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Charge symmetry violation in the determination of strangeness form factors
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The strange quark contributions to the electromagnetic form factors of the proton are ideal quantities to study
the role of hidden flavor in the properties of the proton. This has motivated intense experimental measurements of
these form factors. A major remaining source of systematic uncertainty in these determinations is the assumption
that charge symmetry violation (CSV) is negligible. We use recent theoretical determinations of the CSV form
factors and reanalyze the available parity-violating electron scattering data, up to Q2 ≈ 1 GeV2. Our analysis
considers systematic expansions of the strangeness electric and magnetic form factors of the proton. The results
provide an update to the determination of strangeness over a range of Q2 where, under certain assumptions about
the effective axial form factor, an emergence of nonzero strangeness is revealed in the vicinity of Q2 ≈ 0.6 GeV2.
Given the recent theoretical calculations, it is found that the current limits on CSV do not have a significant
impact on the interpretation of the measurements and hence suggests an opportunity for a next generation of
parity-violating measurements to more precisely map the distribution of strange quarks.
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I. INTRODUCTION

The desire for a complete understanding of the electromag-
netic structure of the proton has led to significant efforts over
the last two decades to determine the individual quark flavor
contributions to the proton’s electromagnetic form factors. A
significant challenge in this goal lies in determining the role
played by nonvalence or hidden quark flavors whose contri-
butions arise only through fluctuations of the QCD vacuum.
Being the lightest sea-only quark, strange quarks are antici-
pated to make the most significant contribution. Through an
extensive experimental program of parity-violating electron
scattering (PVES) [1–12], strange quarks have been tagged
by measuring the neutral-current form factors. The isolation
of strangeness relies on the assumption of good charge sym-
metry, which has been one of the limiting factors in extending
the experimental program to greater precision. In this work,
we quantify the impact of charge symmetry violation (CSV)
on the extraction of strangeness from a global analysis of the
PVES measurements.

While earlier theoretical predictions of CSV in the proton’s
electromagnetic form factors varied through orders of magni-
tude [13–18], a recent lattice QCD calculation [19] has deter-
mined that CSV in the proton’s electromagnetic form factors
is significantly smaller than earlier expectations. While this
recent calculation seems to support analyses, which invoke
exact charge symmetry, other models suggest considerable
violation of this symmetry. The effects of this violation have
yet to be quantified. Hence, here we perform a global analysis
of the full existing set of parity-violating (PV) asymmetry

data with and without the constraint of CSV form factors.
To achieve this task, we consider PVES data, obtained from
experiments conducted with varying kinematics and targets,
from SAMPLE [1,2], PVA4 [3–5], HAPPEX [6–10], G0
[11,12], and Qweak [20].

This paper is organized as follows: In Sec. II, we describe
the formalism of PVES, including PV asymmetries of the
nucleon, helium-4, and the deuteron. Section III presents the
parametrization of strange quark form factor, while Sec. IV
is dedicated to a study of the CSV effects on strangeness
form factor extraction. A brief summary is finally presented
in Sec. V.

II. STRANGE FORM FACTORS AND PARITY-VIOLATING
ELECTRON SCATTERING

Determining the strange electric and magnetic form factors
experimentally requires a process where the weak and elec-
tromagnetic interactions interfere. This is achieved through
PVES experiments [21,22], whose leading-order amplitudes
are shown in Fig. 1.

Under the assumption of charge symmetry, the PV asym-
metry in polarized e-p scattering is given by [23]

Ap
PV =

[−GF Q2

4
√

2πα

](
Ap

V + Ap
s + Ap

A

)
, (1)
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FIG. 1. Total leading-order amplitude for electron-nucleon scat-
tering is the sum of the leading-order electromagnetic and neutral
current amplitudes.

where in terms of the proton’s electric (Gγ ,p
E ) and magnetic

(Gγ ,p
M ) Sach’s form factors

Ap
V = (1 − 4 sin2 θ̂w)

(
1 + Rp

V

)
− (

1 + Rn
V

)εGγ ,p
E Gγ ,n

E + τGγ ,p
M Gγ ,n

M

ε
(
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E

)2 + τ (Gγ ,p
M )2

, (2)

Ap
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1 + R(0)
V

)εGγ ,p
E Gs

E + τGγ ,p
M Gs

M

ε
(
Gγ ,p

E

)2 + τ
(
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M

)2 , (3)

and

Ap
A = −ε′(1 − 4 sin2 θ̂W )Gγ ,p

M G̃e,p
A

ε
(
Gγ ,p

E

)2 + τ
(
Gγ ,p

M

)2 , (4)

are the proton’s vector form factor excluding strangeness
(Ap

V ), the proton’s strangeness vector form factor (Ap
s ), and

the interference of the proton’s magnetic vector, and the axial
vector form factors (Ap

A).
The electromagnetic form factors of the proton and neutron

are denoted by Gγ

E ,M , the strangeness vector form factors
Gs

E ,M , and the effective axial form factor G̃p
A. The kinematic

variables, which depend on the four-momentum transfer Q2 =
−q2 and the electron scattering angle θ , are defined as

τ = Q2

4M2
p

, (5)

ε = 1

1 + 2(1 + τ ) tan2 θ
2

, (6)

and

ε′ =
√

τ (1 + τ )(1 − ε2), (7)

where Mp, ε and ε′ are the proton’s mass, the virtual pho-
ton longitudinal polarization and the scattered energy, re-
spectively. The standard model parameters: fine structure
constant α, Fermi coupling GF = 1.16638 × 10−5 GeV2, and
the weak mixing angle, sin2 θ̂W = 0.23129(5), in the MS
renormalization scheme are all obtained from the PDG [24].
The standard model radiative corrections, following notation
of Ref. [23], take the values Rp

V = −0.0513(40) and Rn
V =

R(0)
V = −0.0098(3) are adopted from Ref. [25].

A. Helium-4 and deuteron PV asymmetries

The 4He nucleus is spin zero, parity even, and isoscalar.
Elastic electron scattering from 4He is an isoscalar 0+ → 0+

transition and therefore allows no contributions from mag-
netic or axial-vector currents. Thus, the HAPPEX Collabo-
ration has utilized a 4He target to directly extract the strange
electric form factor [6]. Nuclear corrections are relevant for
4He and deuteron targets, more details about which can be
found in Refs. [26,27].

Following this original experimental analyses, we first
consider the 4He asymmetry in the absence of isospin mixing
is written as [23]

AHe
PV = −

[
GF Q2

4
√

2πα

]
.

[
(1 − 4 sin2 θw)

(
1 + Rp

V

)

− (
1 + Rn

V

) + 2
−(

1 + R(0)
V

)
Gs

E

Gp
E + Gn

E

]
. (8)

The nuclear isospin violating corrections, explored in detail in
Ref. [28], will be incorporated in Sec. IV.

The parity-violating asymmetries measured in quasielastic
scattering from the deuteron have responses, which involve
the deuteron wave functions. For this analysis, we use directly
the theoretical asymmetries as reported with original experi-
mental measurements. Early results from SAMPLE have had
minor modifications made to update for more recent radiative
corrections and form factor parameterizations, as described in
Ref. [29].

B. γZ-exchange corrections to PVES

Leading electroweak corrections play a significant role in
precision measurements of the strangeness contribution to
the nucleon form factors [23,30]. In contrast to the formal-
ism relevant to atomic parity violation experiments [31], an
energy-dependent correction arising from the γ Z box diagram
was highlighted by Gorchtein and Horowitz [32]. The size of
this correction is particularly significant to the standard model
test by the Q-weak experiment [33]. Fortunately, the uncer-
tainties arising from the underlying γ Z interference structure
functions can be reliably constrained [34]. The model used to
construct the relevant γ Z structure functions is supported by
direct measurement [34], neglecting nuclear correction arising
from the deuteron target.

Owing to the smallness of the proton weak charge, the
relative significance of the γ Z box is enhanced, and has
received considerable theoretical attention [34]. While sig-
nificant for precision weak charge measurements, the γ Z
box is somewhat less pronounced in the determination of
strangeness. Nevertheless, for example, the correction makes
about ≈ 1

2 -σ shift to the central value of the precise HAPPEX
proton point at Q2 ≈ 0.1 GeV2. We incorporate the correc-
tions reported by the constrained model of Ref. [34], updated
with the improved constraints of quark-hadron duality [35],
and a momentum dependence as proposed in Ref. [36]. For
completeness, a table of values is included in Appendix B.

The energy-dependent γ Z box contributions have not been
investigated in detail for the nuclear targets. Given the larger
weak charges, and lower-precision measurements, these cor-
rections are not anticipated to appreciably affect the extraction
of strangeness; however, this remains to be quantified.
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C. Theoretical asymmetries

In this work, a set of all available PV asymmetry data up to
Q2 ≈ 1 GeV2, as summarized in Table IV, is analyzed. Such a
combined analysis of the world PV data requires a consistent
treatment of the vector and axial form factors and radiative
corrections. The theoretical asymmetry used in this analysis
is written as

ATheory = η0 + η
p
AG̃p

A + ηn
AG̃n

A + ηE Gs
E + ηMGs

M , (9)

where the η’s, which can be read off from Eqs. (2)–(4), are
provided in Table IV. These are calculated using the recent
elastic form factor parametrizations of Ye et al. [37] and
current values for the standard model radiative corrections
[24]. The uncertainties associated with these parametrizations
are no more than 2% and hence have negligible effects on the
current analysis and thus have been disregarded.

In this analysis, since the entire contribution is to be fit
to data, we employ the effective axial form factors G̃p,n

A
which implicitly includes both the axial radiative and anapole
corrections. For these form factors, we employ a dipole form

G̃p,n
A = g̃p,n

A

(
1 + Q2

M2
A

)−2

, (10)

with an axial dipole mass MA = 1.026 GeV, determined from
neutrino scattering [38], common to both proton and neutron
form factors. The normalizations g̃p,n are fit to the data,
however, since the isoscalar combination is very poorly de-
termined, we choose to impose theoretical estimates based on
an effective field theory (EFT) with vector-meson dominance
(VMD) model to constrain this combination [39]

1
2

(
g̃p

A + g̃n
A

) = −0.08 ± 0.26. (11)

III. ANALYSIS FRAMEWORK

A. Taylor expansion

At low momentum transfers, a Taylor series expansion of
the electromagnetic form factors in Q2 is sufficient and mini-
mizes the model dependence. Given the sparsity and precision
of the available data—up to ≈1 GeV2—we avoid introducing
a specific model by first attempting to parameterise the strange
electric and magnetic form factors Q2 dependence by

Gs
E = ρsQ

2 + ρ ′
sQ

4 ,

Gs
M = μs + μ′

sQ
2 . (12)

B. z expansion

A priori, one might not expect a Taylor expansion up to
≈1 GeV2 to be satisfactory. To provide an alternative func-
tional form to the Taylor expansion, we also consider the z
expansion, which offers improved convergence based on the
analytic properties of the form factors [40–42]. We describe
the momentum dependence of the strange form factors using
the z expansion, also to second (nontrivial) order:

Gs
E = ρs,zz + ρ ′

s,zz
2,

Gs
M = μs + μ′

s,zz, (13)

where

z =
√

tcut + Q2 − √
tcut√

tcut + Q2 + √
tcut

. (14)

In our fits, we use tcut = (2mK )2, with the kaon mass mK =
0.494 GeV. In the absence of isospin violation, the cut
formally starts at 9m2

π , but we assume that the strangeness
contribution to the three-pion state can be neglected. We note
that, with the current experimental precision, there is not
any significant sensitivity to the value of tcut. To more easily
facilitate the comparison with the two expansion forms, we
report the simple Taylor expansion coefficients for each case.
That is, for the z fits, we translate the expansions back in the
leading Taylor form, e.g., ρs = dGs

E/dQ2|Q2=0.

C. Dipole form

For completeness, we examine our fits against the
dipole(like) form

Gs
E = ρsQ

2

(
1 + Q2

�2

)−2

,

Gs
M = μs

(
1 + Q2

�2

)−2

, (15)

where taken as � = 1 GeV.

D. Charge symmetry results

Here we summarize the fit results under the assumption of
exact charge symmetry. This provides a baseline with which
to explore the implications of charge symmetry violation in
the following section.

In this work we perform a global fit at leading order
(LO) and at next-leading order (NLO) of the strangeness
form factor. Thus, the fitting procedure at LO considers four
parameters, g̃p

A, g̃n
A, μs, and ρs, while fitting at NLO considers

an additional two parameters, μ′
s and ρ ′

s. The theoretical con-
straint on the isoscalar form factor, Eq. (11), is incorporated
by adding an additional data point to the analysis.

The χ2 is calculated as

χ2 =
∑

i

∑
j

(mi − ti )(V )−1
i j (mj − t j ) , (16)

where m and t denote the measurement and theory asymmetry,
respectively. The indices i and j run over the data ensemble.
The matrix V represents the covariance error matrix defined
as

(V )i j = (
σ uncor

i

)2
δi j + σ cor

i σ cor
j , (17)

where σ uncor
i and σ cor

i are uncorrelated and correlated uncer-
tainties of the ith measurement, respectively. We note that the
correlated uncertainties are only relevant for the G0 exper-
iment, where the forward [11] and backward [12] data are
treated as mutually independent, see Table IV. The goodness
of fit is estimated from the reduced χ2 as

χ2
red = χ2/d.o.f. , (18)
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TABLE I. The parameter values and χ 2 obtained from previous
PVES global fits [29,43–45] and the current global analysis at LO
for both Taylor and z-expansion form factor fits without constraints
from CSV.

ρs (GeV−2) μs χ 2
red

YRCT(2006) [29] −0.06 ± 0.41 0.12 ± 0.55 1.3
YRCT(2007) [44] 0.02 ± 0.18 −0.01 ± 0.25 –
LMR(2007) [45] −0.08 ± 0.16 0.29 ± 0.21 1.3
GCD(2014) [43] 0.26 ± 0.16 −0.26 ± 0.26 1.3
Taylor 0.15 ± 0.04 −0.12 ± 0.04 1.1
z exp. 0.18 ± 0.05 −0.10 ± 0.04 1.1

with 33 and 31 degrees of freedom (d.o.f.) for the LO and
NLO fits, respectively.

We report the leading-order fit results in Table I, with com-
parisons against previous work. The results are compatible
with earlier work, though with significantly reduced uncer-
tainty. This is due to both an updated list of measurements
and the inclusion of the full range of Q2 points in the fit.
No appreciable difference is seen between the simple Taylor
expansion and the z expansion.

While the fit quality is reasonable, these simple leading-
order fits are certainly anticipated to be too simple to describe
these form factors over the full range 0 � Q2 � 1.0 GeV2.
As a result, the statistical uncertainties displayed are not repre-
sentative of the current knowledge of the strange form factors.
We hence allow for more variation in the Q2 dependence by
extending the fits to next-leading order, Eqs. (12) and (13).
Results are shown in Table II. Curiously the additional fit
parameters are unable to make significant improvement to the
χ2 and the reduced χ2 very marginally increases for the NLO
fit.

Clearly the data are unable to constrain the additional fit
parameters. Given the clustering of the underlying data set, the
separation of the electric and magnetic strange form factors is
most reliable at the discrete momentum transfers near Q2 ≈
0.1, 0.2, and 0.6 GeV2. A completely model-independent
extraction would hence only determine the form factors at
these points. To smoothly interpolate these three points, at
best one can only constrain two free parameters (for each
form factor). As a tradeoff from the physically unsatisfactory
constant Gs

M and slope-only Gs
E , we prefer NLO results as a

better representation of the underlying uncertainties.
The comparison between the leading- and next-to-leading-

order fits for the Taylor expansion are shown in Fig. 2 together
with the dipole form fits. As can been noted, these fits produce
similar results around Q2 ≈ 0.6 GeV2 for both Gs

E and Gs
M .
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FIG. 2. The extracted strange electric and magnetic form fac-
tors from a global fit up to Q2 ≈ 1 GeV2. The Taylor expansions,
Eq. (12), at leading order is shown by the red (dashed) curves and
next-to-leading order by the black (solid) curves. The dipole forms,
Eq. (15), are shown by the blue (dot-dashed) curves. The shaded
areas indicate the uncertainties of Gs

E and Gs
M .

The corresponding z-expansion results are very similar. In
Fig. 3 we show the NLO z-expansion parametrization of the
separated electric and magnetic form factors and compare
with recent lattice QCD results [46,47]. Here we observe
excellent agreement between our strangeness determination
based on PVES data and lattice QCD results over the full
Q2 range. These are also compatible with earlier lattice [48]
and lattice-constrained [49–51] results. Interestingly, we note
that the experimental results are showing some support for a
nonvanishing strangeness electric form factor in the vicinity
of Q2 ≈ 0.6 GeV2. Given the lack of sensitivity to the choice
of functional form, we adopt the z expansion at NLO as our
preferred fit for the following discussions. For completeness,
a table of the correlation coefficients between the free param-
eters of the NLO z-expansion fit is presented in Appendix C.

The preceding discussion has focused on the separation
of the electric and magnetic strangeness form factors. Given
the high degree of correlation in the measurements, it is
instructive to display the joint confidence intervals. Figure 4
displays the 95% confidence level ellipses for the different
values of Q2 = 0.1, 0.23, and 0.63 GeV2 for the NLO z-
expansion fit. At the low Q2 values, we observe that the
strangeness form factors are compatible with zero at the 95%
CL, with a marginal preference for positive values of strange

TABLE II. The NLO parameters values and χ 2 obtained from a previous global fit [29], where Q2 < 0.3 GeV2, and the current global
analysis at NLO for both Taylor and z-expansion form factor fits without constraints from CSV.

ρs (GeV−2) ρ ′
s (GeV−4) μs μ′

s (GeV−2) χ 2
red

YRCT(2006) [29] −0.03 ± 0.63 −1.5 ± 5.8 0.37 ± 0.79 0.7 ± 6.8 1.4
Taylor 0.07 ± 0.14 0.14 ± 0.22 −0.05 ± 0.15 −0.11 ± 0.23 1.23
z exp. 0.08 ± 0.17 0.19 ± 0.37 −0.09 ± 0.14 −0.06 ± 0.29 1.26
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FIG. 3. The extracted strange electric and magnetic form factors
from global fit up to Q2 ≈ 1 GeV2 with using the NLO z expansion
in Eq. (13). A comparison with recent lattice QCD results is shown
where the green square (errors bars smaller than the symbol) corre-
sponds to the result of Gs

M (Q2 = 0.1 GeV2) [47] and the magenta
squares are Gs

M and Gs
E at Q2 = 0.17, 0.62, and 0.88 GeV2 [46].

electric form factor and negative values of the magnetization,
as seen earlier in Refs. [44,52].

At Q2 = 0.63 GeV2, there appears a clear signal for
nonzero strangeness, with a negative Gs

M and positive Gs
E .

In contrast to earlier work that has suggested vanishing
strangeness at this Q2 [10,12], the dominant difference in
the present work is the treatment of the axial/anapole form
factor. As described, the isoscalar combination is constrained
by the EFT and VMD estimate of Zhu et al. [39], while the
isovector combination is determined by the data. The best
fit—for z expansion at NLO—results in g̃p

A = −0.67 ± 0.25,
which is less negative than the zero-anapole approximation.

−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

Gs
M

−0.05

0.00

0.05

0.10

0.15

0.20

G
s E

NLO, z-exp. at Q2 = 0.1 GeV 2

NLO, z-exp. at Q2 = 0.23 GeV 2

NLO, z-exp. at Q2 = 0.63 GeV 2

FIG. 4. 95% confidence level ellipses for the electric and mag-
netic strangeness form factors using the NLO z expansion in Eq. (13)
for three Q2 values 0.1 (red solid curve), 0.23 (blue dashed curve),
0.63 GeV2 (magenta dot-dashed curve).

TABLE III. Strangeness form factor results at different values
of Q2 = 0.1, 0.23, and 0.63 GeV2 against the variation of the axial
dipole mass MA = 1.026 ± 0.500 GeV. The second quoted error bar
indicates the sensitivity with the axial mass to the upper and lower
mass scales. Correlation coefficients between the Gs

M and Gs
E are

represented by ρ.

Q2 = 0.1 GeV2 Q2 = 0.23 GeV2 Q2 = 0.63 GeV2

Gs
M −0.09(12)(4) −0.10(8)(4) −0.12(4)(6)

Gs
E 0.01(1)(0) 0.03(2)(0) 0.10(2)(2)

ρ −0.90 −0.90 −0.93

As a consequence, the data-driven fit drives the back-angle
G0 results to be more consistent with a negative Gs

M . Under
these assumptions for the effective axial form factor, we see
Gs

E ≈ 0.1, which, with the strange charge factor included
(Gγ ,p

E = 2
3 Gu,p

E − 1
3 Gd,p

E − 1
3 Gs,p

E ), is on the order of 10% of
the proton electric form factor at this momentum transfer. To
investigate the effect of the uncertainty related to the axial
form factor, a conservative variation of the axial mass MA has
been considered to be MA = 1.026 ± 0.500 GeV. It is found
that some of the strangeness form factor results have differed
as shown in Table III. The most significant shift is seen for Gs

M
at the larger Q2 point, yet still within 1-σ uncertainty and the
conclusion derived from Fig. 4 still holds.

IV. SENSITIVITY TO CHARGE SYMMETRY VIOLATION

A. CSV in asymmetries

In this section we study the effects of charge symmetry
violation on our results, i.e., we no longer have a relationship
between the individual quark flavor contributions to the proton
and neutron form factors

Gp,u
E ,M �= Gn,d

E ,M , Gp,d
E ,M �= Gn,u

E ,M .

We follow standard notation and define the CSV form factors
as

GCSV
E ,M = 2

3

(
Gp,d

E ,M − Gn,u
E ,M

) − 1
3

(
Gp,u

E ,M − Gn,d
E ,M

)
. (19)

In order to explore the impact of CSV, we need to modify the
neutral weak form factors to explicitly include a CSV term

GZ,p
E ,M = (1 − 4 sin2 θ̂W )

(
1 + Rp

V

)
Gγ ,p

E ,M

− (
1 + Rn

V

)
Gγ ,n

E ,M − (
1 + R(0)

V

)
Gs

E ,M

− (
1 + Rn

V

)
GCSV

E ,M , (20)

where the Q2 dependence of each form factor has been
dropped for clarity. The CSV form factor can be expressed
as a simple Taylor expansion in Q2

GCSV
E ,M (Q2) = GCSV

E ,M (0) − ρCSV
E ,M Q2 + O(Q4), (21)

with GCSV
E set to zero at Q2 = 0 due to charge conservation.

Regarding the theoretical asymmetry given in Eq. (9), we
note that η0 will receive a correction due to the CSV form
factor. Hence

ATheory = ηCSV
0 + η

p
AG̃p

A + ηn
AG̃n

A + ηE Gs
E + ηMGs

M , (22)
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FIG. 5. Comparison of determinations obtained from the present work with and without CSV for the strange magnetic moment μs (left)
and strange electric radius ρs (right). The leading-order fits are shown by the red (gray) points, and the next-to-leading-order fits by the black
points.

where ηCSV
0 = η0 + ηCSV

E GCSV
E + ηCSV

M GCSV
M , with

ηN
CSV,E

=
[

GF Q2

4
√

2πα

]
.

[ (
1 + Rn

V

)
εGγ ,N

E

ε
(
Gγ ,N

E

)2 + τ
(
Gγ ,N

M

)2

]
, (23)

ηN
CSV,M

=
[

GF Q2

4
√

2πα

]
.

[ (
1 + Rn

V

)
τGγ ,N

M

ε
(
Gγ ,N

E

)2 + τ
(
Gγ ,N

M

)2

]
. (24)

In the case of the PV asymmetry of 4He, we should
consider nuclear CSV, which we denote F CSV, in addition to
CSV at nucleon level, GCSV

E . In this case, ηCSV
0 can therefore

be written as

ηCSV
0 = η0 +

[
GF Q2

4
√

2πα

]
.

[
−2F CSV − 4

(
1 + Rn

V

)
GCSV

E

Gp
E + Gn

E

]
,

(25)
where in the notation of Ref. [28], F CSV ≡ F (1)(q)/F (0)(q) =
−0.00157 is used to calculate ηCSV

0 for the theoretical PV
asymmetry of 4He at Q2 = 0.077 and 0.091 GeV2.

B. CSV theoretical works

To include effects of charge symmetry violation in our
determination of the strangeness form factors, we consider
three different calculations of the CSV form factors. The first
work we consider is from Kubis and Lewis [16], denoted by
“K&L CSV”. They used effective field theory, supplemented
with resonance saturation to estimate the relevant contact
term, where the CSV is largely driven by ρ-ω mixing. To
accomplish this, they employ a large ω-nucleon coupling con-
stant gω ≈ 42 taken from dispersion analysis. Combining this
estimate with calculations in HBχPT and infrared regularized
baryon chiral perturbation theory, K&L predicted a CSV
magnetic moment contribution GCSV

M (0) ≡ ku,d = 0.025 ±
0.020, which includes an uncertainty arising from the reso-
nance parameter. For the CSV slope parameters, K&L found

ρCSV
M = −0.08 ± 0.06 GeV−2 and ρCSV

E = −0.055 ± 0.015
GeV−2. We take these values as our first estimate of the CSV
form factors.

The second theoretical calculation of CSV we consider is
from Wagman and Miller [17], denoted by “W&M CSV”.
In their work, they used relativistic chiral perturbation theory
with a more realistic ω-nucleon coupling, i.e., gω ≈ 10. That
study reported values of GCSV

M (0) = 0.012 ± 0.003, ρCSV
M =

0.015 ± 0.010 GeV−2, and ρCSV
E = −0.018 ± 0.003 GeV−2.

The third determination of the CSV form factor that we
employ is based on an analysis of lattice QCD results [19],
that we refer to as “Lattice CSV”. The lattice study found
significantly smaller values of the magnetic and electric CSV
form factors compared to the previous two estimates. To study
the effect of the CSV form factors obtained from lattice QCD,
we summarize the results of Ref. [19] by GCSV

M = 0.000 ±
0.001 and ρCSV

E = 0.000 ± 0.001 GeV−2.

C. Strangeness with CSV

In order to propagate the uncertainties, we extend the
covariance matrix above, Eq. (17), to include a correlated
uncertainty associated with the theoretical estimates of CSV.
For each theoretical description, we reanalyze the entire data
set and present in Fig. 5 our determination of the strange mag-
netic moment μs (left) and strange electric radius ρs (right).
Since the lattice CSV form factors are zero with a negligible
uncertainty, they are consistent with the “No CSV” results.
We also find no visible impact on μs and ρs from the inclusion
of the W&M CSV form factors. Finally, when estimating the
CSV form factors by the K&L parameters, we observe only
small shifts in the central value of the strangeness magnetic
moment. Nevertheless, even the worst case scenario of K&L
does not appreciably affect the NLO fits.
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V. CONCLUSION

We have presented a complete global analysis of all PVES
asymmetry data for the proton, 4He and deuterium. We have
investigated the γ Z exchange correction and the effect that
CSV form factors have on the extraction of strange quark
contribution. Including γ Z box contribution in the analysis
leads to small increases in the magnitude of the central values
of μs and ρs when compared to results obtained without
constraints from γ Z exchange. CSV results considered in this
work have tiny effects on the central values of the strangeness
parameters, with the largest effect, while still small, coming
from the inclusion of CSV form factors as provided by Kubis
and Lewis [16]. Our results favor nonzero values for the
strangeness magnetic moment and electric radius, with the
most significant constraints coming from the LO fits using

a Taylor expansion for the strangeness form factors. Finally,
in order to examine the model dependence of employing a
Taylor expansion in our analysis, we also included fits using
the z expansion, which were found to be in agreement.

The latest theory estimates on CSV are small, indeed small
enough that they would not cloud the interpretation of future
precision strangeness measurements. However, we note that
the back-angle measurements do exhibit sensitivity to the ef-
fective axial form factor, presenting an opportunity for future
investigation. The combined efforts to improve the resolution
of strangeness, and reveal the structure of the anapole form
factor offer the potential to establish a precision era of QCD
and the nucleon. While further advancing the understanding of
the mechanisms underlying nonperturbative QCD, such work
will serve to gain further confidence in the use of lattice QCD
for precision constraints in tests of the standard model.

TABLE IV. Values of ηi, appearing in Eq. (9), which describe the theoretical asymmetry for each experiment (in parts per 106). Aphys and
δA are the measured asymmetry and the corresponding uncertainty, respectively, where the statistic and systematic error have been added in
quadrature. While δAcor is the correlated error in the G0 experiment [11,12], contributing to the second term in the covariance matrix, Eq. (17).
Note that the back-angle G0 measurements (indicated by an ∗) are assumed to be uncorrelated with those at forward angle.

Experiment Target Q2 θ E η0 η
p
A ηn

A ηE ηM Aphys δA δAcor Ref.

SAMPLE d 0.038 144 0.11 −2.13 0.46 −0.30 1.16 0.28 −3.51 0.81 0 [1]
SAMPLE d 0.091 144 0.18 −7.02 1.04 −0.65 1.63 0.77 −7.8 1.0 0 [1]
SAMPLE p 0.1 144 0.2 −5.50 1.57 0 2.11 3.45 −5.6 1.1 0 [2]
HAPPEX p 0.477 12.3 3.35 −15.8 1.13 0 55.6 23 −15.1 1.1 0 [7]
PVA4 p 0.230 35.3 0.85 −5.78 0.88 0 22.4 5.08 −5.44 0.60 0 [3]
PVA4 p 0.108 35.4 0.57 −1.82 0.26 0 10.1 1.05 −1.36 0.32 0 [5]
G0 p 0.122 6.68 3.03 −1.93 0.06 0 11.9 1.17 −1.51 0.49 0.18 [11]
G0 p 0.128 6.84 3.03 −2.08 0.06 0 12.6 1.30 −0.97 0.46 0.17 [11]
G0 p 0.136 7.06 3.03 −2.28 0.07 0 13.4 1.47 −1.30 0.45 0.17 [11]
G0 p 0.144 7.27 3.03 −2.48 0.08 0 14.3 1.66 −2.71 0.47 0.18 [11]
G0 p 0.153 7.5 3.03 −2.73 0.09 0 15.3 1.89 −2.22 0.51 0.21 [11]
G0 p 0.164 7.77 3.03 −3.03 0.11 0 16.5 2.19 −2.88 0.54 0.23 [11]
G0 p 0.177 8.09 3.03 −3.41 0.13 0 17.9 2.58 −3.95 0.50 0.20 [11]
G0 p 0.192 8.43 3.03 −3.87 0.15 0 19.6 3.07 −3.85 0.53 0.19 [11]
G0 p 0.210 8.84 3.03 −4.45 0.19 0 21.7 3.72 −4.68 0.54 0.21 [11]
G0 p 0.232 9.31 3.03 −5.20 0.23 0 24.2 4.62 −5.27 0.59 0.23 [11]
G0 p 0.262 9.92 3.03 −6.29 0.31 0 27.8 6.03 −5.26 0.53 0.17 [11]
G0 p 0.299 10.6 3.03 −7.73 0.42 0 32.3 8.06 −7.72 0.80 0.35 [11]
G0 p 0.344 11.5 3.03 −9.61 0.58 0 38.0 11.0 −8.4 1.1 0.52 [11]
G0 p 0.410 12.6 3.03 −12.6 0.87 0 46.5 16.3 −10.3 1.1 0.6 [11]
G0 p 0.511 14.2 3.03 −17.6 1.49 0 60.1 27.0 −16.8 1.7 1.5 [11]
G0 p 0.631 16.0 3.03 −24.0 2.52 0 77.0 44.1 −29.0 1.7 1.3 [11]
G0 p 0.788 18.2 3.03 −33.1 4.45 0 100 74.6 −30.8 3.2 2.6 [11]
G0 p 0.997 20.9 3.03 −45.8 8.32 0 133 132 −38 12 0.52 [11]
HAPPEX He4 0.091 6.0 2.91 7.52 0 0 20.2 0 6.72 0.87 0 [6]
HAPPEX p 0.099 6.0 3.03 −1.41 0.04 0 9.54 0.76 −1.14 0.25 0 [8]
HAPPEX He4 0.077 6.0 2.67 6.37 0 0 16.6 0 6.40 0.26 0 [9]
HAPPEX p 0.109 6.0 3.18 −1.63 0.04 0 10.6 0.93 −1.58 0.13 0 [9]
PVA4 p 0.22 145 0.31 −13.3 3.47 0 2.88 11.1 −17.2 1.2 0 [4]
G0 p 0.221 110 0.35 −10.6 2.73 0 9.37 8.93 −11.3 0.9 0.43∗ [12]
G0 d 0.221 110 0.35 −15.2 2.05 −1.38 7.63 2.21 −16.9 0.9 0.21∗ [12]
G0 p 0.628 110 0.68 −36.9 11.9 0 19.7 62.2 −45.9 2.5 1.0∗ [12]
G0 d 0.628 110 0.68 −50.7 8.46 −5.66 16.6 14.6 −55.5 3.9 0.7∗ [12]
HAPPEX p 0.624 13.7 3.48 −23.5 2.12 0 76.6 42.8 −23.8 0.9 0 [10]
PVA4 d 0.224 145 0.31 −18.6 2.50 −1.68 2.17 2.67 −20.1 1.4 0 [53]
Qweak p 0.025 7.9 1.16 −0.22 0.01 0 2.27 0.05 −0.279 0.05 0 [20]
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TABLE V. The �γ Z (E ) (×10−3) corrections evaluated for the measured proton PV asymmetry Ap
PV at forward angles.

Experiment Q2 (GeV2) E (GeV) �γ Z (E ) (×10−3)

Qweak 0.025 1.165 5.120 ± 0.671
HAPPEx 0.099 3.030 7.205 ± 0.701
PVA4 0.108 0.570 2.843 ± 0.580
HAPPEx 0.109 3.180 7.250 ± 0.713
G0 0.122 3.030 6.969 ± 0.722
G0 0.128 3.030 6.907 ± 0.728
G0 0.136 3.030 6.825 ± 0.737
G0 0.144 3.030 6.742 ± 0.745
G0 0.153 3.030 6.648 ± 0.754
G0 0.164 3.030 6.534 ± 0.766
G0 0.177 3.030 6.398 ± 0.780
G0 0.192 3.030 6.243 ± 0.795
G0 0.210 3.030 6.056 ± 0.814
PVA4 0.230 0.850 3.257 ± 0.610
G0 0.232 3.030 5.831 ± 0.834
G0 0.262 3.030 5.527 ± 0.859
G0 0.299 3.030 5.161 ± 0.885
G0 0.344 3.030 4.733 ± 0.905
G0 0.410 3.030 4.143 ± 0.917
HAPPEx 0.477 3.350 3.749 ± 0.943
G0 0.511 3.030 3.340 ± 0.898
HAPPEx 0.624 3.480 2.740 ± 0.881
G0 0.631 3.030 2.547 ± 0.831
G0 0.788 3.030 1.753 ± 0.706
G0 0.997 3.030 1.038 ± 0.525
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APPENDIX A: PARITY VIOLATING ASYMMETRIES

Table IV lists the asymmetries and their dependence on
the leading unknown hadronic structure for all existing PVES
experiments.

APPENDIX B: ENERGY DEPENDENCE OF THE γ-Z box

To incorporate the effect induced by the energy-dependent
component of the γ -Z box radiative correction, the measured
PV asymmetries given in Eq. (1) are modified by

Ap
PV corr = Ap

PV −
[−GF Q2

4
√

2πα

]
�γ Z (E , Q2) . (B1)

The forward (or vanishing momentum transfer) limit of this
box are taken from Ref. [35], which extends Ref. [34] to
also incorporate duality constraints. To estimate the momen-
tum transfer dependence, we adopt the model suggested by
Gorchtein et al. [36]:

�γ Z (E , Q2) = �γ Z (E , 0)
exp(−BQ2/2)

F p
1 (Q2)

, (B2)

with slope parameter estimated to be B = 7 ± 1 GeV2, and
F p

1 the electromagnetic Dirac form factor of the proton. As
adapted from the results presented in Ref. [54], the numerical
values used in this work are summarized in Table V.

APPENDIX C: CORRELATION COEFFICIENTS
The fit parameters and correlations for the NLO

z-expansion fit are shown in Table VI.

TABLE VI. Best-fit parameters for the NLO z-expansion fit (assuming charge symmetry) and corresponding correlation coefficients.

g̃n
A μs ρs,z μ′

s,z ρ ′
s,z

g̃p
A −0.67(25) −0.43 −0.55 0.37 0.39 −0.24

g̃n
A 0.51(58) 0.23 −0.16 −0.17 0.10

μs −0.09(14) −0.91 −0.98 0.85
ρs,z 0.32(67) 0.91 −0.96
μ′

s,z −0.3(11) −0.93
ρ ′

s,z 3.6(55)
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