows
the range of predictions for the cross section of incoherent ρ pho-
toproduction on nuclei, which includes both elastic and nucleon-
dissociative photoproduction on target nucleons [see Eq. (18)].

that found σγ p→ρp/σγ p→ρY = 2.0 ± 0.2(stat.) ± 0.7(syst.) in
kinematic domain MY < 0.1W 2

γ p and |t | < 0.5 GeV2, we es-
timate that the nucleon dissociation may increase the cross
section of one-step incoherent ρ photoproduction by as much
as 50%. The exact magnitude of this contribution depends
on such data selection criteria as the mass of the produced
state Y and the range of the momentum transfer t . To reflect
it, the possible range of our predictions for σ GG

γ A→ρA′+Y of
Eq. (18) is given by the red shaded band in Fig. 5. Note
that the uncertainty in the value of ωσ results in a small, 5%
uncertainty in the predicted incoherent cross section, which
can be neglected compared to the magnitude of the nucleon-
dissociation contribution.

Note that predictions of the Glauber model fall within the
range of the shaded band and, hence, are not shown; the
difference between the Gribov-Glauber and Glauber model
predictions can be readily read off Fig. 4.

Predictions for the cross section of incoherent ρ photo-
production in Pb-Pb UPCs in the LHC kinematics including
the effect of nucleon dissociation were also made in the
hot-spot model in Ref. [15]. While the relative magnitude
of the proton-dissociative contribution to the incoherent cross
section is similar to our result, the absolute value of the inco-
herent cross section is several times smaller than our estimate.
Thus, future measurements of incoherent ρ photoproduction
in heavy-ion UPCs at the LHC will help to discriminate
between the discussed approaches and constrain the dynamics
of nuclear shadowing in vector meson photoproduction on
nuclei.

It is also instructive to compare the incoherent and coherent
cases. The cross section of coherent ρ photoproduction on
nuclei in the STARlight model is given by the following
expression:

σ
STARlight
γ A→ρA = dσγ A→ρA(t = 0)

dt

∫ ∞

|tmin|
dtF 2

A (t )

=
(

e

fρ

)2 σ 2
ρA

16π

∫ ∞

|tmin|
dtF 2

A (t ), (19)

where |tmin| = (M2
ρmN/Wγ p)2. The factorized form of the

expression in Eq. (19) [compare to Eq. (13) in the Gribov-
Glauber model] assumes that the t dependence of the am-
plitude of coherent photoproduction on nuclei can be ap-
proximated by the undistorted nuclear form factor FA(t ).
This assumption disagrees with the Glauber model (see,
e.g., [6]) and does not only result in the t dependence of
the dσAA→ρAA/(dy dt ) cross section, which is wider than that
predicted in the Gribov-Glauber approach [8] and seemed
to be observed in the data [17], but also increases the t
integrated cross section by a factor about 1.3–1.4. At the
same time, in the standard option of the STARlight model,
the σρA cross section in Eq. (19) is identified with the inelastic
σ in

ρA cross section (17) instead of the total one. It leads to a
strong energy-dependent violation of the optical theorem and
a suppression of the coherent cross section by approximately
a factor of three in the LHC kinematics (a factor of four in
the asymptotic black body limit). An interplay of these two
effects results in an overall suppression by approximately a
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FIG. 6. The coherent UPC cross sections as a function of WNN =√
sNN at y = 0 in the Gribov-Glauber (red solid curve with a shaded

band) and STARlight (black dot-dashed curve) models. The scaled
STAR measurement at

√
sNN = 200 GeV [43] and the ALICE mea-

surements at
√

sNN = 2.76 TeV [17] and
√

sNN = 5.02 TeV [18]
are shown by the filled circle and the squares with error bars,
respectively.

factor of two of the cross section of coherent ρ photopro-
duction on nuclei in the STARlight model compared to the
standard optical-limit Glauber model (see Table I). Note that
the STARlight framework has an option for the calculation
of the σ

STARlight
γ A→ρA cross section with the total ρ-nucleus cross

section calculated in the Glauber model. It leads to a very
large value of the coherent cross section at

√
sNN = 5.02 TeV,

dσ
STARlight
AA→ρAA /dy(y = 0) ≈ 1100 mb.
Predictions of the Gribov-Glauber and STARlight models

for the coherent dσAA→ρAA/dy UPC cross section as a function
of WNN = √

sNN at y = 0 are shown in Fig. 6. Also, the scaled

results of the STAR measurement of coherent ρ photoproduc-
tion in Au-Au UPCs at

√
sNN = 200 GeV [43] and ALICE

measurements of coherent ρ photoproduction in Pb-Pb UPCs
at

√
sNN = 2.76 TeV [17] and

√
sNN = 5.02 TeV [18] are

shown by the filled circle and the squares with error bars,
respectively. One can see that the predictions of our approach
are in excellent agreement with the ALICE data. Note that
the STAR data point for Au was scaled to Pb by the ratio of
the theoretical cross sections. The Glauber model prediction
(not shown) significantly exceeds that of the Gribov-Glauber
approach and, hence, fails to describe the Run 1 and 2 ALICE
data points (see Ref. [8] and Table I of the present work).

Table I summarizes the results for the incoherent
dσAA→ρAA′/dy and coherent dσAA→ρAA/dy cross sections of
ρ photoproduction in Pb-Pb UPCs at

√
sNN = 5.02 TeV and

y = 0 in the framework presented in this paper (GM and
GGM) and the STARlight model. It clearly demonstrates large
differences between predictions of the Gribov-Glauber model
superseding the Glauber model and those of STARlight,
which are especially dramatic for the incoherent cross section.

IV. CONCLUSIONS

In this paper, using the Gribov-Glauber model for photon-
nucleus scattering and a generalization of the VMD model for
the hadronic structure of the photon, we consider incoherent
photoproduction of ρ mesons on heavy nuclei and make pre-
dictions for the incoherent PbPb → ρPbA′ UPC cross section
in the LHC kinematics. We present our results as a function
of the rapidity y at

√
sNN = 5.02 TeV and the invariant

collision energy
√

sNN at y = 0. We also give predictions for
the incoherent photoproduction cross section γ Pb → ρA′ as
a function of the invariant photon-nucleon energy Wγ p. We
demonstrate that the effect of the inelastic nuclear shadowing
in the incoherent cross sections is significant and leads to an
additional 25% suppression of the cross section. Comparing
our predictions to those of the STARlight Monte Carlo frame-
work, we find very significant differences.
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