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Time-evolution of magnetic field in hot nuclear matter with fluctuating topological charge
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The time-evolution of the magnetic field in hot homogeneous nuclear matter has two qualitatively different
stages separated by the sphaleron transition time τc. At early times, when the chiral conductivity σχ is a slow
function of time, the soft chiral modes k < σχ of the magnetic field grow exponentially with time, which is
known as the chiral instability. At later times σχ fluctuates due to the sphaleron transitions and can be regarded
as a random process. It is argued that the average magnetic field is exponentially damped at later times. The
time-evolution of the average field energy is more complicated and depends on the electrical conductivity of
the chiral matter but does not depend on chirality. It exhibits instability only if the matter is a poor electrical
conductor, such as the quark-gluon plasma near the critical temperature. The precise conditions for the instability
and the growth rate of the unstable modes are derived.
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I. INTRODUCTION

The topological configurations of gluon fields form P and
T -odd domains in hot nuclear matter. Their topological charge
couples to the electromagnetic fields by way of the chiral
anomaly. Electrodynamics, modified in the presence of the
topological domains, exhibits a number of novel effects such
as the chiral magnetic effect [1,2] and the anomalous Hall
effect [3]. One of its features that attracted a considerable
interest is the emergence of the soft magnetic field modes
exponentially growing in time known as the chiral instability
[4–19]. These unstable modes transfer helicity from the chiral
medium, such as the quark-gluon plasma, to the magnetic field
in a process known as the inverse cascade [4,20].

The chiral instability can be most easily derived using
the effective Maxwell-Chern-Simons theory which adds to
the Maxwell Lagrangian a term that couples FF̃ directly
to the topological domains by means of the chiral anomaly
[21–23]. The dynamics of the electromagnetic field in the
spatially uniform chiral matter with electrical conductivity σ

can be described by the vector potential A which satisfies the
following equation in the radiation gauge

−∇2A = −∂2
t A − σ∂t A + σχ (t )∇ × A , (1)

where σχ is the chiral conductivity [2,24] sourced by the
topological gluon field configurations, see the Appendix for
more details. The ratio μ5 = σχ/cA, where cA is the anomaly
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coefficient, is also used throughout the paper.1 Seeking a so-
lution in the form A = akλ(t )ελeik·x, where ελ are the circular
polarization vectors of helicity λ = ±1 and using the identity
ik × ελ = kλελ one deduces that the amplitude akλ satisfies
the equation

äkλ + σ ȧkλ + k(k − λσχ )akλ = 0 . (2)

Assuming that the chiral conductivity is a slow function of
time and neglecting for the sake of brevity the electrical
conductivity, the magnetic field for each plane wave mode
reads, up to the pre-exponential factors,

B ∼ eik·x exp{∓it
√

k(k + λσχ )} . (3)

Clearly, when λσχ < 0 the magnetic field modes k < |λσχ |
are unstable [5]. This instability is manifestly chiral.

It is remarkable, that since Eq. (3) satisfies the modified
Maxwell equations, the exponential growth of the magnetic
field is not constrained by the energy conservation [17,29].
However, it is constrained by the conservation of the total he-
licity of the magnetic field and the chiral matter, which follows
from the chiral anomaly equation [26,27]. As the magnetic
field increases, the helicity flows from the chiral matter to the
field until the chiral conductivity vanishes [4,17,28,29]. As
argued in [29], this helicity transfer is an adiabatic process,
meaning that σχ is a slowly varying function of time.

Let us now examine the assumptions that led us from
a MCS equation (1) to the unstable solution (3). Dropping
the first assumption σ = 0 results in a more complicated
expression for the magnetic field. However, the finite value of
the electrical conductivity does not have any significant effect

1In models with fermions μ5 can be identified as the axial chemical
potential. However, its physical interpretation is not free of difficul-
ties, see [25] and references therein.
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upon the instability dynamics at constant (or slowly varying)
σχ [29]. The second and crucial assumption is the slow vari-
ation of the chiral conductivity. It holds while t < τc where
τc is the sphaleron transition time, i.e. the transition time
between the gauge field configurations of different topological
charge. By the time t = τc, the exponent in Eq. (3) reaches
its maximal value exp(σχτc). The estimates of the sphaleron
transition time τc ∼ 1/(g4T ) [30] and the chiral conductivity
σχ ∼ e2μ5 [2,24], at temperature T , indicate that σχτc � 1.2

The implication is that during the time interval t < τc when
the chiral conductivity (and the corresponding topological
charge density) may be regarded as slowly varying functions
of time, the magnetic field instability simply does not have
enough time to grow. Thus, in order to study the magnetic field
instability in the hot nuclear matter, one is required to examine
the opposite limit of t � τc, when many sphaleron transition
can occur causing fluctuations of the topological charge of the
chiral domains.

The main goal of this paper is to examine this limit
by regarding the chiral conductivity as a stochastic process
with vanishing expectation value 〈σχ 〉 = 0. I assume that
its dispersion �χ =

√
〈σ 2

χ 〉 equals cAμ5 and the autocorrela-
tion function 〈σχ (t )σχ (t − τ )〉 has support at t < τc, mean-
ing that the sphaleron transition time τc is the correlation
time. Equation (2) then describes the harmonic oscillator
with a random frequency. Using the Van Kampen’s theory
[33] one can deduce from Eq. (2) the ordinary differential
equations for the average values of the field amplitude 〈akλ〉
and its second moments 〈(akλ)2〉, 〈(ȧkλ)2〉. The main result
of this theory is that the average value of the magnetic field
decays exponentially with time. The average value of the mag-
netic field energy also decays if the plasma is a good electric
conductor, which occurs at high temperatures. However, at
temperatures close to the critical temperature the plasma is
a poor conductor and the average energy is unstable.

An important feature of the chiral instability is its re-
markable universality in many chiral systems. The univer-
sality emerges in the adiabatic limit, when the details of
the topological charge distribution are irrelevant, so that, for
example, electromagnetic plasma with chirality imbalance
and the quark-gluon plasma with a topological gluon field
configuration have similar chiral instability, described by one
parameter—the chiral conductivity, see [4–19] and references
therein. This paper extends analysis of the chiral instability to
systems whose topological charge fluctuations are stochastic
in the long time limit. This approach is adequate for hot
nuclear matter since the topological charge is determined
mostly by the strong interactions, but may not universally hold
in other chiral systems.

The paper is structured as follows. In Sec. II B the Van
Kampen theory is reviewed and employed to reduce the
stochastic equation (2) to the ordinary differential equations

2This holds true since e2/g4 � 1 at any reasonable temperature and
μ5 is expected to be of the order of T or smaller. A more accurate
estimate for the sphaleron transition time is τc ∼ 1/(g4T ) ln g−1

[31,32].

for the averages of the amplitude and its second moment.
The solutions to these equations are used in Secs. III and IV
to analyze the time evolution of the average magnetic field,
electromagnetic energy and magnetic helicity with time. The
Summary and Discussion is presented in Sec. V.

II. EVOLUTION EQUATIONS FOR THE
AMPLITUDE MOMENTS

To study the late time behavior of the magnetic field, one
can regard the chiral conductivity σχ (t ) as a random process
and hence Eq. (2) becomes a stochastic equation describing
time-evolution of the field amplitude with momentum k and
polarization λ. Equation (2) does not have an analytical so-
lution. However, one can deduce from it ordinary differential
equations for the expectation value of the amplitude moments
using the Van Kampen theory [33]. This section represents
a brief summary of the relevant results. For the reasons ex-
plained below, the underdamped and the overdamped modes
with k � σ/2 and k � σ/2, respectively, are considered sep-
arately from the critically damped ones with k ≈ σ/2.

A. Underdamped and overdamped modes

To begin with, I define, for a given k and λ, a new variable
x = akλeσ t/2 which satisfies the equation

ẍ(t ) + ω2[1 + αξ (t )]x(t ) = 0 , (4)

where

ω2 = k2 − σ 2

4
, α = −λk

ω2
�χ , ξ = σχ

�χ

,

�χ =
√〈

σ 2
χ

〉
. (5)

The random process ξ (t ) is such that 〈ξ 〉 = 0. The correlation
time of ξ is τc, meaning that the autocorrelation function
〈ξ (t )ξ (t − τ )〉 vanishes at τ > τc. For the modes with ω �= 0
it is convenient to introduce the dimensionless time variable
t ′ = ωt .

Equation (4) can be cast in the matrix form

du(t ′)
dt ′ = [A0 + αξ (t ′)B]u(t ′) , (6)

where u = (x, x′)T with x′ = dx/dt ′ and

A0 =
(

0 1
−1 0

)
, B =

(
0 0

−1 0

)
. (7)

The main result of [33] is that given Eq. (6) with arbitrary
u, A0, and B, at late times t � τc the expectation value of u
satisfies the equation

d〈u(t ′)〉
dt ′ =

{
A0 + α2

∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉BeA0τ

′
Be−A0τ

′
dτ ′

}

× 〈u(t ′)〉 , (8)

provided that

|αω|τc � 1 , (9)
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which allows treating the fluctuating term in Eq. (4) as a
perturbation. In view of ω-dependence of α in Eq. (5), the con-
dition (9) excludes modes with small ω’s. Namely, expanding
k = σ/2 + δk one obtains that Eq. (9) is satisfied if

|δk| � σ

4
(�χτc)2 . (10)

Since �χτc ∼ e2μ5/g4T � 1, Eq. (9) holds for all k’s except
in the narrow interval around k = σ/2. The modes with
δk � σ (�χτc/2)2 will be referred to as the critically dumped
modes, while those satisfying Eq. (10) with δk > 0 and δk <

0 as underdamped and overdamped modes, respectively.
Equation (8) can now be applied to the underdamped and

overdamped modes. Computing with the help of Eq. (7)

BeA0τ
′
Be−A0τ

′ =
(

0 0
sin τ ′ cos τ ′ − sin2 τ ′

)
, (11)

substituting into Eq. (8) and converting the result into the
second order differential equation for 〈x〉 yields

d2〈x〉
dt ′2 + 1

2
α2c2

d〈x〉
dt ′ +

(
1 − 1

2
α2c1

)
〈x〉 = 0 , (12)

where

c1 =
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉 sin(2τ ′)dτ ′ , (13a)

c2 =
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉[1 − cos(2τ ′)]dτ ′ . (13b)

The evolution equations for the second moments of x
can be obtained by applying Eqs. (6),(8) to the vector u =
(x, x′2, xx′)T . The corresponding matrices are

A0 =
⎛
⎝ 0 0 2

0 0 −2
−1 1 0

⎞
⎠, B =

⎛
⎝ 0 0 0

0 0 −2
−1 0 0

⎞
⎠ (14)

which produces

BeA0τ
′
Be−A0τ

′ =
⎛
⎝ 0 0 0

2 cos2 τ ′ −2 sin2 τ ′ 0
sin 2τ ′ 0 −2 sin2 τ ′

⎞
⎠ .

(15)

Equation (8) now reads

d

dt ′

⎛
⎝ 〈x2〉

〈x′2〉
〈xx′〉

⎞
⎠ =

⎛
⎝ 0 0 2

α2c3 −α2c2 −2
−1 + α2c1 1 −α2c2

⎞
⎠

⎛
⎝ 〈x2〉

〈x′2〉
〈xx′〉

⎞
⎠,

(16)

where

c3 =
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉(1 + cos(2τ ′))dτ ′ . (17)

B. Critically damped modes

In general, the Van Kampen theory cannot be applied to
all critically damped modes because ω2 is not negligible as
compared to the fluctuating term λk�χξ in Eq. (4). The

exception is the mode with momentum k = σ/2 in which case
case ω = 0 and Eq. (4) takes form

ẍ(t ) + β2ξ (t )x(t ) = 0 , (18)

where ξ is defined as in Eq. (5) and

β2 = −�χλk = − 1
2�χλσ . (19)

Passing to the dimensionless time variable t ′ = βt , one can
write Eq. (18) in the form (6) with α = 1 and

A0 =
(

0 1
0 0

)
, B =

(
0 0

−1 0

)
, (20)

which implies

BeA0τ
′
Be−A0τ

′ =
(

0 0
τ ′ −τ ′2

)
. (21)

The fluctuating term is a small perturbation of the initial
condition if |β|τc � 1. In this case, at t � τc the expectation
value of u = (x, x′)T obeys Eq. (8) with α = 1. Thus, Eq. (12)
with α = 1 and t ′ = βt can be used to describe the time
evolution of ω = 0 mode. The corresponding c coefficients
read

c1 = 2
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉τ ′dτ ′ , (22a)

c2 = 2
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉τ ′2dτ ′ . (22b)

Similarly, u = (x2, x′2, xx′)T obeys Eq. (6) with

A0 =
⎛
⎝0 0 2

0 0 0
0 1 0

⎞
⎠, B =

⎛
⎝ 0 0 0

0 0 −2
−1 0 0

⎞
⎠, (23)

and

BeA0τ
′
Be−A0τ

′ = 2

⎛
⎝0 0 0

1 −τ ′2 0
τ ′ 0 −2τ ′2

⎞
⎠ . (24)

The corresponding equations for the second moments has the
same form as Eq. (16) with α = 1, and c coefficients given by
Eqs. (22a),(22b), and

c3 = 2
∫ ∞

0
〈ξ (t ′)ξ (t ′ − τ ′)〉(1 − τ ′2)dτ ′ . (25)

C. Coefficients c1, c2, c3

It is useful for future reference to estimate the coefficients
c1, c2, c3 appearing in the evolution equations in the previous
subsections. Their ω-dependence is qualitatively different for
good and poor electric conductors. The hot nuclear matter is
a good electric conductor at high temperatures. Its electrical
conductivity is of the order σ ∼ T/e2.3 However, at tempera-
tures above but close to the critical temperature the hot nuclear
matter is a poor conductor with the electrical conductivity
σ ∼ e2T [35–38].

3More precisely σ = 13 T/e2 ln e−1 [34].
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1. Well conducting chiral matter

(a) Consider the underdamped and overdamped modes
satisfying Eq. (10), which excludes modes in a vicin-
ity of k = σ/2. In both cases |ω|τc >

√
σδkτc �

σ�χτ 2
c ∼ μ5/g8T � 1 for the electrical conductivity

σ ∼ T/e2. Since the autocorrelation function equals
one at τ � τc and vanishes at τ > τc one can estimate
Eqs. (13), (17) as

c1 = ω

∫ ∞

0
〈ξ (t )ξ (t − τ )〉 sin(2ωτ )dτ ∼ ω

∫ 1/2ω

0
2ωτdτ = 1

4
, (26a)

c2 = 2ω

∫ ∞

0
〈ξ (t )ξ (t − τ )〉 sin2(ωτ )dτ ∼ ω

∫ τc

0
dτ = ωτc , (26b)

c3 = 2ω

∫ ∞

0
〈ξ (t )ξ (t − τ )〉 cos2(ωτ )dτ = c2 + O(1/ωτc) . (26c)

This implies that c2 ≈ c3 � c1.
The coefficient c2 may become negative if the spec-

trum of ξ contains a mode oscillating with frequency
2ω. Indeed the contribution of such mode to c2 can be
estimated as

c2 ∝ ω

∫ ∞

0
〈ξ (t )ξ (t − τ )〉[1 − cos(2ωτ )] cos(2ωτ )dτ

∼ −ω

2

∫ τc

0
dτ = −ωτc . (27)

This causes the parametric resonance, i.e. the exponen-
tial growth of 〈x〉 with time, see Eq. (32) below.

As a specific example, consider the Ornstein-
Uhlenbeck random process with the autocorrelation
function

〈ξ (t )ξ (t − τ )〉 = e−τ/τc . (28)

The corresponding coefficients read

c1 = 2(ωτc)2

1 + 4(ωτc)2
, c2 = 4(ωτc)3

1 + 4(ωτc)2
,

c3 = [2 + 4(ωτc)2](ωτc)

1 + 4(ωτc)2
. (29)

Multiplying Eq. (28) by cos(2ωτ ) one can check that
c1 → 1/8, c2 → −ωτc/2, and c3 → ωτc/2 at ωτc �
1. In the next subsection it is shown that at small |ω|τc,
the coefficient c2 is always positive and so there is no
parametric resonance.

(b) The Van Kampen theory fails to describe the critically
damped modes of the well-conducting plasma because
|β|τc ∼ √

μ5/T /g4 � 1 (unless μ5 is very small).

2. Poorly conducting chiral matter

(a) The parameter ωτc of the underdamped modes k �
σ/2 of a poorly conducting plasma can be estimated
as ωτc ∼ k/g4T . The coefficients of the modes with
k � g4T are given by Eq. (26), while the ones with
k � g4T are estimated from Eqs. (13) and (17) as

c1 ∼ (ωτc)2, c2 ∼ (ωτc)3, c3 ∼ ωτc . (30)

Estimates 30 apply also to the overdamped modes
k � σ/2 because |ω|τc < στc/2 ∼ e2/g4 � 1. Inci-

dentally, this implies that the coefficients 30 are
strongly ordered as c2 � c1 � c3 � 1.

(b) The c coefficients for the critically damped mode k =
σ/2 can be estimated using Eqs. (13), (17) with the
result similar to Eq. 30:

c1 ∼ (βτc)2 , c2 ∼ (βτc)3, c3 ∼ βτc . (31)

In contrast to the well conducting matter, the Van
Kampen theory is valid in this case since |β|τc ∼
(e2/g4)

√
μ5/T � 1.

III. TIME-EVOLUTION OF AVERAGE MAGNETIC FIELD

In this and the following sections the results of the previous
section are employed to analyze the late-time behavior of the
average magnetic field and average field energy.

The general solution of Eq. (12) is a linear combination of
the functions

〈x(t )〉± = exp

{
±iωt − α2

4
(c2 ± ic1)ωt

}
, (32)

where only terms of the order α2 are retained. The correspond-
ing magnetic field amplitudes are

〈akλ(t )〉± = exp

{
±iωt − α2

4
(c2 ± ic1)ωt − 1

2
σ t

}
. (33)

A. The underdamped modes k > σ/2

The condition for the instability of the underdamped modes

−α2

4
c2ω − σ

2
> 0 (34)

can be satisfied only for the parametric resonance modes with
c2 < 0. Using the definition of α from Eq. (5) this yields

k2�2
χ |c2| > 2ω3σ. (35)

As mentioned below Eq. (29), the parametric resonance oc-
curs in good conductors at ωτc � 1. Using the estimate (27)
in Eq. (35) and noting that the best chance to satisfy it is
at smaller ω, expand it near k = σ/2 to obtain δk < �2

χτc.
On the other hand, ω � 1/τc implies that δk � 1/στ 2

c . The
two conditions contradict each other since �2

χστ 3
c < 1. Thus,

there are no unstable underdamped modes of the average
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magnetic field. Even the parametric resonance mode in a
well-conducting chiral matter is rapidly diffused due to the
large electric conductivity.

B. The overdamped modes k < σ/2

The amplitude of the overdamped modes can be written
down as a linear combination of the functions

〈akλ(t )〉± = exp

{
∓|ω|t − ik2�2

χ

4ω4
(c2 ± ic1)|ω|t − 1

2
σ t

}
.

(36)

The second term in the exponent is a small correction to the
first one. Clearly, 〈akλ(t )〉+ is stable. In 〈akλ(t )〉− the first
and the third terms in the exponent cancel out at k � σ/2.
Expanding to the second order in k/σ yields

〈akλ(t )〉− = exp

{
−k2t

σ
− k2�2

χσ t (ic2 + c1)

8ω4

}
. (37)

Thus, the overdamped modes are stable at any conductivity.

C. The critically damped mode k = σ/2

It remains to examine the critically damped mode ω = 0.
As noted below Eqs. (29) and 31 only poor conductors can be
consistently considered in the present framework. As shown in
Sec. II B, the average amplitude can be obtained from Eq. (33)
by replacing ω → β and α → 1:

〈akλ(t )〉± = exp
{ ± iβt − 1

4 (c2 ± ic1)βt − 1
2σ t

}
. (38)

The amplitude (38) of the critically damped mode exponen-
tially decays at late time because c2 > 0 as indicated by
Eq. 31.

D. Conclusion

It follows from the analysis in this section that all magnetic
field modes are stable at long times t � τc. This of course also
includes the modes with k < σχ/2 that exhibit exponential
growth at early times.

IV. TIME-EVOLUTION OF MAGNETIC FIELD
ENERGY AND HELICITY

Having examined the time-evolution of the magnetic field
which is determined by the first moment of the amplitudes, we
turn to the evolution of the electromagnetic energy and mag-
netic helicity which is determined by the second moments.
The electromagnetic field energy and magnetic helicity read

E = 1

2

∫
(E2 + B2)d3x =

∑
k,λ

Ekλ =
∑
k,λ

1

2k

(
ȧ2

kλ + a2
kλk2

)
,

(39)

H =
∫

A · Bd3x =
∑
k,λ

Hkλ =
∑
k,λ

λa2
kλ , (40)

where each mode with given k and λ is normalized to one
particle in a unit volume and the amplitudes akλ are real.

The corresponding expressions for the expectation values of
energy and helicity of each mode can be express in terms of
the moments of the variable x as

〈Ekλ〉 = 1

2k
e−σ t

[
〈x2〉

(
k2 + 1

4
σ 2

)
− 〈ẋx〉σ + 〈ẋ2〉

]
, (41)

〈Hkλ〉 = λe−σ t 〈x2〉 . (42)

The time evolution of the second moments of x is given by
Eq. (16). The eigenvalues of the matrix in Eq. (16) to the order
α2 are

ν0 = 1

2
α2(c3 − c2) , (43a)

ν± = ±2i
(

1 − α2 c1

4

)
− 1

4
α2(c3 + 3c2) . (43b)

Transforming Eq. (16) to the diagonal form and integrating
one finds

ω2〈x2〉 + 〈ẋ2〉 = u0eν0ωt , (44a)

ω2〈x2〉 − 〈ẋ2〉 + 2iω〈xẋ〉 = 2u−eν−ωt , (44b)

−ω2
〈
x2

〉 + 〈
ẋ2

〉 + 2iω〈xẋ〉 = 2u+eν+ωt , (44c)

where u0, u± are constants. Since ν+ = ν∗
− the second mo-

ments and hence the amplitudes are real if u+ = −u∗
−. The

solution thus reads

〈x2〉 = 1

2
[u0eν0ωt − u+(eν−ωt + eν+ωt )] , (45a)

〈ẋ2〉 = ω2

2
[u0eν0ωt + u+(eν−ωt + eν+ωt )] , (45b)

〈xẋ〉 = ωu+
2i

(eν+ωt − eν−ωt ) . (45c)

When plugged into Eqs. (41),(42) it yields the time-
evolution of the average energy and magnetic helicity. I turn
now to the analysis of the instabilities. Note, that the instabil-
ities of Eq. (45) are different from those of Eq. (33).

A. The underdamped modes k > σ/2

Consider the well conducting chiral matter. Examination of
Eqs. (45) and (41) reveals that the only underdamped (ω2 >

0) nonresonant (c2 > 0) modes that are potentially unstable
are those that satisfy ν0ω > σ , i.e. ωα2(c3 − c2) > 2σ . For
a good conductor Eq. (26c) implies that c3 − c2 ∼ 1/ωτc, so
that this condition can be rewritten as k2�2

χ/ω4τcσ > 1. At
small ω one can expand k near σ/2 to obtain δk2 < �2

χ/στc.
This condition, however, contradicts Eq. (10) indicating that
no underdamped nonresonant mode of a good conductor is
divergent.

At the parametric resonance (c2 < 0), the instability can
arise when either ν0ω > σ or Re ν±ω > σ . In the former
case, using c3 − c2 ∼ ωτc and repeating the arguments of
the previous paragraph yields δk < �2

χτc which contradicts
ω � 1/τc as was argued beneath Eq. (35). It actually also
contradicts Eq. (10). In the later case, using c3 + 3c2 ∼ −ωτc

again implies the contradictory condition δk < �2
χτc.

Thus, the underdamped modes of a well conducting chiral
matter are stable. The dissipation beats the growth.
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FIG. 1. The minimum values of b = �χ/σ at given a = στc at
which the average energy of magnetic field is unstable in a poorly
conducting chiral matter.

Turning to the poorly conducting chiral matter we distin-
guish two cases. (i) If ωτc � 1, then c3 − c2 ∼ 1/ωτc and
ν0ω > σ implies δk2 < �2

χ/στc that contradicts Eq. (10). (ii)
If ωτc � 1, then according to Eq. 30 c3 − c2 ∼ ωτc and δk <

�2
χτc. The consistency with Eq. (10) requires that στc < 1

which is allowed for a poor conductor since στc ∼ e2/g4 � 1.
Thus we conclude that these modes are unstable, provided that
the electrical conductivity is sufficiently small σ < 1/τc ∼
T g4.

The unstable modes of average energy read

〈Ekλ〉 = k

2
u0eν0kt−σ t = k

2
u0 exp

{
�2

χ

2k
(c3 − c2)t − σ t

}
. (46)

To make a more quantitative estimate it is useful to employ
the model (29). Equation (46) reads

〈Ekλ〉 = k

2
u0 exp

{
�2

χ

2k

2ωτc

1 + 4ω2τ 2
c

t − σ t

}
. (47)

Denote y = 2ωτc, a = στc, and b = �χ/σ . With this nota-
tions one can write Eq. (47) as

〈Ekλ〉 = k

2
u0e f (y)σ t , f (y) = b2y√

y2/a2+1(1+y2)
− 1 . (48)

The expression in the exponent has a maximum

f (y0) = 4
√

2ab2

[4 + a(−a + √
8 + a2)]

√
2 + a(a + √

8 + a2)
− 1

(49)

at y0 = 1
2

√
−a2 + a

√
8 + a2. The instability develops only if

f (y0) > 0 which gives the minimal value of b as a function
of a

bmin = a−1/2
(
1 + y2

0

)1/2(
1 + a2 + 2y2

0

)1/4
(50)

shown in Fig. 1. f (y0) monotonically increases with a reach-
ing b2/2 − 1 at a → ∞. Thus, at large a the condition for
instability is b2 > 2.

For example, consider the quark-gluon plasma produced
in heavy-ion collisions. It has the electrical conductivity σ ≈
5 MeV, and the correlation time τc ≈ 5 fm so that a = 0.12.
From f (y0) = 0 in Eq. (49) one can find that the correspond-
ing bmin = 3.1. Thus, the instability in the magnetic field
energy occurs if the chiral conductivity dispersion is at least
of the order of �χ = 15 MeV.

Plugging Eq. (45) into Eq. (42) one finds that the average
magnetic helicity of each mode has the same instability as the
average energy

〈Hkλ〉 = λu0

2
eν0kt−σ t . (51)

However, since ν0 is proportional to α2 and hence helicity in-
dependent, the total average magnetic helicity of the magnetic
field (40) vanishes identically

〈H〉 = 0 . (52)

To be sure, this equation does not preclude the magnetic
helicity fluctuations. It only indicates that the contributions
of the opposite helicity states to the magnetic helicity are on
average of equal magnitude and have opposite sign.

B. The overdamped modes k < σ/2

In the overdamped case ω2 < 0, a possible instability may
comes about if Re(ν−ω) > σ . However, expanding at k �
σ/2 one finds ν−ω − σ = −α2c1σ/4 − 2k2/σ plus imagi-
nary terms. Thus, the overdamped modes are stable.

C. The critically damped mode k = σ/2

Finally, consider the critically damped mode. As explained
in Sec. II B the corresponding equations can be obtained from
Eqs. (43) and (45) be taking ω → β and α → 1. In this case
ν0|β| − σ ∼ |β|2τc − σ ∼ (�χτc − 1)σ , where Eqs. 30 and
(19) were used. However, �χτc � 1. Thus, the critical mode
is stable.

D. Conclusion

It has been argued in this section that the average field
energy becomes unstable and grows exponentially if the chiral
matter has small enough electrical conductivity σ < g4T and
large dispersion of the chiral conductivity �χ � σ . The more
precise expression is given by Eq. (50). The average magnetic
helicity vanishes.

V. SUMMARY AND DISCUSSION

This paper addresses the time-evolution of the magnetic
field in hot nuclear matter at times much longer than the
sphaleron transition time τc. In this limit the chiral conduc-
tivity σχ is treated as the random process. By expanding the
electromagnetic field in the basis of the circularly polarized
waves it is shown that the field amplitudes obey the stochas-
tic harmonic oscillator equation. The relevant observable
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quantities are statistical averages such as the average magnetic
field and average magnetic field energy.

Using the method of [33] the equations for the time-
evolution of the average amplitude and its second moments
were derived and solved. The solutions indicate that the aver-
age magnetic field is exponentially damped, see Eq. (12). The
time-evolution of the average field energy is more complicated
and depends on the electrical conductivity of the chiral matter.
At high temperatures when the quark-gluon plasma is ex-
pected to be highly conductive, the dissipation effects prevent
the development of instabilities. However, at temperatures
higher but comparable to the critical temperature, the quark-
gluon plasma is known to be a poor electric conductor. It is
argued that if the electrical conductivity satisfies σ < g4T , the
average field energy is unstable, provided that the dispersion
of the chiral conductivity fulfills the condition �χ � σ . The
corresponding unstable modes are k > σ/2. A more accurate
condition is derived in Sec. IV A.

The magnetic helicity of the right and left-handed modes
also increases exponentially. However, the total magnetic he-
licity vanishes identically. This implies that the conservation
of the total helicity cannot tame the chiral instability at later
times as it does at early times [4,17,28,29]. Combined with
the fact that the growth rate of the average field energy is
independent of λ indicates that this instability is not chiral.

These results are in a striking contrast with the constant
σχ approximation which is valid at early times t � τc when
the sphaleron transitions can be neglected. In that case, the
magnetic field itself is unstable and the unstable modes are
soft k < σχ . Moreover, the instability is chiral as it occurs for
only one of the helicity modes at a time depending on the sign
of σχ .
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APPENDIX: ELECTRODYNAMICS IN HOT NUCLEAR
MATTER WITH CP-ODD DOMAINS

The CP-odd domains in the chiral matter can be described
by a pseudoscalar field θ whose interactions with the elec-
tromagnetic Fμν and color Ga

μν fields are governed by the
Lagrangian [21–23]

L = LQED + LQCD − cA

4
θFμν F̃μν − c′

A

4
θGa

μνG̃aμν

+ f 2

[
1

2
(∂μθ )2 − 1

2
m2

axθ
2

]
, (A1)

where F̃μν = 1
2εμνλρFλρ is the dual field tensor, cA, c′

A are the
QED and QCD anomaly coefficients respectively and f , max

are constants with mass dimension one. The corresponding
equation of motion of the θ -field is

(
∂2 + m2

ax

)
θ = − 1

4 f 2

(
c′

AGa
μνG̃aμν + cAFμν F̃μν

)
. (A2)

In the hot nuclear matter the electromagnetic contribution to
the topological charge density is presumed to be negligible
so that the θ -field dynamics is driven primarily by the topo-
logically non-trivial gluon configurations. The equations of
motion of electromagnetic field read

∂μFμν = jν − cAF̃μν∂μθ , (A3)

∂μF̃μν = 0 . (A4)

In the radiation gauge they yield Eq. (1) where the first
derivatives ∂μθ of the slowly varying field θ are replaced by
their constant domain–average values, in particular σχ = cAθ̇

[39].
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