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We present a determination of optical potentials using the double-folding method based on chiral effective
field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with dispersion relations
to constrain the imaginary part. This approach is benchmarked on 16O − 16O collisions, and extended to the
12C − 12C and 12C − 16O cases. Predictions derived from these potentials are compared to data for elastic
scattering at energies up to 1000 MeV, as well as for fusion at low energy. Without adjusting parameters, excellent
agreement with experiment is found. In addition, we study the sensitivity of the corresponding cross sections to
the nucleon-nucleon interactions and nuclear densities used.
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I. INTRODUCTION

One of the long-standing challenges in the study and
description of nuclear reactions is the determination of the
interaction between the colliding nuclei [1]. Typically, these
interactions are modeled using phenomenological potentials
whose parameters are adjusted to reproduce elastic-scattering
data, or obtained from inversion of scattering data [2]. These
potentials reproduce experimental data precisely, but lack pre-
dictive power. Double-folding potentials (DFP) are nucleus-
nucleus interactions constructed using the nucleonic densities
of the reacting nuclei and the interaction between nucleons
as input [3]. They present a way of determining potentials
relevant for nuclear reactions based on more fundamental
inputs: realistic nuclear densities and nucleon-nucleon (NN)
interactions. Even though this framework provides more real-
istic potentials for the nucleon-nucleus interactions than for
the nucleus-nucleus case [4], interesting results have been
obtained in such a way, e.g., by considering zero-range contact
NN interactions [5,6] or using a G-matrix approach, see, e.g.,
Refs. [7,8] for recent work. For modern nuclear forces, chiral
effective field theory (EFT) has become the standard method
for developing interactions rooted in the symmetries of quan-
tum chromodynamics (see, e.g., Refs. [9–11] for reviews).
Based on a power counting scheme, NN interactions can be
expressed as an expansion that starts at leading order (LO),
followed by contributions at next-to-leading order (NLO)
and next-to-next-to leading order (N2LO), which leads to a
systematic improvement of observables. In a recent study
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[12], we have explored the construction of double-folding
potentials starting from local NN interactions based on chiral
EFT [13–19].

Double-folding potentials obtained with chiral EFT NN in-
teractions at the Hartree-Fock level are purely real. However,
to properly reproduce scattering observables, an imaginary
part needs to be added to simulate the absorption into non-
elastic channels that can be open. In our previous work [12] it
was simply assumed to be proportional to the real part using a
proportionality constant NW = 0.6–0.8 motivated by Ref. [6].
The agreement of our results with elastic scattering data is
good [12], but we have observed a sensitivity to the choice of
the imaginary part of the optical potential, especially at large
scattering angles. This sensitivity motivates the use of more
refined descriptions of the imaginary part of the potential.
Since the real and imaginary parts of the potential are related
by dispersion relations [20], we apply them to derive the imag-
inary term of the optical potential, following Refs. [21–23],
where these relations have been successfully used to constrain
the energy-dependent terms of nucleus-nucleus potentials.

We focus on three systems: 16O − 16O, to compare with the
work of Ref. [12], 12C − 12C to extend this formalism to non-
closed shell nuclei, and 12C − 16O to test the validity of this
approach in asymmetric collisions. As reaction observables,
we consider the elastic-scattering cross sections and the astro-
physical S factors for the fusion at low energy. In both cases,
we test the sensitivity to the choice of the nuclear density,
comparing between phenomenological two-parameter Fermi
distributions [5] and density profiles obtained from electron
scattering [24].

This paper is organized as follows. In Sec. II we give a brief
overview of the formalism for the double-folding potential
and the reaction observables relevant for this study. In Sec. III
we present the dispersion relations and their application to the
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FIG. 1. Coordinates of the nuclei involved in the double-folding
calculation [see Eqs. (1) and (2)].

elastic scattering of 16O − 16O, and 12C − 12C. We follow in
Sec. IV with an analysis of the impact of different density
profiles on the results for elastic scattering and astrophysical
S factors of the fusion for these two systems along with the
asymmetric scattering of 12C − 16O. Finally, we summarize
and give an outlook in Sec. V.

II. THEORETICAL FRAMEWORK

A. Double-folding potentials

In the double-folding formalism, the nuclear part of the
potential between nucleus 1 (with atomic and mass numbers
Z1 and A1) and nucleus 2 (with Z2 and A2) can be constructed
from a given NN interaction v by folding it over the cor-
responding densities. The review of the formalism for the
double-folding potential in this section follows Refs. [7,12].
The resulting antisymmetrized potential can be written as a
sum of the direct (D) and exchange (Ex) contributions: VF =
VD + VEx.

Taking into account the coordinates of the geometry shown
in Fig. 1, the direct contribution to the double-folding poten-
tial is given by

VD(r) =
∑

i, j=n,p

∫∫
ρ i

1(r1) vi j (s) ρ
j
2 (r2) d3r1d3r2 , (1)

where s is given as in Fig. 1, and ρ i
1 and ρ i

2 with i = n, p are
the neutron and proton density distributions of the colliding
nuclei, respectively.

The exchange part of the potential reads

VEx(r, Ec.m.) =
∑

i, j=n,p

∫∫
ρ i

1(r1, r1 + s) v
i j
Ex(s)

× ρ
j
2 (r2, r2−s) exp

[
ik(r) · s
μ/mN

]
d3r1d3r2, (2)

where μ = mN A1A2/(A1 + A2) is the reduced mass of the
colliding nuclei (with mN the nucleon mass), vEx = −P12v
is the exchange contribution from the NN potential, and the
integral is over the density matrices ρ i(r, r ± s) of the nuclei.
In this channel, there is an additional phase that renders
the double-folding potential dependent on the energy Ec.m.

in the center-of-mass reference frame. The momentum for
the nucleus-nucleus relative motion k is related to Ec.m., the
nuclear part of the double-folding potential, and the double-
folding Coulomb potential VCoul through

k2(r) = 2μ [Ec.m. − VF(r, Ec.m.) − VCoul(r)]. (3)

As a result, VEx has to be determined self-consistently. The
density matrices entering in Eq. (2) are approximated using
the density matrix expansion restricted to its leading term [25]
(see also the discussion in Sec. II of Ref. [12]).

For the calculation of the double-folding potentials used
in this work, we include only two-body forces. Having the
advantage to work in coordinate space, we take the local
chiral NN interactions regulated with cutoffs R0 = 1.2, 1.4,
and 1.6 fm presented in Ref. [12] following Refs. [13,14]. It is
interesting to note that for doubly closed-shell nuclei, like 16O,
the NN interaction used in the the double-folding formalism
receives contributions only from the central parts of nuclear
forces. In the case of open-shell nuclei, 12C in this study, the
spin-orbit and tensor contributions to NN interactions need to
be also taken into account.

B. Reaction observables

As in Ref. [12], to test the validity of the double-folding
method, we focus on two types of reactions: fusion and elastic
scattering.

In the case of nuclear fusion involving collisions of light
or medium-mass nuclei at energies in a range that goes from
below to slightly above the Coulomb barrier, one usually
assumes that the nuclear potential is purely real, since its
imaginary part is well inside the range of the effective poten-
tial. For light systems, the fusion barrier is located before the
neck formation, which justifies the use of the double-folding
procedure. Then, the effective potential Veff is formed by
the real double-folding potential [26], the Coulomb potential
between the nuclei, and a centrifugal barrier that depends on
the orbital angular momentum l .

At low energy, the projectile and target can penetrate the
Coulomb and centrifugal barriers thanks to the tunnel effect.
Once the nucleus is within the barrier, its probability to get out
is so low that it can be neglected. This situation is described by
the incoming-wave boundary condition (IWBC) [27], under
which the fusion cross section can be obtained from the
probability to tunnel through the barrier in each of the partial
waves [26]. The fusion cross sections are determined using
the code CCFULL [28], in which we have included the effects
of the symmetrization of the wave function needed when the
fusing nuclei are identical spinless bosons.

The elastic scattering of medium to heavy nuclei can be
described within the optical model. The nuclear part of the
interaction between the colliding nuclei is described by a
complex potential, whose imaginary part accounts for the
probability that the system leaves the elastic channel. In
Ref. [12] we have assumed the imaginary part of the potential
to be proportional to its real part with a proportionality con-
stant NW = 0.6–0.8. It was seen then that elastic-scattering
calculations are sensitive to the choice of the imaginary part
of the potential, and that this description needs to be refined.

III. DISPERSION RELATIONS

A. Formalism

Following Feshbach’s formalism [20] a local complex op-
tical potential U between two nuclei can be written as the sum
of three contributions: a real term independent of the energy,
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a real term dependent on the energy and an imaginary term. In
our case,

UF (r, Ec.m) = VD(r) + VEx(r, Ec.m.) + iW (r, Ec.m.) . (4)

The dispersion relation holds between the energy-dependent
real and imaginary parts, and reads [21,23]

W (r, Ec.m.) = 1

π
P

∫ +∞

−∞
dE ′ VEx(r, E ′)

E ′ − Ec.m.
, (5)

where P represents the principal value integral.
In the case of our double-folding potentials, VEx has a

nearly identical radial dependence at all energies for both
systems, and only its depth varies with the energy. We can
then write the exchange part of the potential as a purely radial
part fEx and a potential depth V 0

Ex that carries the energy
dependence

VEx(r, E ) = V 0
Ex(E ) fEx(r) , (6)

which leads to

W (r, Ec.m.) = fEx(r)

π
P

∫ +∞

−∞
dE ′ V 0

Ex(E ′)
E ′ − Ec.m.

. (7)

Because the integral in Eq. (7) requires the depth of VEx

at negative energies, we set V 0
Ex(E ′ < 0) = V 0

Ex(E ′ = 0). We
have checked that setting V 0

Ex(E ′ < 0) = 0 has no impact for
energies higher than Ec.m. ≈ 30 MeV, which is below the
range of interest in this study.

B. Results at N2LO

We first present potentials from double-folding interactions
calculated with two-parameter Fermi density distributions
[5]. As an example, Fig. 2 shows the imaginary part W for
16O − 16O scattering at different laboratory energies, obtained
at N2LO with R0 = 1.4 fm. Similar results are obtained
with different cutoffs R0 and at different chiral orders, for
this system as well as for the other systems (12C − 12C and
12C − 16O). In panel (a) we show the results assuming that
the imaginary part is proportional to the real double-folding
potential VF, setting the proportionality constant to NW = 0.6.
Panel (b) shows the new results applying dispersion relations,
given by Eq. (7). From this comparison, it is clear that the
imaginary part of the potential obtained with the dispersion
relations exhibits a stronger energy dependence than if it is
simply assumed proportional to the real part VF. Interestingly,
dispersion relations lead to a reversed order in the potential
depth compared to the real part, with higher energies leading
to larger imaginary terms. This seems more reasonable, since
we expect more open channels at high energy, and hence more
absorption from the elastic channel. Note also that as W is
built exclusively from the weaker exchange part of the folding
potential, the depth of the imaginary potential is significantly
reduced compared our previous assumption.

The cross sections obtained in this work, using dispersion
relations instead of the NW factor, show the same systematic
behavior from chiral EFT that was seen in our previous work
(see Figs. 4 and 5 of Ref. [12]) for both 16O − 16O and
12C − 12C. The only exception to this systematics appears
for 16O − 16O at intermediate and high energies (480 MeV
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FIG. 2. Imaginary part of the double-folding potential for the
16O − 16O system: (a) proportional to the real double-folding poten-
tial with NW = 0.6 and (b) obtained through dispersion relations.
The shown results are based on the local chiral EFT interaction
at N2LO with R0 = 1.4 fm. The nucleonic densities were taken as
two-parameter Fermi density distributions [5].

and above), where the exchange potential at leading order is
repulsive, resulting in a non-physical elastic-scattering cross
section. This issue is resolved at NLO and N2LO, where the
behavior is consistent with that at lower energies. For this
reason, we show only results at N2LO.

Figure 3 shows the corresponding elastic-scattering cross
sections (ratio to the Mott cross section) at different energies
plotted as a function of the momentum transfer q. It can be
seen that there is good agreement with experimental data for
(a) 16O − 16O [29–34] and (b) 12C − 12C [35–39]. We also
show results using different NN cutoffs R0 = 1.2, 1.4, and 1.6
fm (red, blue, and magenta lines). It is clear that the applica-
tion of dispersion relations leads to an improved description
of experimental data compared to the scaling of the real part
studied in Ref. [12] (shown by the shaded area). These new
results show less uncertainty related to the description of the
imaginary part, as it can be seen by the small dependence on
the NN cutoff R0 at all energies for both systems. Albeit small,
this sensitivity to R0 increases at large momentum transfer,
suggesting that the data are more sensitive to short-range
physics at larger angles. The agreement with experiment is
comparable at small and large momentum transfers, in con-
trast to the results found in Ref. [12], where the results at large
q did not agree with the data (see shaded area). This might be
due to the more realistic change in magnitude of the absorptive
term given by dispersion relations. The only exception is
found at high energy (Elab = 1016 MeV) for 12C − 12C, where
the comparison deteriorates when the momentum increases.
Our results are also in good agreement with cross sections
obtained with phenomenological optical potentials (POP) for
16O − 16O [34] and 12C − 12C [35–39] (shown by the dotted
black lines).
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FIG. 3. Cross section for elastic scattering of (a) 16O − 16O and (b) 12C − 12C as a function of momentum transfer q for different laboratory
energies (normalized to the Mott cross section). Results are shown using NN potentials with R0 = 1.2 (red dashed), 1.4 (blue solid), and 1.6
fm (magenta dash-dotted) and dispersion relations to calculate the imaginary part of the double-folding potential. The shaded grey area shows
results obtained in Ref. [12] using the simple NW = 0.6–0.8 prescription. The experimental data are shown as black circles and were taken
from Refs. [29–39]. For comparison, the dotted lines show results obtained with phenomenological optical potentials (POP) [34–39].

For low collision energies there is a shift in the oscillations
of our results towards larger momentum transfers, especially
in the case of 16O − 16O. This shift was already seen in
Ref. [12] and suggests that the description of our potentials
at low energies needs still more refinement.

IV. IMPACT OF THE DENSITY

A. Density profiles

To study the sensitivity of the reaction observables to the
nuclear density, we consider different realistic densities. We
compare the results obtained with the two-parameter Fermi
densities of Ref. [5] (see Sec. III) to calculations obtained
using densities obtained from electron-scattering experiments
listed in Ref. [24], for which we use two parametrizations
based on a Fourier-Bessel as well as a sum of Gaussians. For
the nuclei involved in this study, these two density profiles
give almost indistinguishable cross sections for elastic scat-
tering and fusion at different energies. For this reason, we
show results using only the sum of Gaussians parametrization.
Since we are describing light nuclei with the same number
of protons and neutrons, we assume ρn = ρ p (see Fig. 4
for a comparison between two-parameter Fermi and sum of
Gaussians 16O proton densities).

In general, a potential obtained through a double-folding
procedure depends on the choice of the nuclear densities. We
have observed that, for the systems studied in this work, the

exchange part of the double-folding potential is more affected
by the density choice than its direct part. Since VD is one
order of magnitude larger than VEx (see Fig. 3 of Ref. [12]),
the impact of the density in the cross sections is small when
the imaginary part is taken to be proportional to the real
potential. However, if we apply the dispersion relations to
describe the imaginary part of the interaction, W will have the
radial shape of VEx [see Eq. (7)]. In this case, optical potentials

16
O
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-3

10
-2

10
-1

ρ 
[f

m
-3

]

Sum of Gaussians
Two-parameter Fermi

FIG. 4. Proton density of 16O using a two-parameter Fermi dis-
tribution [5] (blue) and the sum of Gaussians parametrization from
electron scattering [24] (green dashed).
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FIG. 5. Influence of the nucleonic density on the calculated cross sections for elastic scattering of (a) 16O − 16O and (b) 12C − 12C. The
ratio to the Mott cross section is shown as a function of the momentum transfer q for different laboratory energies. Results are calculated using
a two-parameter Fermi distribution [5] (blue) and sum of Gaussians density parametrization [24] (green dashed). The shaded areas illustrate the
sensitivity to R0 = 1.2−1.6 fm at N2LO. The experimental data are shown as black circles and were taken from Refs. [29–39]. For comparison,
we also show phenomenological optical-potential (POP) results as dotted lines [34–39].

obtained with different density profiles will have imaginary
parts with different shapes. Since the imaginary potential has
a significant impact on the cross sections, it is interesting to
study how a different density parametrization influences the
results for elastic scattering.

B. Elastic scattering

Figure 5 shows the results for elastic-scattering cross sec-
tions using two-parameter Fermi density profiles [5] (blue
lines) and densities derived from electron-scattering experi-
ments [24] (green dashed lines). The bands give the sensitivity
to R0 = 1.2−1.6 fm at N2LO. It can be clearly seen that
using realistic densities combined with dispersion relations
significantly improves the results. The fact that the magnitude
of the exchange potential decreases as the collision energy
increases (see Fig. 3 of Ref. [12]) also explains why the
improvement is more significant at low energies. At small
momentum transfer, where our model is most reliable, the
reproduction of experimental data is significantly enhanced.
In the case of 16O − 16O collisions, the improvement of the
aforementioned shift of the minima at low energies is remark-
able. There remain some discrepancies between the data and
our results at large momentum transfers, which are mainly
determined by short-range physics.

Figure 6 shows the results for the asymmetric 12C − 16O
scattering. In general, we observe the same kind of trend as
that described for Fig. 5, and we find good reproduction of

the experimental data. However, it can be observed that at
intermediate collision energies (Elab = 300 MeV) the magni-
tude of the cross section at low momentum transfer is larger
than the experimental data for both density profiles. This
is a feature also presented by the phenomenological optical
potential parametrization of Ref. [42], as well as in modern
parametrizations, such as Ref. [45], in which coupled channel
effects are included in order to model α-cluster transfers.
In general, we see that for this system our results describe
experimental data for large momentum transfer less accurately
than what can be observed for symmetric collisions. This
is an indication that short-range effects are more important
for asymmetric scattering. Since in this case partial waves
with odd l also contribute to the cross section, we expect
more channels to be open. There could be effects from ex-
citations given by structure and in-medium effects that are
not included in the double-folding model applied here. This
should be further investigated with the study of different
asymmetric collisions.

It is important to note that the results obtained with
two-parameter Fermi densities exhibit a shift in the minima
between R0 = 1.2 and 1.6 fm, even though the correspond-
ing bands are, in general, narrow. The large dependence on
R0 for the double-folding potentials calculated with realistic
densities shown by the green bands of Fig. 5 indicates that
there is more dependence on the absorptive term of the
potentials. We have observed that the radial part of VEx is
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FIG. 6. Same as Fig. 5 for elastic-scattering of the asymmetric
system 12C − 16O. The experimental data (black circles) and the POP
(black dotted) are taken from Refs. [40–44].

more dependent on R0 when using densities from electron
scattering. Through the application of the dispersive relations
[Eq. (7)], this leads to a larger dependence on R0 also for
the imaginary potential, which controls the description of the
absorptive channels.

It can be seen from Figs. 5 and 6 that, both for symmetric
and asymmetric collisions, our results show excellent agree-
ment with experimental data. We remind the reader that all
observables are obtained without adjusting parameters in the
nucleus-nucleus potentials.

C. Fusion

At low energy, the fusion process is strongly hindered by
the Coulomb repulsion, which makes the cross sections plum-
met when Ec.m. decreases. This hindrance is well accounted
for by the Gamow factor, which is usually factorized out of
the cross section to define the astrophysical S factor

S(Ec.m.) = Ec.m. e2πη σfus(Ec.m.) , (8)

where the Sommerfeld parameter is given by η =
Z1Z2e2/(4πε0v) with v the asymptotic relative velocity
between the two nuclei.

For the S factors shown in this work, VEx is taken at
the center of the considered energy range, Ec.m. = 12 MeV,
since the energy dependence in this range is negligible. All
results shown here are obtained using chiral NN interactions
at N2LO. For a discussion of the order-by-order behavior
of the 16O + 16O S factor, we refer to Sec. V of Ref. [12].
The same kind of behavior is also observed for 12C + 16O
and 12C + 12C. In the code used for the computation of the
fusion cross section, we approximate the Coulomb interaction
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FIG. 7. Astrophysical S factor for the fusion of (a) 16O + 16O,
(b) 12C + 16O, and (c) 12C + 12C as a function of energy Ec.m. in the
center-of-mass system. Results are obtained at N2LO using the two-
parameter Fermi distribution [5] (blue) and sum of Gaussians from
[24] (green dashed). The shaded areas illustrate the sensitivity to
R0 = 1.2−1.6 fm. The results of the parametrization from Ref. [46]
are displayed as black lines. The black symbols depict experimental
data from Refs. [47–51] (a), [59–62] (b), and [52–58] (c).

by a sphere-sphere potential of radius RC = rCA1/3
1 + rCA1/3

2
with rC = 1.79 fm [63]. We do not expect this change from
the double-folding Coulomb term used in Eq. (3) to affect
significantly our results.

Figure 7 shows the S factor for (a) 16O + 16O, (b)
12C + 16O, and (c) 12C + 12C fusion obtained with two-
parameter Fermi densities [5] (blue lines) and profiles from
electron scattering experiments [24] (green dashed lines).
The bands give the sensitivity to R0 = 1.2−1.6 fm. It can
be clearly seen that the nuclear density plays a significant
role in the fusion cross section, having much more impact
than the sensitivity to the short-range physics. The results
obtained with electron-scattering densities show excellent
agreement with experimental data [47–62], in contrast to the S
factors calculated with two-parameter Fermi densities, which
describe the experiment only qualitatively. We find that the use
of realistic densities is crucial to reproduce the data. The data
have been plotted with error bars, when available, except for
the case of the measurement of Erb et al. [54] for 12C + 12C
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(empty diamonds), where the ±10% error at all energies is not
shown for readability of the figure.

In the case of 12C + 12C, note that the barrier penetration
model applied in this work does not include the possibil-
ity of resonant states or hindrance of the fusion process,
mechanisms that are reflected in the data from Refs. [58]
(filled circles) and [64] (triangles), respectively. We also show
theoretical parametrizations of the S factors obtained by the
São Paulo group [46] (dash-dotted black lines), which are
confirmed by our results for the S factors of these systems
when using realistic densities.

V. CONCLUSIONS AND OUTLOOK

We have presented the derivation of optical potentials
using the double-folding method with local chiral EFT NN
potentials [13,14] and realistic nucleonic densities combined
with dispersion relations to determine the imaginary part. The
application of these relations helps constraining efficiently
the imaginary term of the nucleus-nucleus interactions, which
are generated with no fitting or scaling parameter. The use
of these potentials gives excellent reproduction of elastic-
scattering data at several energies for the collision of closed
and nonclose shell nuclei as well as scattering of non-identical
nuclei, as it was shown for the cases 16O − 16O, 12C − 12C, and
12C − 16O, respectively.

The use of dispersion relations to calculate the imagi-
nary potential leads to a better reproduction of data than
in our previous study [12], in which the imaginary part
was simply assumed to be proportional to the real double-
folding potential. Moreover, adopting realistic density profiles
from electron scattering [24] instead of two-parameter Fermi
parametrizations [5] in the folding procedure gives significant
improvement in the comparison with experiment, both for
elastic scattering and fusion.

We consider the use of realistic densities profiles combined
with dispersive relations a necessary first step towards a
better description of the imaginary part of nucleus-nucleus

potentials. There are several avenues for improvement, both at
the level of the input interactions and the many-body folding
method. First of all our investigation should be extended to
other nonsymmetric systems and to more exotic nuclei in the
future. Also, it would be interesting to study the impact of go-
ing beyond leading order in the density matrix expansion. It is
also necessary to determine the impact of a calculation beyond
Hartree-Fock and the non-local contributions that would arise
(see, e.g., Refs. [65,66]). Finally, the role of three-nucleon
interactions needs to be investigated in this approach, as they
also enter at N2LO. We have observed in preliminary calcu-
lations that the contribution to the nucleus-nucleus potential
arising from a contact three-nucleon interaction is very small
compared to the two-body contributions discussed here [67],
but the role of the two-pion-exchange and one-pion-exchange
three-body forces still needs to be investigated.

As a general feature of our results, we can conclude
that there is excellent agreement between our calculations
of observables and experimental data. It is important to re-
member that there is no fitting or scaling parameter in the
nucleus-nucleus potential. These results hint strongly towards
the interest of studying the impact of using density profiles
based also on chiral EFT interactions to analyze the results
within a fully consistent model that would bridge reactions
and structure.

ACKNOWLEDGMENTS

We thank A. B. Balantekin for useful discussions and L.
Gasques for providing the data on 12C + 12C fusion. We also
thank the International Atomic Energy Agency that provided
the experimental data through their web page www-nds.iaea.
org. This work was supported by the PRISMA+ (Precision
Physics, Fundamental Interactions and Structure of Matter)
Cluster of Excellence, the European Union’s Horizon 2020
research and innovation programme under Grant Agreement
No. 654002, and Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation)–Project-ID 279384907–SFB
1245 and Project-ID 204404729–SFB 1044.

[1] M. Brandan and G. Satchler, Phys. Rep. 285, 143 (1997).
[2] H. Leeb, H. Fiedeldey, and R. Lipperheide, Phys. Rev. C 32,

1223 (1985).
[3] G. Satchler and W. Love, Phys. Rep. 55, 183 (1979).
[4] C. Mahaux and R. Sartor, Nucl. Phys. A 530, 303 (1991).
[5] L. C. Chamon, B. V. Carlson, L. R. Gasques, D. Pereira, C.

De Conti, M. A. G. Alvarez, M. S. Hussein, M. A. Candido
Ribeiro, E. S. Rossi, Jr., and C. P. Silva, Phys. Rev. C 66, 014610
(2002).

[6] D. Pereira, J. Lubian, J. R. B. Oliveira, D. P. de Sousa, and L. C.
Chamon, Phys. Lett. B 670, 330 (2009).

[7] T. Furumoto, W. Horiuchi, M. Takashina, Y. Yamamoto, and
Y. Sakuragi, Phys. Rev. C 85, 044607 (2012).

[8] K. Minomo, M. Kohno, and K. Ogata, Phys. Rev. C 93, 014607
(2016).

[9] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[10] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).

[11] H.-W. Hammer, A. Nogga, and A. Schwenk, Rev. Mod. Phys.
85, 197 (2013).

[12] V. Durant, P. Capel, L. Huth, A. B. Balantekin, and A. Schwenk,
Phys. Lett. B 782, 668 (2018).

[13] A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler,
A. Nogga, and A. Schwenk, Phys. Rev. Lett. 111, 032501
(2013).

[14] A. Gezerlis, I. Tews, E. Epelbaum, M. Freunek, S. Gandolfi, K.
Hebeler, A. Nogga, and A. Schwenk, Phys. Rev. C 90, 054323
(2014).

[15] J. E. Lynn, J. Carlson, E. Epelbaum, S. Gandolfi, A. Gezerlis,
and A. Schwenk, Phys. Rev. Lett. 113, 192501 (2014).

[16] I. Tews, S. Gandolfi, A. Gezerlis, and A. Schwenk, Phys. Rev.
C 93, 024305 (2016).

[17] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E.
Schmidt, and A. Schwenk, Phys. Rev. Lett. 116, 062501 (2016).

[18] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis, K. E.
Schmidt, and A. Schwenk, Phys. Rev. C 96, 054007 (2017).

014622-7

http://www-nds.iaea.org
https://doi.org/10.1016/S0370-1573(96)00048-8
https://doi.org/10.1103/PhysRevC.32.1223
https://doi.org/10.1016/0370-1573(79)90081-4
https://doi.org/10.1016/0375-9474(91)90805-G
https://doi.org/10.1103/PhysRevC.66.014610
https://doi.org/10.1016/j.physletb.2008.10.066
https://doi.org/10.1103/PhysRevC.85.044607
https://doi.org/10.1103/PhysRevC.93.014607
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/RevModPhys.85.197
https://doi.org/10.1016/j.physletb.2018.05.084
https://doi.org/10.1103/PhysRevLett.111.032501
https://doi.org/10.1103/PhysRevC.90.054323
https://doi.org/10.1103/PhysRevLett.113.192501
https://doi.org/10.1103/PhysRevC.93.024305
https://doi.org/10.1103/PhysRevLett.116.062501
https://doi.org/10.1103/PhysRevC.96.054007


V. DURANT, P. CAPEL, AND A. SCHWENK PHYSICAL REVIEW C 102, 014622 (2020)

[19] L. Huth, I. Tews, J. E. Lynn, and A. Schwenk, Phys. Rev. C 96,
054003 (2017).

[20] H. Feshbach, Theoretical Nuclear Physics (John Wiley & Sons,
Inc., New York, 1992).

[21] R. V. Carlson, T. Frederico, M. S. Hussein, H. Esbensen, and
S. Landowne, IFUSP/P-802 (1989), https://inspirehep.net/
literature/283459.

[22] M. E. Brandan, M. Rodríguez-Villafuerte, and A. Ayala, Phys.
Rev. C 41, 1520 (1990).

[23] M. M. González and M. E. Brandan, Nuc. Phys. A 693, 603
(2001).

[24] H. D. Vries, C. D. Jager, and C. D. Vries, At. Data Nucl. Data
Tables 36, 495 (1987).

[25] J. W. Negele and D. Vautherin, Phys. Rev. C 5, 1472 (1972).
[26] K. Hagino and N. Takigawa, Prog. Theor. Phys. 128, 1061

(2012).
[27] S. Landowne and S. C. Pieper, Phys. Rev. C 29, 1352 (1984).
[28] K. Hagino, N. Rowley, and A. T. Kruppa, Comput. Phys.

Commun. 123, 143 (1999).
[29] H. G. Bohlen, E. Stiliaris, B. Gebauer, W. von Oertzen,

M. Wilpert, T. Wilpert, A. Ostrowski, D. T. Khoa, A. S.
Demyanova, and A. A. Ogloblin, Z. Phys. A 346, 189 (1993).
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