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Signature of the N∗ resonance in the mass spectrum of the KK̄N decay channels
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Three-body calculations of the I = 1
2 , Jπ = 1

2

+
state of KK̄N system were performed. Using separable

potentials for two-body interactions in the Faddeev equation, different reaction processes for the KK̄N three-
body system were studied. Within this method, the π�K and πηN mass spectra were extracted. Different types
of K̄N-π� potentials based on phenomenological and chiral SU(3) approach were used and the dependence of
the mass spectra on the K̄N model of interaction was studied. It was shown that the π�K and πηN mass spectra
could be a useful tool to study the properties of the N∗ resonance.
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I. INTRODUCTION

The study of few-body systems, including antikaons, is an
important issue in contemporary strangeness nuclear physics
and has attracted continuous attention. The K̄N system is
a building block of K̄ nuclear few-body systems. This is
based on the fact that the K̄N interaction is strongly attrac-
tive and the binding energy of the K̄N quasibound state is
about 10–30 MeV [1–11]. Of course, the binding energy
of antikaonic systems is not so large in comparison with
the typical hadron energy scale, and also the distance be-
tween constituent hadrons is larger than the typical size of
them. Consequently, all hadronic constituents will keep their
identity. Such quasibound states are usually called hadronic
molecular states [12]. During the last two decades, various
hadronic molecular states, including K̄ and K mesons, were
studied by different groups [13–19]. Among these molecular
states, the K̄NN bound state with quantum numbers I = 1

2 and
Jπ = 0− has been the object of intense theoretical [20–33] and
experimental [34–40] studies.

In adddition to the K̄NN , numerous theoretical works
were also performed to study systems of two mesons and
one baryon with strangeness S = 0, finding resonant states
which could be identified with the existing baryonic reso-
nances [13–16]. A variational calculation of the three-body
KK̄N system was performed in Ref. [13] using effective po-
tentials for K̄N and KK̄ interactions. The �(1405) resonance
is generated as a quasibound state in the K̄N system and the
scalar mesons f0(980) and a0(980) are reproduced as quasi-
bound states of the KK̄ system in I = 0 and I = 1 isospin
channels, respectively. In this calculation, a quasibound state
(N∗ resonance) with quantum numbers I = 1

2 and Jπ = 1
2

+

was found with a mass 1910 MeV and a width 90 MeV
below all of the meson-baryon decay threshold energies of
the �(1405) + K , f0(980) + N , and a0(980) + N states. It
was concluded that the KK̄N state can be understood by the
structure of simultaneous coexistence of �(1405) + K and
a0(980) + N clusters and the K̄ meson is shared by both
�(1405) and a0(980) at the same time. This quasibound state

was also studied in Refs. [14,15] by using the coupled-channel
relativistic Faddeev equation and in Ref. [16] using fixed
center approximation of the three-body Faddeev equation. The
extracted pole energies were in agreement with the pole in
Ref. [13]. A discussion on experimental observation of this
N∗ can be also found in Ref. [41].

The KK̄N quasibound state can be produced in γ p and pp
reactions, and the signal of the resonance may be observed in
the mass spectrum of the final particles [41]. The investigation
for the KK̄N quasibound state was explored through the γ

incident reaction γ p → K+� by the CLAS experiment at
Jefferson Lab (JLab) [42,43]. The KK̄N quasibound state
could be also studied through the pp reaction (see Fig. 1).
This reaction was performed as a HADES experiment at
GSI [44]. This paper is devoted to investigating the pole
structure of the KK̄N three-body system. It was studied how
well the signal of the KK̄N quasibound state can be observed
in the π�K and πηN mass spectrum resulting from the
reaction under consideration. The few-body calculations for
the KK̄N system were performed by using Faddeev AGS (Alt-
Grassberger-Sandhas) equations [45]. The transition probabil-
ities for the (K̄N )I=0 + K and (KK̄ )I=1 + N reactions were
calculated. Within this method, the behavior of the transi-
tion probability was investigated. Different phenomenological
and chiral based K̄N-π� potentials were used [29,46] to
investigate the sensitivity of the three-body observables to
two-body inputs.

The paper is organized as follows: in Sec. II, I will explain
the formalism used for the three-body KK̄N system and give
a brief description of the transition probability formula for
the reaction under consideration. Section III is devoted to the
two-body inputs of the calculations and representation of the
computed pole energies and mass spectra. In Sec. IV, I give
conclusions.

II. FORMALISM AND BASIC INGREDIENTS

The present three-body calculations of the KK̄N system
are based on the AGS form of the Faddeev equation [45].
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FIG. 1. Diagram for the proton-proton reaction and formation of
the KK̄N system. In the decay channel, when X is equal to K+ the
Y Z pair is π� and when X is equal to p the Y Z pair should be ππ

and πη depending on the total isospin of the Y Z pair.

To describe the two-body interactions, which are the basic
ingredient of the calculations, separable potentials with the
following form were used:

V I
αβ (kα, kβ ) = gI

α (kα ) λI
αβ gI

β (kβ ), (1)

where the quantities gI
α (kα ) are the form factors of the in-

teracting two-body subsystem with relative momentum kα

and isospin I . The strength parameters of the interaction are
denoted by λI

αβ . To include the low-lying channels in K̄N and
KK̄ interactions, the potentials are labeled also by α and β

indexes. The separable form of the two-body T -matrices is
given by

T I
αβ (kα, kβ ; z) = gI

α (kα ) τ I
αβ (z) gI

β (kβ ), (2)

where the operator τ I
αβ (z) is the usual two-body propagator

and z is the two-body energy. There are three different parti-
cles in the system under consideration. Therefore, defining the
interacting pairs and their allowed spin and isospin quantum
numbers, the KK̄N three-body system will have the following
partitions:

(1) : (K̄N )s= 1
2 ;I=0,1 + K,

(2) : (KN )s= 1
2 ;I=0,1 + K̄, (3)

(3) : (KK̄ )s=0;I=0,1 + N.

For convenience, one can introduce the three rearrange-
ment channels i = 1, 2, 3 of the KK̄N three-body system as
shown in Fig. 2. The quantum numbers of the KK̄N are I = 1

2
and s = 1

2 . Therefore, in actual calculations, when one in-
cludes isospin and spin indexes the number of configurations
is equal to 6, corresponding to different possible two-quasi-
particle partitions. Using separable potential for two-body
interactions, the three-body Faddeev equation [24] in the AGS

K K K

K K K

N N N

(1) (2) (3)

FIG. 2. Diagrammatic representation of different partitions of the
KK̄N system. Defining the interacting particles, there are three par-
titions, namely K + (K̄N ), K̄ + (KN ), and (KK̄ ) + N . The antikaon
is defined by a red circle, the kaon by a blue circle and the nucleon
by an orange circle.

form is given by

KIi,I j

i, j (pi, p j ;W )

= MIi,I j

i, j (pi, p j ;W ) +
∑
k,Ik

∫
d3 pkMIi,Ik

i,k (pi, pk ;W ) τ
Ik
k

×
(

W − p2
k

2νk

)
KIk ,I j

k, j (pk, p j ;W ). (4)

Here, the operators KIiI j

i j are the transition amplitudes
which describe the elastic and rearrangement processes i +
( jk)Ii → j + (ki)I j [24] and the operators MIiI j

i j are the corre-
sponding Born terms. In this equation W is the three-body

energy and W − p2
k

2νk
is the energy of the interacting pair

(i j) where νi = mi(mj + mk )/(mi + mj + mk ) is the reduced
mass when particle i is a spectator. Faddeev partition indexes
i, j, k = 1, 2, 3 denote simultaneously an interacting pair and
a spectator particle. Depending on the spectator particle, the

operator τ
Ik
k (W − p2

k
2νk

), k = 1, 2, 3 is given by

τ
I1
1 = τ

IK
K = τ

IK̄N

K̄N-K̄N

(
W − p2

K

2νK

)
,

τ
I2
2 = τ

IK̄

K̄
= τ

IKN
KN-KN

(
W − p2

K̄

2νK̄

)
, (5)

τ
I3
3 = τ

IN
N = τ

IKK̄

KK̄-KK̄

(
W − p2

N

2νN

)
.

The K̄N system is coupled with the π� channel and the
KK̄ system is coupled with ππ and πη systems in isospin
I = 0 and I = 1 channels, respectively. In actual calculations,
one should extend the Faddeev equation to include the low-
lying channels. In the present calculations, the K̄N-π� and
KK̄-ππ -πη couplings are not taken into account directly
and the particle indexes are omitted for all three-body op-
erators and the interactions between particles in low-lying
channels are neglected. Thus, my coupled-channel three-body
calculations with coupled-channel K̄N-π� and KK̄-ππ -πη

interactions are equivalent to the one-channel three-body
calculation using the so-called “exact optical” K̄N (-π�)
and KK̄ (-ππ -πη) potentials [47]. The decay to the Kπ�,
πηN , and ππN channels is taken into account through the
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imaginary part of the optical K̄N (-π�) and KK̄ (-ππ -πη)
potentials.

Supposing the (K̄N )I=0 + K as the initial state of the
KK̄N system, the three-body Faddeev AGS equations can be
given by

KIK ,0
K,K = MIK ,IN

K,N τ
IN
N KIN ,0

N,K + MIK ,IK̄

K,K̄
τ

IK̄

K̄
KIK̄ ,0

K̄,K
,

KIN ,0
N,K = MIN ,0

N,K + MIN ,IK
N,K τ

IK
K KIK ,0

K,K + MIN ,IK̄

N,K̄
τ

IK̄

K̄
KIK̄ ,0

K̄,K
, (6)

KIK̄ ,0
K̄,K

= MIK̄ ,0
K̄,K

+ MIK̄ ,IK

K̄,K
τ

IK
K KIK ,0

K,K + MIK̄ ,IN

K̄,N
τ

IN
N KIN ,0

N,K .

To study the possible signature of the N∗ resonance in the
mass spectrum of the final particles in K + (K̄N )I=0 reaction,
three different channels can be studied, given by

K + (K̄N )I=0 → Kπ�,

K + (K̄N )I=0 → πηN, (7)

K + (K̄N )I=0 → ππN,

where the first two reactions are more probable [13]. To
define the Kπ� and πηN mass spectrum, first one should
define break-up amplitude. Since, the low-lying channels
are not directly included in the calculations, the only Fad-
deev amplitudes which contribute in the scattering amplitude
are KI,0

K,K (pK , P̄K ;W ) and K1,0
N,K (pN , P̄K ;W ) for extracting the

Kπ� and πηN mass spectra, respectively. Therefore, the
scattering amplitude can be expressed as

T(π�)+K←(K̄N )I=0+K (�kK , �pK , P̄K ;W )

=
∑

I

gI
π� (�kK )τ I

K

(
W − p2

K

2νK

)
KI,0

K,K (pK , P̄K ;W ),

T(πη)+N←(K̄N )I=0+K (�kN , �pN , P̄K ;W )

= gI=1
πη (�kN )τ I=1

N

(
W − p2

N

2νN

)
K1,0

N,K (pN , P̄K ;W ), (8)

where �ki is the relative momentum between the interact-
ing pair ( jk) and P̄K is the initial momentum of spectator
K in the KK̄N center of mass. The quantities KIi,I j

i, j are
the Faddeev amplitudes, which are derived from Faddeev
Eq. (6).

Using Eq. (8), the transition probability of the K +
(K̄N )I=0 reaction can be defined as follows:

w1(P̄K ,W ) =
∫

d3 pK

∫
d3kK δ(W − Q1(pK , kK ))

× ∣∣T(π�)+K←(K̄N )I=0+K (�kK , �pK , P̄K ;W )
∣∣2

,

w2(P̄K ,W ) =
∫

d3 pN

∫
d3kN δ(W − Q2(pN , kN ))

× ∣∣T(πη)+N←(K̄N )I=0+K (�kN , �pN , P̄K ;W )
∣∣2

, (9)

where Q1(pK , kK ) and Q2(pN , kN ) are given by

Q1(pK , kK ) = p2
K (mK + mπ + m� )

2mK (mπ + m� )
− k2

K (mπ + m� )

2mπm�

,

(10)

Q2(pN , kN ) = p2
N (mN + mπ + mη )

2mN (mπ + mη )
− k2

N (mπ + mη )

2mπmη

.

III. RESULTS AND DISCUSSIONS

Before I proceed to present the results, I should give a brief
description of the two-body interactions which are used in the
present calculations. The KK̄N three-body system have three
different subsystems, which are K̄N , KK̄ , and KN . The K̄N
subsystem is coupled with π� and KK̄ subsystem is coupled
with ππ and πη in I = 0 and I = 1 channels, respectively.
Therefore, in the full calculation of the KK̄N system, the
Kπ�, ππN , and πηN channels should be included too. In the
present work, the low-lying channels are not included directly.
Therefore, the πN , πK , ηN , and �K interactions in low-
lying channels are neglected and the decays to Kπ�, ππN ,
and πηN are included by using the so-called exact optical
potentials. In the following, I will give a brief description of
the K̄N-π�, KK̄-ππ -πη and KN interactions.

The K̄N interaction, which is the fundamental ingredient
to study few-body systems with an antikaon, is closely re-
lated to the structure of �(1405) resonance in the isospin
zero channel. The �(1405) is located slightly below the
K̄N threshold and decays into the π� channel through the
strong interaction. The �(1405) resonance can be interpreted
as a quasibound state of K̄N with a binding energy of
27 MeV [6]. On the other hand, the theoretical calculation
based on chiral SU(3) dynamics claims that �(1405) is dy-
namically generated by the meson-baryon interactions and
consists of two poles coupled to the π� and K̄N states [3,8].
According to the chiral models, the pole position in the S-
wave K̄N scattering amplitude is located at ≈1426 MeV.
Thus, the K̄N interaction is expected to be weaker than that
predicted by other phenomenological model calculations. In
present calculation, different models of interaction were used
to describe the coupled channel K̄N-π� system. Two differ-
ent phenomenological potentials plus one energy-dependent
chiral based potential for K̄N interaction [29,46] were used.
The potentials yield the one- and two-pole structures of the
�(1405) resonance. The parameters of the phenomenological
potentials are given in Ref. [46]. From now on I will refer to
these potentials as SIDD1 and SIDD2, which have the one- and
two-pole structures of the �(1405) resonance, respectively.
The SIDD potentials are adjusted to reproduce the results of
the SIDDHARTA experiment. The parameters of the energy-
dependent chiral potential are given in Ref. [29].

The KK̄ system is coupled with ππ and πη in I = 0 and
I = 1 channels, respectively. A coupled-channel potential was
constructed for the KK̄ interaction in both isospin channels to
take into account the decay of the KK̄ system to ππ and πη

channels. A separable potential in the form given in Eq. (1)
was used to describe the KK̄-ππ -πη interaction. To define the
strength parameter λI

αβ , I used the pole energy of f0(980) and
a0(980) resonances and also the KK̄ scattering length [48].
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TABLE I. Range parameters �I
KK̄ (in fm−1) and strength parame-

ters λI
αβ (in fm−2) of the KK̄-ππ -πη potential. The range parameters

in each isospin channel are independent of the two-body channel.
For the α and β = KK̄ one has α = β = 1 and for α = β = ππ and
α = β = πη the value of the α and β is equal to 2.

�0
KK̄ �1

KK̄ λ0
11 λ0

12 λ0
22 λ1

11 λ1
12 λ1

22

V I
KK̄ 3.570 3.396 −1.757 2.975 1.187 −1.503 1.922 0.092

To determine the parameters of the KK̄ interaction in both
I = 0 and I = 1 channels, the mass 980 MeV and the width
60 MeV were taken for f0 and a0 resonances, which are
close to the reported mass and width by the Particle Data
Group [49]. The extracted parameters of the KK̄ potential in
the I = 0 and I = 1 channels, are given in Table I and the form
factors are taken to be in Yamaguchi form [50].

To describe the repulsive KN interaction, I used a one-
channel real potential in the form

V I
KN (k, k′) = gI

KN (k) λI
KN gI

KN (k′), gI
KN (k) = 1

�2
KN + k2

.

(11)

The range parameter of the KN potential, �KN , was set
to 3.9 fm−1. The KN interaction with isospin I = 0 is very
weak. Therefore, it would not change the results of the present
work and can be neglected. The strength parameter in the I =
1 channel is adjusted to reproduce the KN scattering length.
The experimental value of the scattering length for the I = 1
channel is aI=1

KN = −0.310 ± 0.003 fm [13,51,52]. Therefore,
the value of the strength parameter is λI=1

KN = 2.794 fm−2.

A. Pole position of the three-body KK̄N system

Before I proceed to represent the extracted mass spectra
for the K + (K̄N )I=0 reaction, in this subsection I shall begin
with a survey of the pole structure of the KK̄N system. The
obtained results can be used as a guide to interpreting the
behavior of the extracted mass spectra from the K + (K̄N )I=0

reaction. The solution of the Faddeev equation corresponding
to bound states and resonance poles in the (I, Jπ ) = ( 1

2 , 1
2

+
)

channel of the KK̄N three-body system was found by solv-
ing the homogeneous version of the Faddeev AGS equation,
which is defined by

uIi
n;i(pi;W ) = 1

λn

∑
j,I j

∫
d3 p j (1 − δi j )MIi,I j

i, j (pi, p j ;W )

× τ
I j

j

(
W − p2

j

2ν j

)
u

Ij

n; j (p j ;W ), (12)

where λn and the form factors uIi
n;i(pi;W ) are taken as the

eigenvalues and eigenfunctions of the kernel of Eq. (4), re-
spectively. In Fig. 3 (lower panel) the results of the present
work for three-body KK̄N quasibound state are presented
and sensitivity of the KK̄N pole position to the K̄N-π�

interaction is investigated by using different potential mod-
els. In addition the KK̄N pole position, I also present the
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FIG. 3. The sensitivity of the pole position(s) (in MeV) of the
K̄N (up) and KK̄N (down) systems to the different phenomenologi-
cal and chiral based models of the K̄N-π� interaction is investigated.
In the upper panel the quantities Z1 and Z2 stand for first and the
second poles of �(1405) resonance, respectively.

pole position of the quasibound states in the K̄N system
for phenomenological and energy-dependent chiral potentials
(upper panel).

The calculated energies of the quasibound state are −24.5,
−38.3 and −43.6 MeV from the KK̄N threshold in the
results with chiral, SIDD1, and SIDD2 potentials, respec-
tively. The width of three-hadron decay is estimated to be
45–110 MeV. Jido et al. [13] made a variational calculation
for the three-body KK̄N nuclear quasibound state using an
effective interaction model for K̄N , KK̄ , and KN interactions.
In this calculation, a quasibound state with I = 1

2 and Jπ =
1
2

+
was found with a binding energy about 19–41 MeV and a

width 90–100 MeV below the threshold energy of the KK̄N
state. The comparison of the present results for KK̄N obtained
for coupled-channel K̄N-π� and KK̄-ππ -πη interactions
with calculations in Ref. [13] within the variational method
and effective K̄N and KK̄ interactions shows that they are
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FIG. 4. The π�K mass spectra for the (K̄N )I=0 + K → π�K reaction. Different types of K̄N-π� potentials were used: the one- and
two-pole versions of the SIDD potentials [46] and also one energy-dependent chiral potential [29]. The transition probabilities are calculated
for different values of P̄K . In panels (a), (b), (c), and (d), the values of P̄K are 100, 200, 300, and 400 MeV/c, respectively. The blue dashed
lines correspond to the mass spectra for the one-pole SIDD potential (SIDD1) and the red dash-dotted lines show the mass spectra for the
two-pole SIDD potential (SIDD2). The results corresponding to the chiral potential are depicted by black solid curves.

in the same range. However, in the case of the chiral low-
energy potential the extracted width is smaller than those
by other models.

B. Trace of N∗ resonance in (K̄N)I=0 + K reaction

The calculated resonance energies presented in Fig. 3 give
only pole positions of the three-body KK̄N system. However,
we know that these results are not a quantity that can be
directly measured in any experiment. The calculated results in
Fig. 3 could be used as a guideline to study the (K̄N )I=0 + K
reaction. To examine the existence of the quasibound state
in the KK̄N system by experiments, one has to calculate
the cross sections of KK̄N production reactions. As noted in
Sec. I, the KK̄N quasibound state can be produced through
the proton-proton reaction and the trace of the resonances
would be seen in the mass spectrum of the final particles. In
the present calculations, I have been studying how well the
signature of the KK̄N system shows up in the observables of
the three-body reactions by using the one-channel Faddeev

equation in the AGS form. To achieve this goal, one must
solve the integral equations for the amplitudes defined in
Eq. (4), and then construct the scattering amplitudes defined
in Eq. (8).

The K̄N is coupled with the π� channel and the KK̄
system is coupled with ππ and πη channels. Therefore,
there are three decay channels for the KK̄N system, namely,
π� + K , ππ + N , and πη + N . In the present study, the first
and the third processes are considered for the (K̄N )I=0 + K
reaction. To remove the moving singularities in the kernel of
AGS equations, the so called “point method” was used. The
details of the point method are given in Refs. [53,54].

The transition probabilities for the (K̄N )I=0 + K → π�K
reaction are depicted in Fig. 4. To study the dependence of
the mass spectra on the K̄N interaction, the three-body calcu-
lations are performed for chiral based and phenomenological
potentials for the K̄N interaction. To investigate the energy de-
pendence of the transition probability, I calculated w1(P̄K ,W )
for P̄K = 100–400 MeV/c. The results suggest that the peak
structure in the energy region around the KK̄N pole position
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FIG. 5. The πηN mass spectra for the (K̄N )I=0 + K → πηN reaction. The explanations are same as in Fig. 4.

could be observed, regardless the momentum value and the
class of the K̄N-π� interaction. In the calculated mass spectra
for the K̄N potentials having a two-pole structure of the
�(1405) resonance, the second pole of �(1405) does not
manifest itself the π�K mass spectra. As one can see from
Fig. 4, for phenomenological models a second peak structure
can be seen below the KK̄N threshold. Its position depends
on the model of interaction and it originates from a branch
point in the complex plane [55–57], i.e., a threshold opening
associated with the �(1405) pole.

The results of the Faddeev calculations of the (K̄N )I=0 +
K → πηN reaction using different versions of K̄N-π� po-
tentials are shown in Fig. 5. Within this model, I have found
two bump structures appearing in the (K̄N )I=0 + K → πηN
transition probabilities in the energy region around the KK̄N
pole position and W = MK + M�(1405). Comparing the results
of the mass spectra with those presented in Fig. 4, one can
see that the peak structures corresponding to the quasi-bound
state in KK̄N system are more clear and the magnitudes of
the transition probabilities are 2–4 times bigger than those in
Fig. 4.

C. Trace of N∗ resonance in the (KK̄ )I=1 + N reaction

As noted in Sec. I, the extracted results in Refs. [13–15]
suggest that the KK̄N state can be understood by the structure
of simultaneous coexistence of �(1405) + K and a0(980) +
N clusters, and the K̄ meson is shared by both �(1405)
and a0(980) at the same time. In the previous subsection,
I supposed that the initial structure of the KK̄N system is
(K̄N )I=0 + K and the π�K and πηN mass spectra were
calculated for (K̄N )I=0 + K reaction. Now, I suppose that the
initial structure of the KK̄N system is (KK̄ )I=1 + N and I will
study the πηN mass spectra in the (KK̄ )I=1 + N reaction.
Supposing the (KK̄ )I=1 + N to be the initial channel of the
KK̄N system, the three-body Faddeev AGS equations can be
given by

KIK ,1
K,N = MIK ,1

K,N + MIK ,IN
K,N τ

IN
N KIN ,1

N,N + MIK ,IK̄

K,K̄
τ

IK̄

K̄
KIK̄ ,1

K̄,N
,

KIN ,1
N,N = MIN ,IK

N,K τ
IK
K KIK ,1

K,N + MIN ,IK̄

N,K̄
τ

IK̄

K̄
KIK̄ ,1

K̄,N
, (13)

KIK̄ ,1
K̄,N

= MIK̄ ,1
K̄,N

+ MIK̄ ,IK

K̄,K
τ

IK
K KIK ,1

K,N + MIK̄ ,IN

K̄,N
τ

IN
N KIN ,1

N,N ,
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FIG. 6. The πηN mass spectra for the (KK̄ )I=1 + N → πηN reaction. The explanations are same as in Fig. 4.

and, consequently, the scattering amplitude for the N +
(KK̄ )I=1 → πη + N reaction can be expressed as

T(πη)+N←(KK̄ )I=1+N (�kN , �pN , P̄N ;W )

= gI=1
πη (�kN ) τ I=1

N

(
W − p2

N

2νN

)
K1,1

N,N (pN , P̄N ;W ). (14)

Using Eqs. (13) and (14), I define the transition probability
of the N + (KK̄ )I=1 → πη + N reaction as follows:

w3(P̄N ,W ) =
∫

d3 pN

∫
d3kN δ(W − Q2(pN , kN ))

× ∣∣T(πη)+N←(KK̄ )I=1+N (�kN , �pN , P̄N ;W )
∣∣2

.

(15)

In Fig. 6, the πηN mass spectra for the (KK̄ )I=1 +
N → πηN reaction were calculated. The KK̄N , a0(980) +
N thresholds and also the expected energy region for the
quasibound state in the KK̄N system are shown using ver-
tical lines. As one can see, the mass spectra are affected
by two bump structures appearing in the (KK̄ )I=1 + N →
πηN transition probabilities in the energy region around the
KK̄N pole position and z = MN + Ma0(980), where the second

bump actually originates from a branch point in the complex
plane. Here, the peak corresponding to the quasibound state
in KK̄N is not pronounced in the πηN mass spectra as in the
(K̄N )I=0 + K → πηN reaction.

In Ref. [41], the possible observation of the N∗ was
discussed. They provided a series of arguments which sup-
port the idea that the peak seen in the γ p → K+� reac-
tion around 1920 MeV should correspond to the predicted
bound state of KK̄N with a mixture of f0(980) and a0(980)
components. It was said there that an ideal test of the na-
ture of the N∗ resonance is the study of the γ p → K−K+ p
reaction close to threshold. It was concluded that the big
asymmetry of the mass distribution with respect to phase
space close to Minv = 2mK is a consequence of the presence
of the f0(980) or a0(980) below threshold. Furthermore, it
was observed that the γ p → K−K+ p cross section is more
pronounced at lower energies which is a consequence of
the presence of the three-particle resonance below thresh-
old. In the present paper, it was also shown that one can
see the signal of the KK̄N quasibound state in the mass
spectrum of the final particles and also the mass spectra are
affected by branch points resulting from the resonances in
two-body subsystems.
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IV. CONCLUSION

In summary, the homogeneous Faddeev AGS equation for
the KK̄N system was solved and the pole position of the
KK̄N system for different types of K̄N-π� potentials was
calculated. The transition probabilities for the (K̄N )I=0 + K
reaction were extracted and the possible observation of N∗ in
the mass spectrum of the decay products was studied. Based
on the Faddeev approach, the π�K and πηN mass spectra for
different types of K̄N and KK̄ interactions were calculated.
Within this model a bump was found, produced by the KK̄N
system, appearing in the (K̄N )I=0 + K transition probabilities
in the energy region around the KK̄N pole position for mo-
mentum P̄K = 100–400 MeV/c. Furthermore, it was observed
that the shapes and positions of the peaks in the transition

probabilities are independent of the momentum P̄K of the
initial (K̄N )I=0 + K channel. It was shown that not only can
one see the signature of the KK̄N quasibound state, but also
one can see the effect of the branch points which are resulting
from �(1405), f0(980), and a0(980) poles. The bump struc-
tures related to the branch points can affect the peak corre-
sponding to the KK̄N quasibound state. Therefore, this reac-
tion would also be helpful to reveal the dynamical origin of
two-body resonances. The KK̄N system is mainly dominated
by �(1405) + K and a0(980) + N structures. Therefore, the
(KK̄ )I=1 + N → πηN reaction was also investigated and it
was observed that the πηN mass spectrum reveals the same
behavior as in the case of the (K̄N )I=0 + K reaction. However,
the magnitudes of the extracted mass spectra are considerably
smaller than those resulting from the (K̄N )I=0 + K reaction.
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