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How analytic choices can affect the extraction of electromagnetic form factors from elastic electron
scattering cross section data
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Scientists often try to incorporate prior knowledge into their regression algorithms, such as a particular analytic
behavior or a known value at a kinematic endpoint. Unfortunately, there is often no unique way to make use of
this prior knowledge, and thus, different analytic choices can lead to very different regression results from the
same set of data. To illustrate this point in the context of the proton electromagnetic form factors, we use the
Mainz elastic data with its 1422 cross section points and 31 normalization parameters. Starting with a complex
unbound nonlinear regression, we will show how the addition of a single theory-motivated constraint removes
an oscillation from the magnetic form factor and shifts the extracted proton charge radius. We then repeat both
regressions using the same algorithm, but with a rebinned version of the Mainz dataset. These examples illustrate
how analytic choices, such as the function that is being used or even the binning of the data, can dramatically
affect the results of a complex regression. These results also demonstrate why it is critical when using regression
algorithms to have either a physical model in mind or a firm mathematical basis.
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I. INTRODUCTION

Silberzahn et al. [1] points out that there is often little
appreciation for how different analytic strategies can affect
a reported result. In this work, we illustrate how analytic
choices can impact the extraction of the electromagnetic form
factors and the associated charge radii from electron scattering
data. These extractions are frequently done with complex
nonlinear regression algorithms and tend to make use of prior
information about the limiting behavior of the electromagnetic
form factors to help constrain the value of experimental nor-
malization parameters. Also, while many tend to look at all
regressions as being the same, in fact there are different types
of regressions such as descriptive, predictive, and explanatory.

A descriptive model is used to capture the features of a
dataset in a compact manner without reliance on an underlying
theory. A predictive model is any statistical model which tries
to generalize beyond the data that is being fitted. Finally,
explanatory modeling takes a theory based model and tests
that model’s hypothesis by applying it to data. Further details
about these differences can be found in Ref. [2]. Though the
type of regression model being developed is not always clearly
stated, it is yet another choice that affects how scientists
design their regression algorithms.

II. PROTON ELASTIC SCATTERING

There has been renewed interest in proton elastic scatter-
ing data due to muonic hydrogen Lamb shift results which
determined the charge radius of the proton to be 0.84078(39)
fm [3,4], a result in stark contrast to the CODATA-2014
recommended value of 0.8751(61) fm [5]. This systematic
difference was known as the proton radius puzzle [6–8]. We

will show that determining the proton’s charge radius is highly
dependent on the analytic choices made when selecting a
model to describe the world data.

In the plane-wave Born approximation, the cross section
for elastic electron scattering on a proton is given by

σ = σMott

×
[

G2
E (Q2) + τG2

M (Q2)

1 + τ
+ 2τG2

M (Q2) tan2

(
θ

2

)]
,

(1)

where σMott is the Mott cross section, GE and GM are the elec-
tric and magnetic Sachs form factors, respectively, τ = Q2

4m2
p
,

Q2 = 4EBeamE ′ sin2 ( θ
2 ), EBeam is the energy of the electron

beam, E ′ is the energy of the outgoing electron, θ is the
scattering angle of the outgoing electron, and mp is the mass
of the proton.

The proton charge radius, rp, is extracted from the cross
sections by determining the slope of the electric form factor,
GE , in the limit of four-moment transfer, Q2, approaching zero
[9]:

rp ≡
(

−6
dGE (Q2)

dQ2
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Q2=0

)1/2

. (2)

Since the scattering data is measured at finite Q2, an ex-
trapolation is required to extract the charge radius. A purely
mathematical fit to the scattering data would be a descriptive
model and would generally only be valid in the region of
the data making extrapolation risky. When extrapolating back
to Q2 = 0 it is desirable to use a predictive model. This
requires extra care such as adding physics considerations to
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the model and/or mathematical requirements to keep the fit
well behaved (e.g., not diverging in the region) and not unduly
complex. Authors have taken many different approaches to
this extraction, yielding different outcomes [10–20].

III. REGRESSIONS

To illustrate how analytic choice can strongly affect the
extracted radius, we first use the Mainz dataset of 1422 cross
section points along with its 31 normalization parameters
[21]. As noted in the work of Bernauer et al. [22], knowledge
of the absolute value of cross sections is limited by the deter-
mination of the absolute luminosity, which in turn is limited
by the uncertainty of the target thickness and beam current.
In order to compensate for these uncertainties, normalization
parameters were introduced to the original fits of this data
which were constrained only by the value of the charge and
magnetic form factors in the limit of Q2 = 0. While there
is no debate about the value of the form factors at Q2 = 0,
how the data at finite Q2 is connected to the known end-point
brings a model dependence to the analysis that is not easily
understood.

These parameters are taken in combinations to link sets of
data together, with the final value of each cross section point
defined by

σexp = σp · normAp · normBp, (3)

where normAp and normBp are the two normalization param-
eters associated with that data point. A complete list of the
31 different normalization parameters, Nj , that are taken in 34
unique combinations for the 1422 points, is shown in Table I.
Further details of how these parameters connect to each of the
1422 cross section points can be found in the Supplemental
Material of Bernauer et al. [22].

For our example of how analytic choice can effect the out-
come, we first fit the Mainz dataset with an unbound complex
nonlinear regression with the form factors parametrized in
terms of polynomials:

GE ,polynomial
(
aE

i , Q2
) = 1 +

n∑
i=1

aE
i Q2 i and (4)

GM,polynomial
(
aM

i , Q2
) = μp

(
1 +

n∑
i=1

aM
i Q2 i

)
, (5)

where μp is the magnetic moment of the proton and n is the
order of the polynomial. This is one of the many form factors
parametrizations described in Ref. [22] that has been used for
extracting the proton radius from the Mainz dataset.

For these regressions, we perform a weighted least squares
minimization with a χ2 function defined as follows:

χ2 =
pmax∑
p=1

(
σModel(Ep, θp) − σp · normAp · normBp

�σp · normAp · normBp

)2

, (6)

where for each data point p there is a cross section, σp, with
energy Ep, angle θp, and normalization parameters normA and
normB as shown in Table I. As was done in the Mainz fits, the
normalization parameters are allowed to float freely.

TABLE I. The 34 different combinations of the 31 normalization
parameters, Nj , found in Ref. [22] which link the data together along
with the number of data points and the Q2 range of each dataset.

Energy Spec. normA normB Points Q2 Range [GeV2]

180 MeV B N1 N3 106 0.0038–0.0129
B N1 N4 41 0.0101–0.0190
A N3 – 102 0.0112–0.0658
B N1 N5 19 0.0190–0.0295
C N2 N4 38 0.0421–0.0740
C N2 N5 17 0.0740–0.0834

315 MeV B N6 N9 104 0.0111–0.0489
A N7 N9 38 0.0430–0.1391
A N9 – 40 0.0479–0.1441
C N8 N9 62 0.1128–0.2131

450 MeV B N10 N13 77 0.0152–0.0572
B N10 N15 52 0.0572–0.1175
A N13 – 42 0.0586–0.2663
B N10 N14 17 0.0589–0.0851
A N11 N13 36 0.0670–0.2744
C N12 N15 50 0.2127–0.3767
A N14 – 2 0.2744–0.2744

585 MeV B N16 N18 41 0.0255–0.0433
B N16 N19 47 0.0433–0.1110
A N18 – 27 0.0590–0.0964
B N16 N20 21 0.0920–0.1845
A N19 – 37 0.0964–0.4222
C N17 N20 20 0.3340–0.5665

720 MeV B N21 N25 47 0.0711–0.1564
A N25 – 46 0.1835–0.6761
C N24 N26 28 0.6536–0.7603
B N23 N26 27 0.2011–0.2520
C N22 N26 37 0.4729–0.7474
B N21 N26 36 0.1294–0.2435

855 MeV B N27 N31 35 0.3263–0.4378
C N28 N31 31 0.7300–0.9772
A N29 N30 32 0.3069–0.5011
A N29 – 13 0.5274–0.7656
B N27 N29 54 0.0868–0.3263

We repeat this same regression adding one requirement:
that the terms of the polynomial have successively alternating
signs. This makes the polynomial more closely resemble a
“completely monotone” function and is referred to as a bound
regression. A true completely monotone function, f , would
possess derivatives, f n, of all orders such that (−1)n f n(x) �
0, x > 0 [23]. Of course for a finite order polynomial be-
ing fit to experimental data, we are simply approximating
a completely monotone function over the range of the data
by alternating the signs of the terms. This seemingly simple
constraint imposes an analytic behavior to the form factors
that is constant with nuclear physics calculations such as
chiral effective field theory [24]. In statistics terms, adding
the condition that the polynomial approximate a physically
motivated function would be classified as creating a robust
regression model [25]. Robust regression models are designed
such that they are not unduly affected by outliers, whereas
least squares estimates are highly sensitive to outlying points
as illustrated in Appendix A.
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TABLE II. The values of the polynomial terms for the unbound
and bound regressions of the 1422 cross section points following the
notation of Eqs. (4) and (5). If one wishes to interpret the charge form
factor slope term (i = 1) in terms of charge radius using Eq. (2), one
finds the unbound fit gives a charge radius of 0.882 fm while the
bound fit gives a charge radius of 0.854 fm.

unbound bound

i aE
i aM

i aE
i aM

i

1 −3.331 −2.523 −3.124 −2.800
2 13.05 −0.7081 8.821 5.188
3 −63.68 40.16 −25.74 −5.742
4 249.4 −176.7 60.06 2.806
5 −658.6 380.3 −89.41 −0.000
6 1099 −392.6 72.48 0.01034
7 −987.6 11.53 −24.23 −0.2766
8 57.38 442.4 0.0000 0.0000
9 853.4 −492.1 −0.0061 −0.0009
10 −810.5 230.3 0.0081 0.0013
11 250.4 −40.92 −0.0000 −0.0000

As a further check of how sensitive these two functions
are to the handling of the data in the fit, we use the rebinned
version of the Mainz data that is provided in the Supplemental
Material of Ref. [13]. These authors carefully rebinned and
reweighted the full Mainz dataset and provided a new set of
658 cross section points, though with the same 31 normal-
ization parameters as the original set. By simply replacing
the original Mainz dataset with this set, we can repeat our
unbound and bound regressions.

While regressions that are linear in terms can be solved
exactly, this is not the case with nonlinear regressions where
algorithms can converge in a local or nonphysical mini-
mum; thus choosing reasonable initialization parameters is
an important step when developing nonlinear regression al-
gorithms. To have reasonable initialization parameters for our
complex nonlinear regressions, we first perform a regression
with dipole functions for GE and GM and use the resultant
normalization parameters as initialization parameters in the
more complex regressions.

In Tables II and III we show the results of fitting with
both the unbound and bound regressions for the 1422 Mainz
cross section points and the rebinned 658 Mainz cross section
points, respectively. The regression results and residuals are
shown graphically in Figs. 1 and 2 for the 1422 Mainz cross
section points and the rebinned 658 Mainz cross section
points, respectively. For clarity we divide σexp by σdipole, where
σdipole is simply Eq. (1) with standard dipole form factors:

GE ,dipole(Q2) =
(

1 + Q2

0.71 GeV2

)−2

and (7)

GM,dipole(Q2) = μp

(
1 + Q2

0.71 GeV2

)−2

. (8)

The fits of the unbound and bound regressions clearly differ
significantly for both the original and the rebinned Mainz
cross section points, but the residuals of each fit are quite

TABLE III. The values of the polynomial terms for the unbound
and bound regressions of the 658 cross section points of rebinned
data [13] following the notation of Eqs. (4) and (5). If one wishes to
interpret the charge form factor slope term (i = 1) in terms of charge
radius using Eq. (2), one finds the unbound fit gives a charge radius
of 0.863 fm while the bound fit gives a radius of 0.845 fm.

unbound bound

i aE
i aM

i aE
i aM

i

1 −3.191 −2.465 −3.061 −2.760
2 10.83 −0.7271 8.413 4.979
3 −44.59 35.32 −24.46 −5.196
4 157.2 −136.4 58.23 2.193
5 −404.2 228.8 −89.36 −0.000
6 712.6 −98.11 74.77 0.5035
7 −733.1 −234.1 −25.73 −0.5330
8 133.4 349.9 0.0000 0.0000
9 632.8 −122.4 −0.0000 −0.0000
10 −695.5 −56.49 0.0000 0.0000
11 232.9 35.80 −0.0000 −0.0000

similar. The reason the locations of the cross section data
points differ between the unbound and bound regressions in
Figs. 1 and 2 is due to the choice of regression model shifting
the 31 normalization parameters to maintain agreement with
our prior knowledge of the values of the electromagnetic form
factors in the limit of Q2 = 0. The magnitude of individual
normalization shifts is a few tenths of a percent, which is
much smaller than absolute normalizations can be determined,
but can have a clear effect on the results as the point-to-point
uncertainties are also just few tenths of a percent.

IV. MODEL SELECTION

For a fixed number of fit parameters, the unbound regres-
sions presented in this work will always have a total χ2 equal
to or lower than a bound regression as shown in Figs. 3 and
4 which plot the total χ2 and charge radius given by the un-
bound and bound regressions of the 1422 Mainz cross section
points and the 658 rebinned cross sections, respectively. Since
adding parameters will always either decrease or keep total χ2

the same, χ2 by itself is not a valid model selection criterion.
More appropriate model selection techniques include using an
F-test for nested models that are linear in terms [12,26] or
model selection methods like the Akaike information criterion
(AIC) [27] or the Bayesian information criterion (BIC) [28]
which can be used with non-nested nonlinear models (see
Ref. [29] for more details).

Since the regressions herein are nonlinear, we use the
AIC and BIC to determine the most appropriate number of
parameters for these regressions. These statistical criteria,
along with the frequently quoted χ2 per degree of freedom
χ2/df [30], are defined as follows:

χ2 =
N∑

n=1

((datai − modeli )/σi )
2, (9)

χ2/df = χ2/(N − Nvar ), (10)
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FIG. 1. The 1422 Mainz cross section points plotted vs Q2 for the six different incident beam energies and fit with unbound and bound
polynomials. The gray points were analyzed using an unbound eleventh order polynomial regression in GE and GM while the black points used
a bound eleventh order polynomial regression constrained to alternate term signs. The systematic difference in the location of the points is due
to how the 31 normalization parameters in the fit change based on the choice of using either the unbound or bound functions in the regression.
While the mean values are clearly different for these fits, the residuals of the fits to their respective functions are quite similar.
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FIG. 2. The 658 rebinned Mainz cross section points plotted vs Q2 for the six different incident beam energies and fit with unbound and
bound polynomials. The gray points were analyzed using an unbound 11th order polynomial regression in GE and GM while the black points
used a bound 11th order polynomial regression constrained to alternate term signs. The systematic difference in the location of the points is due
to how the 31 normalization parameters in the fit change based on the choice of using either the unbound or bound functions in the regression.
While the mean values again differ for the two fits, the residuals of the fits to their respective functions are quite similar.
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FIG. 3. Total χ 2 vs the number of fit parameters in GE and GM

using Eqs. (4) and (5) for both the unbound and bound polynomial
regressions of the full 1422 point Mainz dataset. Total χ2 will
decrease as parameters are added, but at some point no significant
improvement will be made where significance is defined using the
statistical criteria. With both AIC and BIC, the most appropriate
bound fits are the seventh order while for the unbound descriptive
fits the most appropriate order is tenth.

AIC = N log(χ2/N ) + 2Nvar, (11)

BIC = N log(χ2/N ) + log(N )Nvar, (12)

where N is the number of data points, datai and σi are the
measured values and their estimated uncertainties respec-
tively, modeli is the model value, and Nvar is the number
of model parameters. Starting from lowest order fits, at first
the value of these criteria will decrease as a parameter is
added indicating an underfitting of the data while eventually
the criteria will start to increase as parameters are added
indicating an overfitting of the data; thus, with these criteria
the model with the lowest AIC or BIC value should be selected
as most appropriate.

For the 1422 original Mainz data points, we find with both
AIC and BIC the most appropriate of the bound fits is the
seventh order fit with a χ2/df of 1.21, while for the unbound
fits the tenth order fit with a χ2/df of 1.14 is most appropriate
as previously found [21,22]. For the 658 rebinned Mainz data
points, we find with both AIC and BIC the most appropriate
of the bound fits is the seventh order fit with a χ2/df of
0.865, while for the unbound fits the ninth order fit with a
χ2/df of 0.830 is most appropriate. Ideally a criteria would
have been defined prior to the analysis of the data, since we
are doing a reanalysis, we are presenting two of the most
common techniques so one can judge how even the criteria

FIG. 4. Total χ 2 vs the number of fit parameters in GE and GM

using Eqs. (4) and (5) for both the unbound and bound polynomial
regressions of the 658 points of the rebinned Mainz dataset [13]. For
these fits, by AIC and BIC, seventh order is the most appropriate for
the bound regression while for the unbound ninth order is the most
appropriate.

can effect the outcome of the analysis. Further details about
model selection techniques can be found in [31].

One should also keep in mind whether one is trying to do
a descriptive fit of the data or, by adding physical constraints,
building a predictive or explanatory model of the data [2]. One
must also keep in mind that none of these model selection
techniques will prevent the use of completely inappropriate
functions nor do they ensure that the best type of function has
been selected. As noted in Refs. [30,32], it is essential to plot
the fit functions and residuals to ensure a reasonable regres-
sion as χ2 minimization alone is insufficient as illustrated in
Appendix B.

As the changes we have presented in these four fits are
larger than the statistical parameter uncertainties, we have
limited ourselves to a discussion of the shifts of the mean
values of the points. For nonlinear regressions such as these,
statistical bootstrapping which makes use of sampling with
replacement can be used to find the statistical parameter
uncertainties [25].

V. RESULTS

In Figs. 5 and 6, we show the individual electric and
magnetic form factors obtained from the unbound and bound
regressions for the 1422 Mainz cross section points. In Fig. 5
we see that GM for both the unbound and bound fits remains
well behaved at high Q2. However, for GE both the unbound
and bound fits begin to diverge at high Q2. This is due to the
dominance of the magnetic form factor in the cross section

015205-6



HOW ANALYTIC CHOICES CAN AFFECT THE … PHYSICAL REVIEW C 102, 015205 (2020)

FIG. 5. The electromagnetic form factors vs Q2 from the un-
bound and bound polynomial regressions of the 1422 Mainz cross
sections [22]. For these kinematics, as the Q2 gets large, the cross
sections are dominated by GM and the GE form factor becomes
unconstrained, so the divergence of GE at high Q2 is to be expected
from a high-order polynomial.

at high Q2 which leads the electric form factor to become
unconstrained in this region. Due to using a high-order poly-
nomial regression, along with the unconstrained nature of
GE in the high Q2 region, the divergence of GE is to be
expected.

In Fig. 6 the ratios of the electromagnetic form factors
to the standard dipole are shown. This ratio reveals that the
unbound GE ratio has a small oscillation and the unbound
GM ratio has a large oscillation. Whereas, the bound GE ratio
has mostly removed the oscillation and the bound GM ratio
has almost no oscillation. The unbound ratios are descriptive
models of the scattering data without any physics considera-
tions, but the bound ratios are more akin to predictive models
as the terms alternate sign as one would expect from chiral
effective field theory. By adding this one physical constraint

FIG. 6. The ratio of the extracted electromagnetic form factors
to standard dipole vs Q2 for the 1422 Mainz cross sections. The
oscillations in the unbound magnetic form factor, and to a lesser
extent electric form factor, go away once the terms of the fit functions
are forced to alternate sign. The smooth magnetic form factor also
results in a smaller extracted proton charge radius (0.854 fm vs 0.882
fm).

the oscillations are removed as the model becomes more
predictive.

Though it is beyond the range of the data used in the
regression, the results of regressions like these are frequently
used to extract the charge radius of the proton by using Eq. (2)
to relate the fit function to the charge radius of the proton.
Ideally, these extractions would use a predictive model to fit
the data as finding the charge radius requires extrapolating
beyond the range of the experimental data. For the case of
a polynomial regression, this is simply

rp = ( − 6aE
1

)1/2
. (13)

Using Eq. (2) one finds a charge radius of 0.882 fm from the
unbound regression and 0.854 fm from the bound regression
of the original Mainz cross section points (Table II), and a
charge radius of 0.863 fm from the unbound regression and
0.845 fm from the bound regression of the rebinned Mainz
data (Table III). These results show that even just rebinning
the data can shift the result of a high-order polynomial regres-
sion significantly.

In the end, the radii extracted from the more descriptive
unbound regressions are closer to the CODATA-2014 value,
while the radii extracted from the more physically justifiable
and predictive bound regressions are closer to the muonic
results as well as the most recent atomic result [33]. With
freedom to make analytic choices that so strongly affect the
results, there is the potential for unconscious confirmation
bias, and for researchers to select and report the regressions
that confirm their expectations [34,35].

VI. CONCLUSIONS

We have shown that small changes in analytic functions
and binning choices applied to a complex nonlinear regression
can result in significantly different results. In particular, using
the Mainz dataset of elastic cross section points to extract a
proton charge radius, we have shown results consistent with
the CODATA-2014 value when using high-order unbounded
polynomial fits and values close to the muonic results when
using bounded polynomial regressions. Thus, by simply try-
ing different functions, limits, and bounds, one can easily
extrapolate to different results which can lead to confirmation
bias and/or inappropriate rejection of certain results. Enrico
Fermi noted that these types of problems should be addressed
using either a firm mathematical basis or a physical model
[36]. Ideally, regression models should be carefully developed
prior to obtaining experimental data, as was done by the PRad
collaboration [37,38]; otherwise, one must be exceedingly
careful to avoid confirmation bias though the rigorous use of
model selection techniques [34,35].

Thus, while one can argue that the bounded nonlinear
regression is the more physical function, it would be more
appropriate to approach the analysis such that the analytic
choices do not so strongly affect the results. To do this,
one can either fit only lower Q2 data where fewer free
parameters are required [11,12,29,37,39–44] and the results
are not sensitive to the magnetic form factor, as shown ex-
plicitly in Ref. [29]; or, as Fermi preferred, use a physical
model, such as that of Bernard et al. [45] or Alarcón and

015205-7



BARCUS, HIGINBOTHAM, AND MCCLELLAN PHYSICAL REVIEW C 102, 015205 (2020)

Weiss [24] to constrain the fits [16,17,46,47]. There are also
the physically motivated functions such as rational functions
[12,48], continued fractions [11,49,50], or the z-expansion fits
[13,51] though these still require model selection techniques
to determine the appropriate number of regression parameters.
We hope to have illustrated that by using extremely complex
nonlinear regressions and deep searches, one can find nearly
any radius in a wide range of radii from a single dataset [52].
To quote Nobel laureate Ronald H. Coase, “if you torture the
data long enough, it will confess.”
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APPENDIX A: ROBUST REGRESSIONS

Ordinary least squares regression (OLSR) is one of the
most commonly employed techniques used to fit a given
model and its parameters to a dataset. However, OLSR is
commonly misunderstood and misapplied by researchers.
For OLSR, fit parameters are determined by minimizing the
square of the differences between real-world data and model
predictions. This is known as a χ2 minimization. Eq. (A1)
shows this minimization for N data points with M fit parame-
ters:

χ2 ≡
N∑

i=1

(
yi − y(xi|a1, a2, . . . , aM )

σi

)2

. (A1)

Here, yi are the measured data values, y(xi|a1, a2, . . . , aM ) are
the values given by the model with fit parameters a1 to aM

when evaluated at the xi of the measured data, and σi are the
uncertainties on each measured data point.

While OLSR via χ2 minimization is often a useful initial
method for checking the ‘goodness’ of a fit, it can fail if
the dataset being fit does not meet certain conditions. OLSR
is based on the core assumptions that the errors are ran-
dom variables that are normally distributed, the errors are
uncorrelated to each other, and the errors are homoscedastic,
which is to say they have the same variance. Unfortunately,
these assumptions often do not hold true in the case of real-
world data. When OLSR’s assumptions are not met, such
as when the dataset has significant outliers, OLSR is not
sufficient for fitting the data and can yield misleading results.
Even a singular outlier can skew the results of an OLSR
pulling the fit away from the data’s true behavior [25,53].
To avoid these pitfalls, robust methods such as robust least
squares regression (RLSR) should be used instead of OLSR
techniques.

FIG. 7. This example data, reproduced from a classic statistics
paper [32], shows how an ordinary least squares regression, OLSR, is
easily pulled away from the true trend of the data while a robust least
squares regression, RLSR, is only weakly affected by the outlying
data point.

To avoid outliers having too much influence over a fit, we
desire a method by which outliers can be identified and then
reweighted such that they do not skew the overall fit. The least
squares minimization found in Eq. (A1) can be generalized
to Eq. (A2) by introducing the function ρ(z) [54]. OLSR is
then simply the case where ρ(z) = z. Many functions can be
used for ρ(z) to introduce robustness, but for the following
examples the ‘soft loss’ (softl1) function given in Eq. (A3)
was selected and implemented using the PYTHON package
SciPy [54–56]:

χ2 ≡
N∑

i=1

ρi(z) and z =
(

yi − y(xi|a1, a2, . . . , aM )

σi

)2

,

(A2)

ρ(z) = 2(
√

1 + z − 1). (A3)

With soft loss, as a zi gets larger, the magnitude of ρi(z) is
increasingly reduced with respect to OLSR. A RLSR with soft
loss essentially reweights the outliers of a dataset, decreasing
their influence when fitting. Note that if a dataset meets all
of the above assumptions inherent to OLSR (i.e., errors are
normally distributed, uncorrelated, and have the same vari-
ance) then OLSR and RLSR techniques should both produce
the same fit results since the dataset, by definition, does not
contain excessive outliers.

A simple example reproduced from a classic statistics
paper [32] is shown in Fig. 7. The dataset has a single clear
outlier which pulls the fit considerably away from the bulk of
the data when using OLSR. However, when RLSR with soft
loss is used to fit the data the influence of the outlier is greatly
reduced, and the fit returns to the bulk of the data yielding
superior results.

For a real-world example using RLSR we can study the full
initial state radiation (ISR) dataset found in the supplemental
material of Refs. [57,58]. Figure 8 shows the results of two
regressions of the ISR proton electric form factor data using
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FIG. 8. Proton electric form factor data taken from the ISR
dataset found in the Supplemental Material of Ref. [57]. The uncer-
tainties are calculated by summing the listed statistical uncertainties
with the systematic uncorrelated uncertainties in quadrature. The
theoretical model used for the regressions is the model of Alarcón
and Weiss [24], with only one free parameter. These regressions give
a proton radius of 0.874 fm for the OLSR and 0.844 fm for the RLSR
with soft loss.

the theory model of Alarcón and Weiss [24], with the proton
radius as its single free parameter. The light gray curve uses
an OLSR to fit the dataset and the dark curve uses a RLSR
with soft loss.

There is a clear separation between the results of the two
regressions, with the RLSR fitting the higher Q2 data better.
The OLSR finds a proton radius of 0.874 fm, and the RLSR
finds a significantly smaller radius of 0.844 fm. Again, the
purely analytic choice of the regression type significantly
influences the fit results. Further, the fact that the OLSR and
the RLSR fit results differ significantly is evidence that there
are outliers in the dataset that are not following a normal
distribution, otherwise the OLSR and RLSR fits would have
better agreement.

APPENDIX B: ANSCOMBE’S QUARTET

With the power of modern computing, one can be tempted
to blindly assume the results of the regression are correct if the
χ2/df is close to unity; but this can be extremely misleading
[59]. To illustrate this point we use the Anscombe quartet
[32], though as nuclear physicists tend to use χ2/df instead
of R2. We have taken the 1973 example problem and added
uncertainties to the points as shown in Table IV.

When fit with a linear function, these four sets of (x, y, dy)
values give the same statistical quantities to three significant
figures: mean, variance, χ2, χ2/df, etc. So if one fails to make
graphical checks, one can be completely fooled into thinking
the fits are all equally good; but by simply graphing (see
Fig. 9) one can see that only the first set of data is distributed
in an ideal way around the fit function.

Dataset two clearly has a curved residual yet has exactly
the same mean, errors, and χ2 as the first fit. This suggests that
the fitter should likely add a quadratic term to the regression

TABLE IV. Four datasets of (xi, yi, dyi) values adapted from [32].

x1,2,3 y1 y2 y3 x4 y4 dy1,2,3,4

10.0 8.04 9.14 7.46 8.0 6.58 1.235
8.0 6.95 8.14 6.77 8.0 5.76 1.235
13.0 7.58 8.74 12.74 8.0 7.71 1.235
9.0 8.81 8.77 7.11 8.0 8.84 1.235
11.0 8.33 9.26 7.81 8.0 8.47 1.235
14.0 9.96 8.10 8.84 8.0 7.04 1.235
6.0 7.24 6.13 6.08 8.0 5.25 1.235
4.0 4.26 3.10 5.39 19.0 12.50 1.235
12.0 10.84 9.13 8.15 8.0 5.56 1.235
7.0 4.82 7.26 6.42 8.0 7.91 1.235
5.0 5.68 4.74 5.73 8.0 6.89 1.235

as well as check that the uncertainties have been correctly
reported.

Dataset three illustrates the effect of an outlier on the
regression. Of course, the scientist does not simply throw out
an outlier. Instead one should report on the outlier’s influence
on the result. For example, in dataset three it would be worth
noting that if the outlier is removed, the data exactly follow a
line of y = 4 + 0.346x and that that measurement should be
repeated.

Dataset four looks unsatisfactory, since all the information
about the slope comes from one observation. This is very dif-
ferent from dataset one where any one point can be removed
and one will obtain nearly the same result. Thus, for dataset
four it should be pointed out that a single observation plays a
critical role in the result.

FIG. 9. Graphs of the four sets of data from Table IV. When fit
with a linear function, y = mx + b, all four sets of data give the same
slope, same intercept and same χ 2/df of one; yet clearly these four
sets of data are not the same.
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