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Background: The near-equilibrium properties of a QCD plasma can be encoded into transport coefficients such
as bulk and shear viscosity. In QCD, the ratio of these transport coefficients to entropy density, ζ/s and η/s,
depends nontrivially on the plasma’s temperature. This is unlike in conformal systems where they take constant
values such as η/s = 1/(4π ).
Purpose: In this work, we show that in a (0 + 1)D boost-invariant fluid with no transverse expansion, a
temperature-dependent ζ/s(T ) or η/s(T ) can be described by an equivalent effective viscosity 〈ζ/s〉eff or 〈η/s〉eff.
This effective viscosity combines the actual temperature-dependent ζ/s(T ) or η/s(T ) with the temperature
profile of the fluid. We extend the concept of effective viscosity in systems with transverse expansion and discuss
how effective viscosities can be used to identify families of ζ/s(T ) and η/s(T ) that lead to similar hydrodynamic
evolution.
Methods: The Navier-Stokes relativistic hydrodynamic equations are used to provide a first definition of
effective viscosity, in (0 + 1)D and (1 + 1)D. In the (0 + 1)D case, the analysis is extended to Israel-Stewart-
type second-order hydrodynamics to clarify the effect of higher-order hydrodynamics corrections on the effective
viscosity.
Results: In a boost-invariant fluid with no transverse expansion [(0 + 1)D], the effective viscosity is expressed
as a simple integral of ζ/s(T ) or η/s(T ) over temperature, with a weight determined by the speed of sound
of the fluid. The result is general for any equation of state with a moderate temperature dependence of the
speed of sound, including the QCD equation of state. This definition of effective viscosity can be used to
identify infinite families of ζ/s(T ) or η/s(T ) that produce essentially indistinguishable temperature profiles.
In a boost-invariant cylindrical system [(1 + 1)D], a similar definition of effective viscosity is obtained in terms
of characteristic trajectories in time and transverse direction. This leads to an infinite number of constraints on
an infinite functional space for ζ/s(T ) and η/s(T ). Realistic examples are presented by using a finite number of
constraints on a finite functional space.
Conclusions: The definition of effective viscosity in a (0 + 1)D system clarifies how infinite families of ζ/s(T )
and η/s(T ) can result in nearly identical hydrodynamic temperature profiles. By extending the study to a
boost-invariant cylindrical [(1 + 1)D] fluid, we identify an approximate but more general definition of effective
viscosity that highlights the potential and limits of the concept of effective viscosity in fluids with limited
symmetries.

DOI: 10.1103/PhysRevC.102.014903

I. INTRODUCTION

An important objective of the heavy-ion program at the
Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC) is to study the many-body (near-equilibrium)
properties of quantum chromodynamics (QCD).1 It is gen-
erally agreed that the shear viscosity to entropy density ra-
tio of QCD is of order η/s ≈ 0.1 in the temperature range
T ≈ 150–500 MeV probed in heavy-ion collisions. More
precise phenomenological constraints on the temperature de-
pendence of η/s are still under investigations (see, for ex-
ample, Ref. [2]). The same is true for the bulk viscosity of
QCD, which is being investigated in parallel. Advances are

1See Ref. [1] for a recent overview of the goals and open questions
of heavy-ion physics.

also being made from the theoretical side with a variety of
approaches (see Refs. [3–9] for example).

Measurements from heavy-ion collisions provide indirect
phenomenological constraints on the viscosities of QCD.
The link between experimental data and the viscosities is
a multistage model [10,11] which describes the different
successive phases of a heavy-ion collision until only colorless
particles with negligible interactions remain. The core of this
multistage model is viscous relativistic hydrodynamics, which
is used to describe the space-time evolution of the deconfined
QCD plasma. This hydrodynamic description of heavy-ion
collisions is restricted to space-time regions of high energy
density which achieve near local equilibrium; other models
are used in other regions of the collisions. The viscosity of
QCD affects the space-time expansion of the plasma, which
is later reflected in the momentum distribution of the final
colorless particles. The multistage model’s prediction for the
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momentum distribution of colorless particles is then compared
with experimental measurements, providing constraints on the
transport coefficients of QCD.

The ratios of QCD’s shear and bulk viscosities to en-
tropy density, η/s and ζ/s, are unquestionably temperature
dependent. How significant this temperature dependence is,
in the range of temperatures probed in heavy-ion collisions, is
still under investigation. At least for shear viscosity, it is still
common to assume the temperature dependence to be modest;
sufficiently modest to be well approximated by a constant
“effective” shear viscosity 〈η/s〉eff. This effective viscosity is
understood to be some average of the temperature-dependent
η/s(T ) over the temperature profile of the plasma.

Providing a general definition of this effective viscosity
is challenging. In this work, we use systems with strong
symmetries as an introductory approach to the concept of
effective viscosity. We begin with the so-called Bjorken
symmetries [12], a (0 + 1)D boost-invariant fluid with no
transverse dynamics. We follow with a (1 + 1)D boost-
invariant system with cylindrically symmetric transverse ex-
pansion. Boost-invariance holds to a good approximation in
the midrapidity region of heavy-ion collisions. Cylindrically
symmetric transverse expansion may be a reasonable ap-
proximation for head-on heavy-ion collisions. Neither will
apply directly to typical heavy-ion collisions, yet they can
capture many features of these collisions and provide useful
guidance.

We begin with (0 + 1)D Bjorken first-order (Navier-
Stokes) relativistic hydrodynamics and discuss the role of the
equation of state (Sec. II), before moving on to (0 + 1)D
Bjorken second-order (Israel-Stewart-type) relativistic hydro-
dynamics in Sec. III.2 We then explore (1 + 1)D Navier-
Stokes hydrodynamics in Sec. IV. Implications of this work
for the study of heavy-ion collisions are briefly discussed in
Sec. V.

II. (0 + 1)D (BOOST-INVARIANT) FLUID IN FIRST-ORDER
(NAVIER-STOKES) RELATIVISTIC HYDRODYNAMICS

We use τ -x-y-ηs, coordinates, with τ = (t2 − z2)1/2

and tanh ηs = z/t , and use the metric convention gμν =
diag(1,−1,−1,−1).

In a system with Bjorken symmetries, the flow velocity
is uμ = (uτ , ux, uy, uηs ) = (1, 0, 0, 0) and the sole hydrody-
namic equation3 is that for energy density ε(τ ):

∂τ ε = − (ε + P)

τ

[
1 − 4

3τT

η

s
− 1

τT

ζ

s

]
, (1)

2All figures in Secs. II and III can be reproduced with codes
available online [13], which solve numerically the (0 + 1)D hydro-
dynamic equations. Only minimal modifications are necessary to
make similar figures with different choices of ζ/s(T ), η/s(T ), τ0,
T0, …

3A summary of the relativistic Navier-Stokes equations can be
found, for example, in Ref. [14, Sec. 3.4].

with η and ζ being the shear and bulk viscosities, s the entropy
density, P the pressure, T the temperature, and τ the timelike
coordinate defined above.

For what follows, it is more convenient to write the hydro-
dynamic equation in terms of T , the temperature:4

∂τ ln T (τ ) = −c2
s (T )

τ

[
1 − V (T )

τT

]
, (2)

with cs being the speed of sound, and where we defined the
combined viscosity V (T ) as

V (T ) ≡
(

4

3

η

s
(T ) + ζ

s
(T )

)
. (3)

In this one-dimensional system with Bjorken symmetries,
both shear and bulk viscosities respond to the same space-time
gradient 1/τ , making them indistinguishable in the Navier-
Stokes limit. This statement is of course independent of the
nature (equation of state) of the system.

The solution to Eq. (2) can be written as

ln

(
T (τ )

T (τ0)

)
= −

∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′

+
∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′
V (T (τ ′))
τ ′T (τ ′)

. (4)

where T (τ ) is the temperature at time τ . The initial conditions
are provided by specifying the temperature T (τ0) of the
system at time τ0.

To fix ideas, we begin by discussing the simpler case of a
constant speed of sound (e.g., a conformal equation of state).
The case of QCD is discussed next.

A. Constant speed of sound

We can see that viscosity affects the right-hand side of
Eq. (4) in two ways. Since viscosity modifies the tempera-
ture profile T (τ ), the temperature dependence of the speed
of sound is probed differently in

∫
dτ ′c2

s (T (τ ′))/τ ′ than in∫
dτ ′c2

s (TI (τ ′))/τ ′, with T and TI being the viscous and ideal
temperature profile, respectively. The effect of viscosity on
this term depends directly on how much the system’s speed
of sound varies as a function of temperature. In the case of a
constant speed of sound, this first term has no dependence on
viscosity.

In the second term, an effective viscosity Veff can be defined
exactly through the mean value theorem:∫ τ

τ0

dτ ′ c
2
s

τ ′
V (T (τ ′))
τ ′T (τ ′)

= Veff

∫ τ

τ0

dτ ′ c
2
s

τ ′
1

τ ′T (τ ′)
, (5)

with Veff = V (T (τ ∗)) and τ0 � τ ∗ � τ . Recall the definition
of the combined viscosity V (T ) in Eq. (3). If the (viscous)
temperature profile T (τ ) is known, from a numerical solution
for example, the exact value of the effective viscosity Veff can

4We assume that there is no other conserved quantities; in particu-
lar, we assume baryon chemical potential μB = 0.
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FIG. 1. Speed of sound squared as a function of temperature,
used in this work. It is based on a recent lattice calculation of the
equation of state of QCD [15], matched at low temperature to a
hadron resonance gas.

be calculated:

Veff =
∫ τ

τ0

dτ ′
τ ′

V (T (τ ′))
τ ′T (τ ′ )∫ τ

τ0

dτ ′
τ ′

1
τ ′T (τ ′ )

. (6)

Because of the symmetries of the system, there is a one-
to-one mapping between the time τ and the temperature T .
This mapping does not provide by itself a simpler expression
for Veff. To simplify Eq. (6), we use the fact that the effect
of viscosity on the temperature profile is generally modest.
In this ideal case, the mapping between temperature and τ

is given by d ln(τ ) = −c−2
s d ln(TI ) [Eq. (2) with V = 0], or

ln(τ/τ0) = −c−2
s ln(TI/T0), yielding

Veff ≈
∫ T0

TI (τ ) dT ′(T ′)(c−2
s −2)V (T ′)∫ T0

TI (τ ) dT ′(T ′)(c−2
s −2)

. (7)

The more practical Eq. (7) provides a good approximation
of the exact Eq. (6) as long as the effective viscosity is modest.

Equation (7) means that the effective viscosity depends
on a single moment of the temperature dependence. There
exists an infinite family of temperature-dependent η/s(T ) and
ζ/s(T ) whose evolution will be so similar as to make them
indistinguishable from each other, and Eq. (7) provides the
definition for this family of viscosities.

B. Quantum chromodynamics equation of state

A calculation of the speed of sound of QCD5 is shown in
Fig. 1. The speed of sound varies slowly above a temperature
of 300 MeV, but changes more rapidly when temperatures
reach ≈200 MeV; a minimum is reached around 180 MeV.

5This speed of sound is obtained by matching a lattice calcula-
tion of the equation of state at high temperature [15] to a hadron
resonance gas at lower temperature (see Refs. [16,17] for details
on the matching; the particle content of the hadron resonance gas
is consistent with that of the SMASH hadronic transport [18]). No
uncertainties are shown since they are not relevant for this work. An
uncertainty band can be found in Ref. [15], for example.

Referring back to Eq. (4), as discussed above, we see that a
temperature-dependent speed of sound introduces two major
differences. As in the constant cs scenario, viscosity enters
directly in the second term of Eq. (4). With a temperature-
dependent speed of sound, viscosity also affects the first term
of Eq. (4), through c2

s (T (τ )). This makes an exact definition
of effective viscosity more challenging. Nevertheless it is
reasonable to expect that the dominant effect of viscosity
is from the second term of Eq. (4), given that it depends
directly on the viscosity V (T ). This can be seen more clearly
if we consider an iterative solution to Eq. (4). In absence of
viscosity, Eq. (4) reduces to

ln

(
TI (τ )

T (τ0)

)
= −

∫ τ

τ0

dτ ′ c
2
s (TI (τ ′))

τ ′ . (8)

Inserting this ideal solution TI (τ ) into the right-hand side
of Eq. (4) provides a first iterative solution for the effect of
viscosity on the temperature profile:

ln

(
T (τ )

T (τ0)

)
= −

∫ τ

τ0

dτ ′ c
2
s (TI (τ ′))

τ ′

+
∫ τ

τ0

dτ ′ c
2
s (TI (τ ′))

τ ′
V (TI (τ ′))
τ ′TI (τ ′)

. (9)

In this first iterative solution, the effect of viscosity enters
only in the second term. At this level of approximation, the
same steps used in the previous section can be followed,
from the application of the mean value theorem in Eq. (5)
to the approximate ideal τ − T mapping in Eq. (7). The
principal difference with the constant-speed-of-sound case is
that Eqs. (5) and (6) are exact with cs constant, while they are
already approximate with a temperature-dependent cs(T ).

We begin with

Veff ≈
∫ τ

τ0
dτ ′ c2

s (TI (τ ′ ))
τ ′

V (TI (τ ′ ))
τ ′TI (τ ′ )∫ τ

τ0
dτ ′ c2

s (TI (τ ′ ))
τ ′

1
τ ′TI (τ ′ )

. (10)

Equation (8) can be rewritten as

τI (T ) = τ0 exp

[
−

∫ T

T0

dT ′

T ′ c−2
s (T ′)

]
. (11)

Because the speed of sound is a relatively slowly varying
function and because temperature follows approximately a
power law, we use a logarithmic trapezoid rule to obtain

τI (T ) ≈ τ0

(
T0

T

)c−2
s (

√
T0T )

, (12)

which, combined with the steps we used to obtain Eq. (7),
yields

Veff ≈
∫ T0

T (τ ) dT ′( T ′
T0

)c−2
s (

√
T0T ′ )−2

V (T ′)∫ T0

T (τ ) dT ′( T ′
T0

)c−2
s (

√
T0T ′ )−2

. (13)

It is worth emphasizing that, even in this Bjorken hy-
drodynamics with strong imposed symmetries, a series of
approximations are necessary to obtain a simple definition
of effective viscosity, highlighting the challenge of a general
definition of the concept.
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FIG. 2. Example of temperature-dependent η/s with effective
shear viscosities corresponding to Bjorken evolutions with T0 = 250
and 400 MeV with the QCD equation of state (Fig. 1). The dashed
lines are evaluated with Eq. (13).

With a nontrivial speed of sound, the effective viscosity
from Eq. (13) is no longer a simple moment of V (T ). There is
still a family of temperature-dependent viscosities V (T ) that
have the same numerical viscosity, but these must be evaluated
numerically because of the nontriviality of the speed of sound.

We emphasize again that shear and bulk viscosities are
indistinguishable in Bjorken Navier-Stokes hydrodynamics.
In practice, to better understand Eq. (13) and study it numeri-
cally, we look at shear and bulk viscosities separately.

a. Shear viscosity. We choose a piecewise-linear6 η/s(T )
with a minimum at 170 MeV, plotted as a solid line in Fig. 2—
a plausible temperature dependence for the shear viscosity
to entropy density ratio of QCD. The result7 of Eq. (13)
is shown as a dashed line. The effective viscosity depends
on the initial and final temperature of the evolution. In the
present case, we choose two values of the initial temperature,
T0 = 400 MeV and 250 MeV, and we fix the final temperature
to Tf = 150 MeV. The initial time is τ0 = 0.2 fm. The result
for the effective shear viscosity calculated from Eq. (13) is
〈η/s〉eff = 0.065 for T0 = 250 MeV and 〈η/s〉eff = 0.11 for
T0 = 400 MeV. Note that, for such a smooth temperature
dependence of η/s(T ), the variation of the speed of sound is
a small effect, and 〈η/s〉eff changes by less than 5% in this
example if c−2

s = 3 is used instead of the real speed of sound
of QCD.

The temperature evolution obtained by using the effective
viscosities from Eq. (13) is shown in Fig. 3. Recall that the
effective viscosity is defined such as to obtain the correct
temperature at some fixed final time τf (or final temperature
Tf). In principle, it does not ensure that the entire evolution

6The exact parametrization is

η/s(T ) =
{

0.04 + 5(T − T∗), if T < T∗
0.04 + 0.5(T − T∗), if T > T∗,

(14)

with T∗ = 170 MeV.
7Note that Eqs. (6), (7), (10), and (13) are equations for the

“combined viscosity” defined in Eq. (3). Recall the factor 3/4 when
calculating the effective η/s.

FIG. 3. Temperature as a function of time τ for Bjorken hydro-
dynamics with the effective [Eq. (13)] and temperature-dependent
η/s(T ) shown in Fig. 2. Two different initial temperatures T0 are
shown, 250 MeV (lower curves) and 400 MeV (upper curves). The
final temperature is Tf = 150 MeV in this example, meaning that the
effective viscosity is such that this Tf is reached at the same time as
for the η/s(T ) case. The results for ideal Bjorken hydrodynamics are
shown for reference.

is the same as that obtained with η/s(T ). In practice, the
dependence of the effective viscosity on the final time τf (or
temperature Tf) is generally small. One way to understand
why is to recall the factor of (T ′/T0) in Eq. (13), whose
exponent [c−2

s ((T0T ′)1/2) − 2] is always larger than 1: the
effective viscosity is generally dominated by contributions
at large values of temperature.8 This is characteristic of the
(0 + 1)D Bjorken fluid hydrodynamics expansion assumed in
this section. Fluid expanding in the transverse directions can
be expected to have a larger dependence on this final time τf

(or temperature Tf).
b. Bulk viscosity. At high temperature, the bulk viscosity

of QCD is much smaller than its shear viscosity [3], a con-
sequence of QCD being nearly conformal in this limit. There
have been discussions that bulk viscosity is not necessarily
small in the deconfinement region, T ≈ 150–250 MeV, where
shear viscosity may reach a minimum while bulk viscosity
takes a larger value, possibly a narrow peak.9

As an example, we use10 a Cauchy distribution for ζ/s with
a maximum of 0.2 at T = 185 MeV. This parametrization of
ζ/s(T ) is shown in Fig. 4 with the effective viscosities com-
puted from Eq. (13) shown as dashed lines. Three values of the
initial temperature are shown, T0 = 200, 250, and 400 MeV,
and the initial time and final temperature are the same as in

8In this (0 + 1)D Bjorken symmetric system, high temperatures
mean early times. Viscosities respond to space-time gradients, and
time gradients go as 1/τ in a Bjorken evolution: the dominant effect
of viscosity is expected to be at early time or high temperatures.

9See Ref. [19] for a summary and a visualization of multiple recent
calculations of shear and bulk viscosities.

10

ζ/s(T ) = 〈ζ/s〉max

1 + (T − T∗)2/σ 2
, (15)

with 〈ζ/s〉max = 0.2, T∗ = 185 MeV, and σ = 20 MeV.
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FIG. 4. Example of temperature-dependent ζ/s with effective
bulk viscosities corresponding to Bjorken evolutions with T0 = 200,
250, and 400 MeV with the QCD equation of state (Fig. 1). The
dashed lines are evaluated with Eq. (13).

the previous section, τ0 = 0.2 fm and Tf = 150 MeV. The
effective viscosities are

(i) 〈ζ/s〉eff = 0.02 for T0 = 400 MeV;
(ii) 〈ζ/s〉eff = 0.08 for T0 = 250 MeV;

(iii) 〈ζ/s〉eff = 0.15 for T0 = 200 MeV.

A smaller effective viscosity can be understood as a viscos-
ity that is more difficult to probe. In a Bjorken expanding fluid,
the expansion rate θ = 1/τ becomes smaller as time increases
and temperature decreases: the best way to probe ζ/s(T ) is for
the initial temperature to be close to that of the peak of ζ/s(T ),
as shown in Fig. 4.

In fact, for ζ/s(T ) that falls off rapidly at high temperature,
one can derive an approximate relation for effective bulk vis-
cosities with different initial temperature T0. Suppose that T a

0
and T b

0 are two different initial temperatures at high enough
temperature where ζ/s(T ) does not have significant support.
Assuming a conformal equation of state, we see that the
numerator of Eq. (7) will be approximately the same for T a

0
and T b

0 . The difference between the effective bulk viscosities
will thus be

〈ζ/s〉eff, a

〈ζ/s〉eff, b
≈

(
T b

0

)2 − (Tf )2(
T a

0

)2 − (Tf )2
. (16)

Looking back at Fig. 4 and taking T a
0 = 250 MeV and T b

0 =
400 MeV, Eq. (16) predicts 3.4 as the ratio of the effective
bulk viscosity, while the actual ratio is 3.7.

In Fig. 5, we show a family of temperature-dependent
ζ/s with equivalent effective bulk viscosities, as evaluated
with Eq. (13). While the temperature evolution is not strictly
identical [given that Eq. (13) is not an exact definition of
effective viscosity], it would be difficult to tell these different
temperature dependencies of ζ/s(T ) apart from their tempera-
ture profiles. Note that all these equivalent parametrizations of
ζ/s(T ) were obtained by assuming the same functional form
for the temperature dependence (shown in footnote 10), which
is a practical choice but not a necessary one.

FIG. 5. Example of different temperature-dependent ζ/s with
equivalent effective bulk viscosities, which lead to similar temper-
ature evolutions. The parameters for the Bjorken hydrodynamics are
T0 = 300 MeV, τ0 = 0.2 fm, and Tf = 150 MeV. The value of the
effective ζ/s is indicated by the arrow on the right axis of the inset.
The ideal result is shown in gray for reference.

C. Alternative approach: Effective viscosity
as optimization of a hypersurface

As emphasized in the sections above, our definition of vis-
cosity does not technically require the temperature evolution
to be the same over a wide range of time: it is defined such
that the temperature profiles are the same at a fixed point
in τ that we call τf (or equivalently at a fixed temperature
Tf). As discussed previously, this distinction is in general not
relevant, since the effect of viscosity tends to concentrate at
earlier times (because space-time gradients are larger there);
this generally leads to similar temperature profiles over large
ranges of τ .

It is nevertheless interesting to recast the question of effec-
tive viscosity differently. Suppose that we define a constant-
temperature hypersurface �(Tf, η/s(T ), ζ /s(T )), with Tf be-
ing the temperature of the fluid on this hypersurface. In
(3 + 1)D, � would be a surface in four dimensions; in
(0 + 1)D, this hypersurface reduces to a single value of τ :
τf(Tf, η/s(T ), ζ /s(T )). The effective viscosities 〈η/s〉eff and
〈ζ/s〉eff can be defined so as to minimize the differences
between the hypersurface:

min{τf(Tf, 〈η/s〉eff, 〈ζ/s〉eff ) − τf(Tf, η/s(T ), ζ /s(T ))}.
(17)

This approach leads to a similar definition of effective
viscosity; the full derivation can be found in Appendix B.
An interesting summary of the derivation is the following
approximate relation between the effective viscosity and the
evolution time necessary to reach a given final temperature Tf:

τviscous(Tf )

τideal(Tf )
≈ exp

[
3Veff(Tf )

2τ0T0

]
, (18)

which can be inverted to give

Veff(Tf ) ≈ 2

3
τ0T0

(
τviscous(Tf )

τideal(Tf )
− 1

)
. (19)

Note that we used the combined viscosity from Eq. (3) to
regroup shear and bulk viscosity together. Since viscosity
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leads to entropy production, it takes longer in the viscous case
[τviscous(Tf )] to cool down to Tf than it does in the ideal case
[τideal(Tf )]. Any temperature-dependent η/s(T ) or ζ/s(T ) that
reaches Tf at the same τviscous(Tf ) can be said to have the
same effective viscosity. This approach could be interesting
for the study of heavy-ion collisions, where often only the
value of the hydrodynamic fields on a constant-temperature
hypersurface matters.11

III. (0 + 1)D (BOOST-INVARIANT) FLUID IN
SECOND-ORDER (ISRAEL-STEWART-TYPE)

RELATIVISTIC HYDRODYNAMICS

In the previous section, we saw that there exists families of
temperature-dependent η/s(T ) and ζ/s(T ) that lead to essen-
tially indistinguishable hydrodynamic evolution. This was for
first-order hydrodynamics with a Bjorken-symmetric fluid—
that is, a boost-invariant fluid with no transverse dynamics.
The strong symmetries imposed on the system are one reason
for this degeneracy. It is also a consequence of the form of the
first-order Navier-Stokes hydrodynamics equations, in which
the effect of viscosity only enters through local space-time
gradients.

The situation is different for second-order Israel-Stewart-
type hydrodynamics. In this latter case, the shear tensor and
bulk pressure follow relaxation-type equations of motion. The
effect of viscosity is still through local space-time gradients;
however the evolution of the shear tensor and bulk pressure
depend on their initial value as well as on the relaxation time.
For example, for a fluid with Bjorken symmetries, the bulk
pressure � evolves with the equation of motion12

τ�∂τ� = −(� − �NS ) − δ���

τ
, (20)

where �NS = −ζθ = −ζ/τ is the Navier-Stokes bulk pres-
sure, τ� is the bulk relaxation time, and δ�� is a second-order
transport coefficient. The coupled temperature equation of
motion is

∂τ ln T (τ ) = −c2
s (T )

τ

[
1 + �

sT

]
. (21)

If the bulk relaxation time τ� is very long, the bulk pressure
will remain for a long time at its initial value �(τ0). In
the opposite scenario where the bulk relaxation time is very
short, the bulk pressure will be close to the result from
first-order hydrodynamics. In scenarios where τ� and �(τ0)

11Note that while constant-temperature hypersurfaces are used
almost universally in hydrodynamic studies of heavy-ion collisions,
hypersurfaces based on other criteria would in theory be better
justified. See, for example, Ref. [20].

12In this example, we assume that there is only bulk viscosity, and
that the only additional second-order transport coefficients are τ�

and δ��. In practice, there could be additional high-order terms,
such as �2, terms involving vorticity, …. The presence of shear
viscosity would also introduce a number of shear-bulk couplings. See
Ref. [21], for example. These features are set aside for the proof of
principle discussed in this section.

take extreme values, the effect of ζ/s(T ) on the temperature
evolution might be smaller than the effect of �(τ0).

In terms of �̂ = �/(sT ), the equation of motion for the
bulk pressure can be written as

∂τ �̂ = − (�̂ − �̂NS )

τ�

+ �̂

τ

[
1 + c2

s − δ��

τ�

]
+ �̂2

τ

(
1 + c2

s

)
.

(22)
We used Eq. (21) to obtain Eq. (22), which is the origin of the
quadratic term in �̂. In what follows, we fix δ�� to the 14-
moment approximation result from Ref. [22]: δ�� = (2/3)τ�.

An approximate solution for �̂ can be found by neglecting
the �̂2 term, approximating the speed of sound as constant13

(c̄2
s ), and assuming that τ� is a constant. The resulting expres-

sion for �̂ is an integral whose dominant contribution can be
obtained by integration by parts. Under these approximations,
the result takes the simple form

�̂(τ ) ≈ [�̂(τ0) − �̂NS (τ0)]

(
τ

τ0

) 1
3 +c̄2

s

e− τ−τ0
τ� + �̂NS (τ ).

(23)
Equation (23) highlights some of the differences between

first- and second order hydrodynamics. As expected, it shows
that the relaxation toward Navier-Stokes is faster if the bulk
pressure is initialized at its Navier-Stokes value. Evidently,
Eq. (23) is approximate, and having �̂(τ0) = �̂NS (τ0) does
not actually imply instantaneous relaxation to Navier-Stokes
for the full solution. While approximate, Eq. (23) can be used
to gain intuition on the relation between �̂(τ0), τ� and the
apparent viscosity of a fluid.

As in the Navier-Stokes case [Eqs. (9) and (10)], the mean
value theorem can be used to define an approximate effective
viscosity. The most direct definition might be∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′ �̂
(
τ ′) = 〈�̂〉eff

∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′ . (24)

To connect with the Navier-Stokes case more easily, we use
an alternative definition:14

−
∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′ �̂(τ ′)

= 〈−τT �̂〉eff

∫ τ

τ0

dτ ′ c
2
s (T (τ ′))

τ ′
1

τ ′T (τ ′)
, (25)

13Choosing c̄2
s = 1/3 can appear to be a good option, but it is rarely

the best one. As seen in Fig. 1, the speed of sound of QCD is always
smaller than 1/3; it is better to expand around smaller value, like 1/4
or 1/5, than to expand around the asymptotic 1/3 value. A simple
example of this is given in Appendix A in the context of finding an
approximate solution for the temperature in Bjorken hydrodynamics
with the QCD equation of state.

14The Navier-Stokes bulk pressure is a negative quantity in our ex-
panding (0 + 1)D fluid: �NS = −(ζ/s)/(T τ ). The additional minus
signs in Eq. (25) makes it match the definition of effective viscosity
from Sec. II.
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which is strictly equivalent to Eq. (10) in the Navier-Stokes
case (�̂ = �̂NS).

Inserting Eq. (23) into Eq. (25) and following the same
steps as in Sec. II, we find

〈−τT �̂〉eff ≈ [�̂(τ0) − �̂NS (τ0)]Y (T, T0) + 〈ζ/s〉NS
eff , (26)

with

Y (T, T0) ≈ −
∫ T0

T
dT ′
T ′ exp

[ − τ0
τ�

(( T0
T ′

)c−2
s (

√
T0T ′ ) − 1

)]( T0
T ′

)( 1
3 +c̄2

s )c−2
s (

√
T0T ′ )

1
τ0T0

∫ T0

T
dT ′
T ′

(
T ′
T0

)c−2
s (

√
T0T ′ )−1

. (27)

The meaning of Eq. (26) is the following: combinations
of ζ/s(T ), τ�, and �̂(τ0) that yield the same value for
Eq. (26) will have similar temperature profiles. Note that more
approximations [in particular, Eq. (23)] were necessary to
obtain this definition of “effective viscosity” compared with
the Navier-Stokes case; Eq. (26) may not produce temperature
profiles as similar as those seen in Sec. II. With this caution
in mind, we proceed with two examples which use Eq. (26) to
better understand the relation between ζ/s(T ), τ�, and �̂(τ0).

c. Breaking the degeneracy of Navier-Stokes effective vis-
cosities. In Sec. II, we discussed that different parametriza-
tions of ζ/s(T ) could produce nearly indistinguishable tem-
perature evolutions, for Bjorken Navier-Stokes hydrodynam-
ics, if their effective viscosity 〈ζ/s〉NS

eff are the same. In prin-
ciple, this degeneracy is broken in second-order hydrodynam-
ics. In Eq. (26), there is an additional dependence on ζ/s(T0)
in the first term, through �̂NS (τ0) = −[ζ/s(T0)]/(τ0T0).

In practice, the degeneracy between the different ζ/s(T )
would only be significantly broken by second-order hydrody-
namics in very specific cases. It requires15

|�̂(τ0)| ∼ |�̂NS (τ0)|, (28)

as well as the first term of Eq. (26) to be large compared with
〈ζ/s〉NS

eff . We verified numerically that in the case of Fig. 5, for
example, the temperature evolution for the different ζ/s(T )
remains degenerate for most choices of �̂NS (τ0) and τ�.

d. Mimicking viscosity with out-of-equilibrium initial con-
ditions. The first term of Eq. (26) effectively quantifies how a
viscosity can be mimicked by a nonequilibrium initial value
of the bulk pressure. Consider any of the parametrizations
of ζ/s(T ) shown in Fig. 5. They have an effective viscos-
ity of 〈ζ/s〉NS

eff ≈ 0.1. As discussed above, for most choices
of �̂NS (τ0) and τ�, this degeneracy between the different
parametrizations of ζ/s(T ) will remain.

Suppose an extreme case where the bulk viscosity of QCD
is negligibly small. Even in this scenario, one can obtain a
temperature evolution similar to those seen in Fig. 5 with
〈ζ/s〉NS

eff ≈ 0.1 by using

�̂(τ0) = 〈ζ/s〉NS
eff

Y (T, T0)
. (29)

15If |�̂(τ0 )| 
 |�̂NS (τ0 )|, it is trivial to see that Eq. (26) is essen-
tially independent of �̂NS (τ0 ).

If we apply this prescription to the example shown in
Sec. II B (Fig. 5), we obtain Fig. 6: if a proper value of �̂(τ0)
is used [namely, Eq. (29)], a temperature profile similar to
that obtained with a nontrivial ζ/s(T ) can be obtained with
no bulk viscosity whatsoever. The temperature profiles are
not identical, reflecting the limitations of Eq. (26). Never-
theless, this example highlights the partial degeneracy that
exists between the out-of-equilibrium initial conditions and
the transport coefficients.

IV. EFFECTIVE VISCOSITIES BEYOND (0 + 1)D

While the previous section assumed a system with perfect
Bjorken symmetries (no transverse dynamics), its conclusions
are expected to hold in systems with mild transverse gradients,
at sufficiently early times.

We first explore this simpler scenario before moving on to a
more general setting. We limit the whole section’s discussion
to first-order (Navier-Stokes) hydrodynamics. Derivations are
performed for a general speed of sound; all numerical results
shown use the QCD equation of state.

FIG. 6. Comparisons of temperature profiles obtained with (i)
a temperature-dependent ζ/s and the Navier-Stokes value for the
initial bulk pressure, and (ii) an asymptotically small ζ/s and an
initial bulk pressure given by Eq. (29). The parameters for the
Bjorken hydrodynamics are T0 = 300 MeV, τ0 = 0.2 fm, and Tf =
150 MeV. The QCD equation of state is used. The relaxation time
is constant, τ� = 1 fm. The value of c̄2

s used in Eq. (27) was
1/4; we verified that similar results can be obtained with other
values of c̄2

s .
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A. Effective viscosities in a cylindrically symmetric Bjorken
system: Small gradients and early time limit

As an example, suppose a system whose initial temperature
has a Gaussian profile in the transverse plane while still boost-
invariant in the longitudinal direction:

T (τ0, r, ηs) = T0 exp(−r2/σ 2)

at initial time τ = τ0, with maximum initial temperature16

T0 and width σ . The transverse direction is r = (x2 + y2)1/2

and ηs is the spatial rapidity defined in Sec. II. Limiting
our discussing to bulk viscosity for simplicity, the equation
of motion for the temperature in a cylindrically symmetric
boost-invariant system is given by

uτ ∂τ ln T + ur∂r ln T = −c2
s (T )

[
θ − 1

T

ζ

s
θ2

]
, (30)

with

θ = uτ

τ
+ ur

r
+ ∂τ uτ + ∂rur . (31)

Compared to the (0 + 1)D case, the single additional di-
mensionful scale would be the width σ for a constant speed of
sound; a nonconstant speed of sound introduces an additional
scale, something like ∂c2

s /∂T . At early times, spatial gradients
scale like 1/σ while temporal gradients scale like 1/τ . The
expansion rate θ is thus dominated by the 1/τ term as long
as τ is reasonably smaller than σ . Thus, for τ � σ , the
temperature can be approximated by

T (τ, r) = T0(τ, r)

(
τ0

τ

)c2
s

, (32)

for a constant speed of sound. The derivation of effective vis-
cosity defined in Sec. II can be applied locally in r. Moreover
it can be generalized to a nonconstant speed of sound in the
same way as discussed in Sec. II B.

The approximate effective viscosity of each point in r is
given by

〈ζ/s〉eff(r) ≈
∫ T0(r)

Tf
dT ′( T ′

T0(r)

)c−2
s (

√
T0(r)T ′ )−2

ζ/s(T ′)∫ T0(r)
Tf

dT ′( T ′
T0(r)

)c−2
s (

√
T0(r)T ′ )−2

. (33)

We see that, in theory, the effective viscosity will be different
at each point: if two ζ/s(T ) are chosen to have the same
effective viscosity at a given r, they will likely have a different
effective viscosity at other values of r. This difference in
effective viscosities will depend on the size of the transverse
gradients, controlled here by the initial width σ . An example17

16With σ of order 5–10 fm and T0(τ0 = 0.2 fm) ≈ 400–600 MeV,
this scenario is closer to that encountered in ultrarelativistic head-
on collisions of heavy ions at the RHIC and the LHC. It must be
emphasized, however, that heavy-ion collisions never have such a
high degree of symmetry in the transverse plane at early times.

17Note that the numerical solutions of (1 + 1)D viscous relativis-
tic Navier-Stokes hydrodynamics shown in this section were ob-
tained with a second-order viscous relativistic hydrodynamics solver
[23–25] with a relaxation time sufficiently small to converge to the
Navier-Stokes (first-order hydrodynamics) result.

FIG. 7. (a) Temperature profile obtained from a Gaussian initial
condition with T0 = 300 MeV, σ = 20 fm, and no initial transverse
flow, for the (b) three different temperature-dependent ζ/s(T ) with
equivalent Bjorken effective bulk viscosities at r = 0 fm. The thinner
dotted line is the ideal result.

is shown in Fig. 7(a) with σ = 20 fm and T0 = 300 MeV
as initial conditions. Three different parametrization of bulk
viscosity, shown in Fig. 7(b), have been chosen so as to
have the same Bjorken effective viscosity at r = 0. These
three parametrization of bulk viscosity, which would lead to
essentially indistinguishable hydrodynamics evolution in the
limit σ → ∞, can be distinguished at late times and larger
r in a system which undergoes transverse expansion. The
difference between the three ζ/s(T ) is nevertheless small
compared with the overall effect of bulk viscosity on the
temperature profile.

To study systems with larger transverse expansion, it is
necessary to go beyond the regime where Eq. (32) holds.
In what follows, we explore in more details the case of a
system with cylindrical symmetry and provide a more general
definition of effective viscosity valid at arbitrarily late times.

B. Effective viscosities in a cylindrically symmetric Bjorken
system: General case

Using the method of characteristics, the equation of motion
for temperature in a cylindrically symmetric boost-invariant
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FIG. 8. (a) Ideal temperature profile and characteristic curves
obtained from a Gaussian initial condition with T0 = 300 MeV, σ =
20 fm, τ0 = 0.2 fm and no initial transverse flow, and (b) trajectories
of a subset of characteristic curves in the θ -T space. For reference, to
illustrate the effect of the transverse expansion, the θ -T trajectories
for (0 + 1)D expansion are shown with dashed lines in panel (b).

system [Eq. (30)] can be rewritten as

dτ (χ )

dχ
=

√
1 + ur (τ (χ ), r(χ ))2,

dr(χ )

dχ
= ur (τ (χ ), r(χ )),

d ln T (χ )

dχ
= −c2

s (T (χ ))θ (τ (χ ), r(χ ))

[
1 − θ

T

ζ

s
(T )

]
,

τ (χ = 0) = τ0,

r(χ = 0) = r0. (34)

For a given r0, the equations of motion for τ (χ ) and r(χ )
form characteristic curves. For reference, these characteristic
curves are illustrated in Fig. 8(a) for the ideal case with T0 =
300 MeV, σ = 20 fm, and τ0 = 0.2 fm (same parameters
as used earlier in this section). Each characteristic follow a
different trajectory in expansion rate and temperature (“θ -T
space”), illustrated in Fig. 8(b). This did not happen in (0 +
1)D, where all points in the transverse direction had the same
trajectory in θ -T . In what follows, we discuss a more general
definition of effective viscosity and its close relationship with
the θ -T trajectories illustrated in Fig. 8(b).

1. Central transverse position (r0 = 0)

By symmetry, at the center of the fluid (r0 = 0), ur = 0,
and the characteristic is χ = τ :

d ln T

dτ
= −c2

s (T )θ (τ, r = 0)

[
1 − θ

T

ζ

s
(T )

]
. (35)

The effective viscosity can be defined the same way as in
Sec. II A:

〈ζ/s〉eff(r = 0) ≈
∫

dτc2
s (T )θ (τ, r = 0) θ

T
ζ

s (T )∫
dτc2

s (T )θ (τ, r = 0) θ
T

. (36)

The difference with Sec. II A is that the expansion rate is
not θ = 1/τ anymore,18 a consequence of the ∂rur term in
Eq. (31). Equation (33) will only provide a good approxima-
tion of Eq. (36) if the effect of viscosity is concentrated at very
early times [that is, only if the support of ζ/s(T ) is close to
the initial temperature of the fluid at r0 = 0].

2. General transverse position r

In general, an effective viscosity can be defined for each
characteristic and can be labeled by the initial value of r0 =
r(χ = 0):

〈ζ/s〉eff(r0) ≈
∫

dχc2
s (T )θ (τ (χ ), r(χ )) θ

T
ζ

s (T )∫
dχc2

s (T )θ (τ (χ ), r(χ )) θ
T

. (38)

In the Bjorken case, it was sufficient to ensure that different
parametrizations of ζ/s(T ) have the same effective viscosity
at a single value of r0. In the present case, if ζ1/s(T ) is one
parametrization and ζ2/s(T ) is a second one, one must ensure

〈ζ1/s(T )〉eff(r0) = 〈ζ2/s(T )〉eff(r0) ∀ r0. (39)

In practice, the temperature profile is smooth, and a discrete
set of r0 should be sufficient. For example, recall the example
shown in Fig. 7. Using Eq. (38) for only two values of r0, 0
and 10 fm, results in Fig. 9: three different parametrizations
of ζ/s(T ) that leads to a very similar temperature profiles for
a wide range of transverse positions r.

These parametrizations are obtained using the following
steps:

(i) Solve numerically the ideal hydrodynamic equa-
tions to obtain the ideal profiles for the temperature
TI (τ, r), the flow velocity ur

I (τ ), and the expansion
rate θI (τ, r).

18For reference, at r = 0, the ideal expansion rate θ can be approx-
imated by

θ (τ, r = 0) ≈ 1

τ
+

4
[
τ − τ0

(
τ

τ0

)c2
s
]

(
1 − c2

s

)
σ 2

(
1 + 2(τ−τ0 )2

(1+c2
s )σ 2

) , (37)

where c2
s is assumed to be a constant. Because Eq. (37) depends

weakly on the speed of sound, it remains a good approximation
when the QCD equation of state is used, as long as c2

s is taken
in a reasonable range of values (c−2

s ≈ 3–5; see Appendix A for
a discussion of preferable constant values of c−2

s to use in such
instances).
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FIG. 9. (a) Temperature profile obtained from a Gaussian initial
condition with T0 = 300 MeV, σ = 20 fm and no initial transverse
flow, for the (b) three different temperature-dependent ζ/s(T ) with
equivalent Bjorken effective bulk viscosities at r0 = 0 and 10 fm.
The thinner dotted line is the ideal result.

(ii) Use ur
I (τ ) to find numerically the ideal characteristic

solutions for τ (χ ) and r(χ ).
(iii) Minimize Eq. (39) with respect to two different

parametrizations of ζ/s(T ), for a discrete set of r0.

These numerical steps19 are necessary since the function
θ (τ, r) is not known for a cylindrically symmetric boost-
invariant fluid. In the earlier (0 + 1)D invariant case, θ (τ ) was
simply 1/τ .

Because this process involves minimizing a function
[ζ/s(T )] over a range of temperature, there can be a wide
variety of solutions, depending on the constraints imposed
on the functional form of ζ/s(T ). The minimization proce-
dure is highly nonlinear, and significant changes in ζ/s(T )
can be necessary to obtain slightly better agreement in the
temperature profiles. This can be seen clearly in Figs. 7 and
9, where the better agreement of the temperature profiles at
large r in Fig. 9 was obtained by completely changing the
parametrizations of ζ/s(T ) used in Fig. 7.

19The ideal cylindrical relativistic Navier-Stokes equations can be
solved with Mathematica’s “NDSolve” function. The characteristics
can be calculated the same way.

In theory, one could find equivalent parametrizations of
ζ/s(T ) by brute force numerical analysis: solve the equations
of viscous hydrodynamics numerically with a large ensemble
of ζ/s(T ) and evaluate numerically which ones have similar
hydrodynamic evolutions, as quantified (for example) by their
temperature profile.20 This is not the approach we are putting
forward. Equation (38) only needs the ideal solution to the
hydrodynamic equations, which is in general straightforward
to obtain numerically. More importantly, Eq. (38) provides
intuition on the relation between ζ/s(T ), the temperature
profile, the expansion rate and the resulting effect of viscosity.
We illustrate this important point in the next section.

3. Larger transverse gradients

Suppose the width of the initial Gaussian temperature
profile is reduced from the σ = 20 fm used above to σ =
10 fm; this increases the size of the transverse gradients,
making the effect of the transverse expansion more visible. We
increase the initial temperature at the center to T0 = 500 MeV
so that the evolution covers a similar range of temperature
as the previous example. The ideal temperature profile and
characteristic curves are shown in Fig. 10. The expansion
rate varies significantly along characteristics in the θ -T plane,
meaning that the effect of viscosity on the hydrodynamic
evolution will vary significantly across the transverse plane.
From Fig. 10, we can see that the expansion rate along
characteristics, θ (τ (χ ), r(χ )), can be written as θ (T, r0). That
is, given an initial transverse position, the expansion rate along
a characteristic can be expressed as a function of temperature
alone. This allows Eq. (38) to be rewritten:

〈ζ/s〉eff(r0) ≈
∫

dT ′
T ′

θ (T ′,r0 )
T ′

ζ

s (T ′)∫
dT ′
T ′

θ (T ′,r0 )
T ′

, (40)

with θ (T ′, r0) being the function shown in Fig. 10(b); at the
moment, this function is only known numerically. The range
of integration is from the final temperature Tf(r) to the initial
temperature T0(r).

The form of Eq. (40) allows an easier visualization of
the constraints on ζ/s(T ) from the different positions in the
transverse plane. For a given point in the transverse plane (that
is, for a given value of r0), the weight that multiplies the dif-
ferent parametrizations of ζ/s(T ) is θ (T, r0)/T 2, illustrated
in Fig. 11. Different ζ/s(T ) will lead to similar temperature
profiles if the area under the product [ζ/s(T )]θ (T, r0)/T 2

remains the same for all r0.
Choosing Tf(r) to be a constant, Tf = 150 MeV, three dif-

ferent parametrizations of ζ/s(T ) that lead to similar hydro-
dynamic evolution are shown in Fig. 12. They were obtained
by minimizing Eq. (40), with θ (T ′, r0) having been obtained
numerically. This time, a more flexible parametrization of
ζ/s(T ) was used, with the peak allowed to be asymmetric.
This still represents a very small subset of the space of

20Pushing this one step forward, and trying to identify numerically
which parametrizations of ζ/s(T ) lead to the same final distribution
of hadrons in a realistic heavy-ion collision would essentially be the
same as current Bayesian analyses such as in Refs. [2,26,27].
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FIG. 10. (a) Ideal temperature profile and characteristic curves
obtained from a Gaussian initial condition with T0 = 300 MeV, σ =
10 fm, τ0 = 0.2 fm, and no initial transverse flow, and (b) trajectories
of a subset of characteristic curves in the θ -T space. The θ -T
trajectories for (0 + 1)D expansion are shown by dashed lines in
panel (b).

functions that could be minimized with Eq. (40). Again, the
temperature profiles are not identical but are very similar
given the significant differences in the temperature depen-
dence of ζ/s(T ), as well as given how much they deviate from
the ideal solution (shown with dashed lines).

FIG. 11. Product θ (T, r0)/T 2 that weights ζ/s(T ) when evalu-
ating the effective viscosity at a given r0 in Eq. (40). Four different
characteristics are shown, r0 = 0, 4, 6, and 8 fm.

FIG. 12. (a) Temperature profile obtained from a Gaussian initial
condition with T0 = 500 MeV, σ = 10 fm and no initial transverse
flow, for the (b) three different temperature-dependent ζ/s(T ) with
similar Bjorken effective bulk viscosities across a wide range of r0

between 0 and 10 fm. The thinner dotted line is the ideal result.

Figure 13 shows the product [ζ/s(T )]θ (T, r0)/T 2 for the
three parametrizations shown in Fig. 12(b). It is normalized
by the denominator of Eq. (40) such that the area under each
curve is its effective viscosity. Only two characteristics, r0 =
0 and 6 fm, are shown for clarity. The effective viscosity is
approximately 0.02 for r0 = 0 fm, while it is larger than 0.03
for r0 = 6 fm. As highlighted by Fig. 13, these values are the

FIG. 13. Product ζ/s(T )θ (T, r0)/T 2 from Eq. (40), normalized
such that the area under the curves represent their effective viscosity.
Shown for two characteristics with r0 = 0 and r0 = 6 fm.
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FIG. 14. Radial flow velocity corresponding to the temperature
profiles shown in Fig. 12.

result of the nontrivial dependence of the expansion rate with
τ and r combined with the exact form of ζ/s(T ). Importantly,
as should be clear by now, no single constant value of ζ/s
should be expected to provide a good approximation of the
parametrizations of ζ/s(T ) shown in Fig. 12(b): one clearly
needs a larger value of effective viscosity at large r than at
small r. At best, a compromise could be found between the
effective viscosities favored by large and small r, an effective
viscosity that would be somewhere between 0.02 and 0.03 for
the example shown in Fig. 12.

It must be emphasized that the discussion from this section
can be generalized to shear viscosity as well. One of the
reasons bulk viscosity was discussed instead of shear viscosity
is the slightly simpler form of its equation of motion. The
other reason is related to the physics of heavy-ion collisions
and of the bulk viscosity of QCD. The bulk viscosity of QCD
is expected to have a more limited support in temperature
than the shear viscosity: while η/s of QCD is expected to
take values �0.1 at most temperatures above 150 MeV,
it is possible that ζ/s only take non-negligible values for
temperature below ≈250 MeV. At these lower temperature,
hydrodynamic simulations of heavy-ion collisions indicate
that the temperature profile is much more uniform than at
high temperature. In head-on central collisions of nuclei, the
cylindrically symmetric boost-invariant fluid discussed in this
section could be a reasonable approximation of the late-time
temperature profile. This could make the results derived in
this section more relevant for bulk viscosity than for shear
viscosity.

We conclude this discussion by noting that we have fo-
cused solely on the temperature profile of the fluid to study
the effective viscosity of the fluid. As we have seen, it does
provide a definition of effective viscosity that works reason-
ably well in practice. Of course, in (1 + 1)D, the flow velocity
is also important. This radial flow profile is shown in Fig. 14,
for the example with σ = 10 fm discussed in this section.
The flow velocity profile is actually relatively similar for
the different parametrization of ζ/s(T ), although differences
appear to be larger than for the temperature profile. Including
the flow velocity in the definition of effective viscosity may
be difficult, given the more complex form of its equation of
motion. Actually, it is unclear if this inclusion is necessary: it

appears unlikely that two smooth temperature profiles could
be similar over a range of τ and r with their corresponding
flow velocity being very different—at least in systems as sym-
metric as these discussed in this work. Whether this remains
true in a full (3 + 1)D system is less clear; this question will
need to be revisited in more detail for such systems.

C. Defining a global effective viscosity beyond (0 + 1)D

Equation (38) defines an effective viscosity along the
space-time trajectory of a characteristic. These characteristics
can be labeled by their initial position, for example τ0 and
r0 in the cylindrical (1 + 1)D case discussed in the pre-
vious section. Different temperature-dependent viscosities—
ζ1/s(T ) and ζ2/s(T )—which have the same effective vis-
cosity [Eq. (38)]—〈ζ/s(T )〉eff(r0)—will have approximately
the same temperature at the endpoint of the r0-labeled-
characteristic.

As we saw in the (0 + 1)D case, along a single char-
acteristic, there is an infinite number of different ζ/s(T )
and η/s(T ) that have the same effective viscosity. On the
other hand, different characteristics generally have different
effective viscosities, as seen in the example presented in the
previous section. Beyond (0 + 1)D, for two parametrizations
of ζ/s(T ) [or η/s(T )] to lead to similar overall temperature
profiles, they must have similar effective viscosities for a
wide range of different characteristics, spanning across the
fluid. We discussed one way of achieving this in the previous
section: for a set of different values of the coordinate r0,
minimizing the difference between the effective viscosity
ζ/s〉eff(r0) of two different parametrizations of bulk viscosity,
ζ1/s(T ) and ζ2/s(T ).

In theory, characteristics can be defined in higher dimen-
sions as well, and similar definitions of effective viscosities
along characteristics can be obtained. However, beyond (0 +
1)D, it does not seem possible to define a proper global
effective viscosity for the fluid as a whole. Averages over
multiple characteristics of their respective effective viscosities
are possible, although referring to such averages as “global”
effective viscosities would obscure the important conclusion
from this work stated above: that finding a “global” constant
〈η/s〉eff or 〈ζ/s〉eff that mimics correctly the temperature
dependence of η/s(T ) or ζ/s(T ) appears only possible for
(0 + 1)D fluid.

Nevertheless, depending on the problem under study, it is
possible that certain regions of the fluid are more relevant than
others: that is, it might be more important for the effective
viscosity to be the same along certain characteristics than oth-
ers. In such cases, one can tailor a definition of approximate
global effective viscosity that takes this into account. This
must be done on a case-by-case basis and does not constitute a
general definition of global effective viscosity, although it can
certainly have practical applications.

V. IMPLICATION FOR HYDRODYNAMICS STUDIES
OF HEAVY-ION COLLISIONS

There is evidence from hydrodynamic studies of heavy-
ion collisions that the bulk viscosity of QCD is difficult to
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constrain [2]: for example, a wide but low peak for ζ/s(T )
cannot easily be distinguished from a narrow but high peak
[2]. Studies with shear viscosity, Ref. [28] for example, have
also found that different temperature dependence of η/s can
be difficult to tell apart. Note that these works do not imply
that the viscosities of QCD could not be determined by
studying heavy-ion collisions: their point is rather that the
viscosities can be difficult to extract and may require a more
diverse array of experimental measurements than previously
thought.

In this work, we discussed how to identify different
parametrizations of ζ/s(T ) and η/s(T ) that lead to similar
hydrodynamic evolution. In the (0 + 1)D case, we found
that large families of η/s(T ) and ζ/s(T ) can lead to almost
identical temperature evolutions. In this specific and highly
symmetric (0 + 1)D scenario, it is clear that one would not be
able to extract the temperature dependence of the viscosities
from the temperature profile alone. In (1 + 1)D, we also
identified families of η/s(T ) and ζ/s(T ) that lead to similar
hydrodynamic evolution. However, the transverse dynamics
of the system makes it significantly more difficult to find such
families of η/s(T ) and ζ/s(T ). Moreover, while the temper-
ature profiles obtained were similar, they could presumably
be differentiated with sufficiently precise information on the
temperature profile. For fluids with fewer symmetries, it thus
appears unlikely that wide classes of η/s(T ) and ζ/s(T )
could lead to hydrodynamic evolutions difficult to differen-
tiate.

While studies such as Refs. [2] and [28] motivated this
work, it has to be emphasized that it is still early to establish
connections between the two. The problem studied in these
earlier works is actually different from the one discussed here:
in the present work, we investigated families of equivalent
viscosities in a given fluid (with a fixed initial temperature
profile, for example). In Refs. [2] and [28], the initial tem-
perature profile is allowed to vary when identifying equiv-
alent viscosities. Moreover, the fluid studied in these publi-
cations were full (2 + 1)D hydrodynamics, not (0 + 1)D or
(1 + 1)D.

Nevertheless, lessons about the concept of effective shear
and bulk viscosities can be drawn from this work and can help
better understand the study of heavy-ion collisions. We saw in
Sec. II that a constant η/s or ζ/s could generally mimic well
a (0 + 1)D fluid with any temperature-dependent viscosity.
There should thus rarely ever be a reason to study (0 + 1)D
fluids with temperature-dependent viscosities: a simpler and
equivalent constant η/s or ζ/s should be used instead. On the
other hand, we saw in Sec. IV that the concept of equivalent
constant η/s or ζ/s must be abandoned already at (1 +
1)D: the effective viscosity is dependent on the transverse
position in the fluid. In (2 + 1)D hydrodynamic studies of
heavy-ion collisions, it is not uncommon to assume that a
temperature-dependent η/s(T ) or ζ/s(T ) can be mimicked
by a constant effective viscosity. The present work suggests
that such an approximation is unlikely to be particularly
precise and should only be made when the exact details of the
hydrodynamic evolution are not too important for the study in
question.

VI. SUMMARY AND OUTLOOK

In its simplest incarnation, the concept of effective vis-
cosity is a constant value of ζ/s or η/s which produces an
equivalent hydrodynamic evolution as that obtained with a
temperature-dependent ζ/s(T ) or η/s(T ). We discussed in
Sec. II that such effective viscosity can indeed be found for
a (0 + 1)D boost-invariant system. It is thus generally unnec-
essary to study these systems with a temperature-dependent
viscosity. Moreover it is straightforward to calculate the effec-
tive viscosity corresponding to arbitrary parametrizations of
ζ/s(T ) or η/s(T ). This conclusion is not related to the boost
invariance of the system, but rather to the (0 + 1)D nature of
the system: as such, we expect that studying (0 + 1)D system
with other symmetries (Hubble expansion for example) would
lead to similar conclusions.

In Sec. IV, we generalized the concept of effective viscos-
ity to (1 + 1)D cylindrically symmetric boost-invariant fluid.
We discussed how to identify different ζ/s(T ) or η/s(T ) that
lead to similar hydrodynamic evolution. We showed, however,
that one must already abandon the concept of a single constant
effective value of ζ/s or η/s, since the effective viscosity
depends on the transverse position.

These (0 + 1)D and (1 + 1)D results were obtained with
first-order relativistic viscous Navier-Stokes hydrodynam-
ics. To study heavy-ion collisions, second-order relativistic
(“Israel-Stewart”) viscous hydrodynamics is used. A prelim-
inary study of the effect of second-order corrections on the
concept of effective viscosity was performed for a (0 + 1)D
fluid in Sec. III. The approximate definition of “second-order
effective viscosity” given by Eq. (26) relates (i) the definition
of effective viscosity identified in first-order hydrodynam-
ics, (ii) the initial value of the viscous part of the energy-
momentum tensor, and (iii) the relaxation time of the system.

As discussed in Sec. V, additional work is still necessary to
better understand if the results presented in this work can be
related to current phenomenological challenges in constrain-
ing the shear and bulk viscosity of QCD. Additionally, while
some results in the present work focused on bulk viscosity,
there is no fundamental challenges to extending them to shear
viscosity. This could be used to better understand the interplay
between shear and bulk viscosity and how this can affect the
discussion of effective viscosity presented in Sec. IV. As dis-
cussed above, it could also be worth investigating applications
in (0 + 1)D and (1 + 1)D fluid with symmetries different than
those explored in this work.
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APPENDIX A: SOLVING RELATIVISTIC IDEAL
HYDRODYNAMICS WITH BJORKEN SYMMETRIES

The ideal hydrodynamic equation for temperature in terms
of the variables λ ≡ ln(τ/τ0) and f (λ) ≡ ln(T0/T ) is

∂λ f (λ) = c2
s ( f (λ)), (A1)

with f (λ = 0) = 0. Given τ � τ0, λ � 0, and f (λ) � 0.
The ideal, conformal case with c2

s = 1/3 reduces to f (λ) =
λ/3, which in terms of T and τ is the well-known

T c
id (τ ) = T0

(τ0

τ

)1/3
.

In the case of a nonconformal fluid, a good approximate
solution can be found if c2

s (T ) does not vary too much with
temperature, as is the case of QCD. Equation (A1) can be
written

λ =
∫ f (λ)

0
df ′c−2

s ( f ′). (A2)

For QCD, c−2
s varies from 3 to ≈7 in the range of tem-

perature relevant in collisions at the RHIC and the LHC (cf.
Fig. 1). We first write an approximate solution f̄ (λ) with an
effective speed of sound c−2

s ( f ′) = c̄−2
s :

f̄ (λ) ≡ c̄2
s λ, (A3)

which for c̄−2
s ≈ 3–7 should be a reasonable first approxima-

tion of f (λ). Using f̄ (λ), Eq. (A2) can be written

λ =
[∫ f̄ (λ)

0
df ′c−2

s ( f ′)

]
+

[∫ f (λ)

f̄ (λ)
df ′c−2

s ( f ′)
]
. (A4)

The first term can be calculated “exactly” by integrating
the speed of sound. The second term can be calculated by
expanding c−2

s ( f ′) as a power series:

c−2
s ( f ′) = c−2

s ( f̄ ) + dc−2
s

df

∣∣∣∣
f = f̄

( f − f̄ ) + · · · . (A5)

Truncating at the first term, we obtain

λ ≈
[∫ f̄ (λ)

0
df ′c−2

s ( f ′)

]
+ [

c−2
s ( f̄ (λ))( f (λ) − f̄ (λ))

]
.

(A6)
This gives

f (λ) ≈ f̄ (λ) + c2
s ( f̄ (λ))

[
λ −

∫ f̄ (λ)

0
df ′c−2

s ( f ′)

]
, (A7)

which can be rewritten

f (λ) ≈ f̄ (λ) −
[∫ f̄ (λ)

0
df ′ c

−2
s ( f ′) − c̄−2

s

c−2
s ( f̄ (λ))

]
. (A8)

In general the speed of sound is a slowly varying function
over the range of integration, and the formula above can be

FIG. 15. Temperature evolution as a function of τ given by the
approximate solution to ideal Bjorken hydrodynamics, Eq. (A10), for
c̄−2

s = 3, 4, 5, compared with the exact solution. The exact conformal
solution is shown for reference. In panel (a) T0 = 250 MeV and in
panel (b) T0 = 400 MeV.

simplified further by evaluating the integrand at f ′ = f̄ (λ):

f (λ) ≈ f̄ (λ)

[
1 − c−2

s ( f̄ (λ)/2) − c̄−2
s

c−2
s ( f̄ (λ))

]
. (A9)

In terms of temperature, this solution can be written as

Tid (τ ) = T0

[
T̄id (τ )

T0

](
1− c−2

s (
√

T̄id (τ )T0 )−c̄−2
s

c−2
s (T̄id (τ ))

)
, (A10)

with

T̄id (τ ) = T0

(τ0

τ

)c̄2
s

.

Although the choice c̄−2
s = 3 (the well-known conformal

solution) appears natural, there is a good reason to choose a
larger value. Equation (A5) was written explicitly, although
only the first term was kept to highlight that the radius of
convergence is related to the difference [ f − f̄ = ln(T̄ /T )].
For the QCD equation of state, choosing c̄−2

s = 3 will result
in a good solution at large T0 and small τ but may produce a
divergent solution at larger τ . A value of c̄−2

s ≈ 4–5 sidesteps
this issue for any range of temperature relevant for heavy-ion
collisions. This is illustrated in Fig. 15.
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APPENDIX B: EFFECTIVE VISCOSITY IN
BOOST-INVARIANT NAVIER-STOKES HYDRODYNAMICS:
A DIFFERENT APPROACH TO EFFECTIVE VISCOSITIES

In the Bjorken (0 + 1)D case, the particlization hypersur-
face is a surface at a fixed time τ = τparticliz. This time can be
found by first writing the Bjorken solution τ (T ) instead of the
usual T (τ ), and then solving τparticliz = τ (Tparticliz ). Finally, we
must find 〈η/s〉eff and 〈ζ/s〉eff that minimizes

[τ ∗(Tparticliz ) − τ (Tparticliz )]2, (B1)

where τ ∗(T ) is the solution with effective viscosities.
Equation (2) for the evolution of temperature in a Bjorken

system can be rewritten

∂ ln τ

∂ ln T
= −c−2

s (T )

[
1 − V (T )

τT

]−1

≈ −c−2
s (T )

[
1 + V (T )

τT

]
. (B2)

For the second equation, we used the fact that viscous cor-
rections are modest to simplify the right-hand side of the
equation.

The expression for τ (T ) is thus

ln

(
τ

τ0

)
≈

∫ T0

T

dT ′

T ′ c−2
s (T ′)

[
1 + V (T ′)

τT ′

]
, (B3)

which can be solved iteratively, first without viscous effects
(ideal case),

ln

(
τ(I )

τ0

)
=

∫ T0

T

dT ′

T ′ c−2
s (T ′), (B4)

and then with viscous corrections,

ln

(
τ(II )

τ0

)
=

∫ T0

T

dT ′

T ′ c−2
s (T ′)

[
1 + V (T ′)

τ(I )T ′

]

= ln

(
τ(I )

τ0

)
+ �τ(II ) , (B5)

with

�τ(II ) ≡
∫ T0

T

dT ′

T ′ c−2
s (T ′)

V (T ′)
τ(I )T ′ . (B6)

The interpretation of the positive-definite �τ(II ) is that vis-
cosity generates entropy and, consequently, the temperature
decreases more slowly in the viscous case than in the ideal
case. This implies that it takes longer to reach a given par-
ticlization temperature. The ratio between the particlization
time in the viscous and ideal cases is

τviscous

τideal
≈ τ(II )

τ(I )
= exp

(
�τ(II )

)
. (B7)

As discussed in Sec. II B [Eq. (12)], τ(I ) can be approxi-
mated as

τ(I ) ≈ τ0

(
T0

T

)c−2
s (

√
T T0 )

, (B8)

meaning that

τviscous

τideal
≈ exp

[
1

τ0

∫ T0

T

dT ′

(T ′)2
c−2

s (T ′)V (T ′)
(

T ′

T0

)c−2
s (

√
T ′T0 )

]
.

(B9)

Assuming21 c−2
s ≈ 3 and with a constant viscosity,

τviscous

τideal
≈ exp

[
3Veff

τ0

∫ T0

T

dT ′

T ′
1

T ′

(
T0

T ′

)−3
]

T �T0≈ exp

[
3Veff

2τ0T0

]
, (B10)

with Veff being the effective viscosity. The equation above
provides a simple estimate for the effect of viscosity on the
lifetime of a Bjorken system.

Alternatively, a simple estimate of the effective viscosity
can be obtained by knowing τviscous and τideal:

Veff ≈ 2

3
τ0T0

(
τviscous

τideal
− 1

)
. (B11)

Returning to Eq. (B9), the particlization time can be esti-
mated with τparticliz ≡ τviscous ≈ τ(II ).

Equation (B1) can thus be written as

M ≡ [τ ∗(Tparticliz ) − τ (Tparticliz )]2

≈
{
τ0 exp

(∫ T0

T

dT ′

T ′ c−2
s (T ′)

[
1 + Veff

τ(I )T ′

])

−τ0 exp

(∫ T0

T

dT ′

T ′ c−2
s (T ′)

[
1 + V (T ′)

τ(I )T ′

])}2

≈
[
τ0 exp

(∫ T0

T

dT ′

T ′ c−2
s (T ′)

)]2

×
[

exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)Veff

τ(I )T ′

)

−exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)V (T ′)
τ(I )T ′

)]2

. (B12)

21Assuming an average speed of sound c̄s, the weight in the
exponential is c̄2

s /(c̄2
s − 1), which is 3/2 for c−2

s = 3 and 5/4 for
c−2

s = 5. The breaking of conformality in QCD (c−2
s � 3, see Fig. 1)

thus reduces Eq. (B10) by ≈10%.
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Optimizing with respect to Veff, ∂M/∂Veff ≡ 0, yields[
exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)Veff

τ(I )T ′

)

− exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)V (T ′)
τ(I )T ′

)]

× exp

[∫ T0

T

dT ′

T ′
c−2

s (T ′)Veff

τ(I )T ′

] ∫ T0

T

dT ′

T ′
c−2

s (T ′)
τ(I )T ′ ≡ 0.

The second line is positive-definite, implying the expected
result

exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)Veff

τ(I )T ′

)
= exp

(∫ T0

T

dT ′

T ′
c−2

s (T ′)V (T ′)
τ(I )T ′

)
,

(B13)

⇒ Veff =
∫ T0

T
dT ′
T ′

c−2
s (T ′ )V (T ′ )

τ(I )T ′∫ T0

T
dT ′
T ′

c−2
s (T ′ )
τ(I )T ′

. (B14)

Using Eq. (B8) as an approximation for τ(I ), we get

Veff =
∫ T0

T dT ′( T ′
T0

)c−2
s (

√
T ′T0 )−2

c−2
s (T ′)V (T ′)∫ T0

T dT ′( T ′
T0

)c−2
s (

√
T ′T0 )−2

c−2
s (T ′)

. (B15)

Equation (B15) differs from the previously derived equa-
tion for the effective viscosity, Eq. (13), by a factor
c−2

s (T ′). This factor originates ultimately from comparing
times (τ ) instead of temperature to find the optimal effec-
tive viscosity Veff, since d ln(T ) ∼ c2

s (T )d ln(τ ). In practice,
Eqs. (13) and (B15) generally give similar results, since
c−2

s (T ′) is a slowly varying function, an assumption that
we used to obtain both equations. We verified, for exam-
ple, that the results obtained in Secs. II B and II B do not
change significantly when calculated from Eq. (B15) rather
than Eq. (13).
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