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Background: In recent years, substantial efforts have been made for the study of multinucleon transfer reactions
at energies around the Coulomb barrier both experimentally and theoretically, aiming at the production of
unknown neutron-rich heavy nuclei. It is crucial to provide reliable theoretical predictions based on microscopic
theories with sufficient predictive power.
Purpose: This paper aims to clarify the applicability of the quantal diffusion approach based on the stochastic
mean-field (SMF) theory for multinucleon transfer processes. Isotope production cross sections are evaluated for
the reactions of 64Ni + 208Pb at Ec.m. = 268 MeV and 58Ni + 208Pb at Ec.m. = 270 MeV and are compared with
available experimental data.
Methods: Three-dimensional time-dependent Hartree-Fock (TDHF) calculations are carried out for a range of
initial orbital angular momenta with Skyrme SLy4d functional. Quantal diffusion equations, derived based on the
SMF theory, for variances and covariance of neutron and proton numbers of reaction products are solved, with
microscopic drift and diffusion coefficients obtained from time evolution of occupied single-particle orbitals in
TDHF. Secondary de-excitation processes, both particle evaporation and fission, are simulated by a statistical
compound-nucleus de-excitation model, GEMINI++.
Results: Dynamics of a fast isospin equilibration process followed by a slow drift toward the mass symmetry
are commonly observed, as expected. Various reaction outcomes are evaluated, including average mass and
charge numbers of reaction products, total kinetic energy loss (TKEL), scattering angle, contact time, and
production cross sections for primary and secondary products. By comparing with the experimental data,
we find that SMF and TDHF quantitatively reproduce experimental data for few-nucleon-transfer channels
around the average values. In contrast, for many-nucleon-transfer channels, we find that the SMF approach
provides much better description of the experimentally measured isotopic distributions. The results underline
the importance of beyond-mean-field effects, especially one-body (mean-field) fluctuations and correlations, in
describing multinucleon transfer processes. Moreover, through a combined analysis of SMF with a statistical
model, GEMINI++, we find a significant contribution of transfer-induced fission, which is consistent with the
experimental observation. In some cases, the SMF approach overestimates the isotopic width, requiring further
improvements of the theoretical description. Possible ways to improve the description are discussed.
Conclusions: The SMF approach is designed to describe the quantum many-body problem according to an
ensemble of mean-field trajectories, taking into account part of many-body correlations in the description. As it
requires feasible computational costs comparable to the ordinary TDHF approach, together with further model
improvements, it will be a promising tool in the search for optimal reaction conditions to produce yet-unknown
neutron-rich heavy nuclei through the multinucleon transfer reaction.
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I. INTRODUCTION

This paper aims to develop a predictive microscopic ap-
proach for multinucleon transfer reactions to guide future ex-
periments for production of yet-unknown neutron-rich heavy
nuclei. The production of unknown neutron-rich isotopes is
essential to develop our understanding of physics of atomic
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nuclei. Fragmentation, fission, and fusion processes have been
successful to certainly extend the nuclear map of known
isotopes [1]. However, there are regions where those methods
have difficulty in producing unstable nuclei, typically located
in the north-eastern part of the nuclear landscape, which is
referred to as a “blank spot” [2]. Study of such neutron-
rich heavy isotopes is of paramount importance not only for
nuclear structure but also for nuclear astrophysics aspects. Ex-
perimental and theoretical investigations of nuclear shape and
shell evolution in the region of neutron-rich nuclei [3] and the
predicted island of stability in the superheavy region [4,5] will

2469-9985/2020/102(1)/014620(26) 014620-1 ©2020 American Physical Society

https://orcid.org/0000-0001-5800-1995
https://orcid.org/0000-0001-7948-2396
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.102.014620&domain=pdf&date_stamp=2020-07-27
https://doi.org/10.1103/PhysRevC.102.014620


KAZUYUKI SEKIZAWA AND SAKIR AYIK PHYSICAL REVIEW C 102, 014620 (2020)

drive our understanding of the physics of atomic nuclei. In
particular, properties of neutron-rich nuclei along the neutron
magic number N = 126 are crucial to uncover the detailed
pathways of the r-process nucleosynthesis [6]. Those nuclei
correspond to the last waiting point in the r process, providing
the third peak structure at A ≈ 195 in the solar abundance.
Besides, the region of superheavy nuclei has been explored by
fusion reactions that could produce neutron-deficient isotopes
with respect to the β-stability line [4,5]. The multinucleon
transfer reactions might be a possible alternative to produce
neutron-rich superheavy nuclei in the yet-unreached island of
stability, although further investigations are mandatory [7].
For the history, current status, and future prospect of the
experimental endeavor for new isotope production with the
multinucleon transfer reaction, we refer readers to a recent
comprehensive review [7] and references therein.

For the study of multinucleon transfer reactions, semiclas-
sical models such as GRAZING [8,9] and complex Wentzel-
Kramers-Brillouin (CWKB) [10] have been successfully used
to describe transfer processes at peripheral collisions. GRAZ-
ING has been incorporated with a statistical model to take
into account the effect of fission, such as GRAZING-F [11] or
GRAZING plus GEMINI++ [12]. Although it offers quantita-
tive predictions for few-nucleon transfers, it substantially un-
derestimates many-nucleon transfer processes due to missing
contributions from deep-inelastic collisions at small impact
parameters. The so-called dinuclear system (DNS) model, ini-
tially developed for fusion reactions, has been applied also for
multinucleon transfer and quasifission processes in damped
collisions. In the latter model, the probability distribution for
production of various isotopes are derived either by solving
a master equation for mass and/or charge asymmetry [13–16]
or using a simplified statistical expression [17–21]. To include
contributions from peripheral collisions, which are absent in
the DNS model, a simple hybrid called DNS+GRAZING has
been considered in the literature [22,23]. A Langevin-type
dynamical model has also been successful in describing mult-
inucleon transfer, quasifission, and fusion, in a unified way
[24,25] and has been further improved in Refs. [26,27]. On the
other hand, there are microscopic models that treat explicitly
nucleonic degrees of freedom such as improved quantum
molecular dynamics (ImQMD) model [28–31]. Although the
latter model still neglects the spin-orbit interaction, it has
shown successes in describing mass, charge, and total kinetic
energy (TKE) distributions. While the above-mentioned ap-
proaches have been extensively developed and successfully
applied, they rely on phenomenology to a certain extent. In
the present paper, we employ microscopic time-dependent
self-consistent mean-field theories, such as time-dependent
Hartree-Fock (TDHF) and its extension, which contains no
adjustable parameters and with no artificial restrictions on
the reaction dynamics. (See the above mentioned references
and review papers [7,32–34], and references cited therein, for
many other applications and discussions.)

The TDHF approach can properly describe the most prob-
able dynamical path in low-energy heavy-ion reactions, re-
sulting in a good description of total kinetic energy loss
(TKEL) and scattering angle, as well as average neutron
and proton numbers. This is supported by an extended

variational principle of Balian and Vénéroni [35], which
derives TDHF as a variation optimized for one-body ob-
servables [36]. With the help of the particle-number pro-
jection method [37], one can also extract the probability
for production of each isotope. The particle-number projec-
tion method has been used to study multinucleon transfer
processes in 16O + 208Pb [37], 40,48Ca + 124Sn, 40Ca + 208Pb,
58Ni + 208Pb [38,39], 24O + 16O [40], 18O + 206Pb [41],
64Ni + 238U [39,42], 136Xe + 198Pt [39], 238U + 124Sn [43],
16O + 27Al [44], 58Ni + 124Sn [45], 132Sn + 208Pb [46],
136Xe, 132Sn + 208Pb [47], and 136Xe + 194Ir [48], at energies
around the Coulomb barrier. It has been shown that TDHF
works quite well in describing production cross sections quan-
titatively for transfer of a few nucleons around the average
values. Recently, the TDHF approach has been combined with
a statistical model to evaluate effects of secondary processes
of excited reaction products [39,45–50]. It has been quanti-
fied that TDHF underestimates production cross sections for
many-nucleon transfer channels. This is related to the well-
known drawbacks of the TDHF approach; that is, it cannot de-
scribe the fluctuations of the collective dynamics and severely
underestimates the fragment mass and charge dispersions
[51–55]. One should note that the particle-number projection
method does not go beyond TDHF, but it is just a technique
to extract transfer probabilities from the TDHF wave function
after collision [37,38]. For a reliable, quantitative description
of processes far apart from the mean trajectory, one must go
beyond the standard TDHF description.

Recently, it has been shown that the description can be
improved significantly by the use of time-dependent random
phase approximation (TDRPA), which can be derived from
the extended variational principle of Balian and Vénéroni
[35]. The variation suitable for describing dispersions of
one-body observables with a single Slater determinant gives
rise to the TDRPA formula that takes into account one-
body fluctuations and correlations around the TDHF average
trajectory. TDRPA was applied to deep-inelastic collisions
of 16O + 16O [53] and 40Ca + 40Ca [54], showing substantial
improvements of the description. Recently, the TDRPA results
of the width of fragment mass distribution for deep-inelastic
60Ni + 60Ni collisions were compared with the experimen-
tal data of 58Ni + 60Ni at the same center-of-mass energies,
showing a remarkable quantitative agreement [55]. The re-
sults indicate that the one-body fluctuations incorporated by
TDRPA are the predominant mechanism for the mass-width
evolution in heavy-ion reactions at low energies. Further-
more, 176Yb + 176Yb collisions were investigated within the
TDHF and TDRPA approaches and primary production cross
sections were computed that suggest possible production of
neutron-rich nuclei [56]. One should note, however, that, as
was shown in Ref. [55], the TDRPA formula in the current
form cannot be applied to asymmetric systems, which pre-
vents systematic investigations for various projectile-target
combinations within the TDRPA approach.

In the present paper, we investigate an alternative ap-
proach, called the stochastic mean-field (SMF) approach,
proposed by Ayik in 2008 [57], which incorporates beyond
mean-field fluctuations and correlations into the description.
The original idea was to model the quantum many-body
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problem by an ensemble of time-dependent mean-field so-
lutions by introducing initial mean-field fluctuations, akin
to, in some sense, the derivation of quantum mechanics
from Brownian particles [58]. Later, it was shown that the
SMF treatment includes more than just the one-body fluc-
tuations and correlations through a simplified Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy [59]. It can
be shown that the SMF approach, while being applicable
also to asymmetric systems, coincides analytically with the
TDRPA formula in the small fluctuation limit [57,60]. In re-
cent years, there have been rapid developments and improve-
ments in the description. In the initial stage of applications, a
semiclassical treatment with the Wigner transformation and
with the Markov approximation was employed [61–65]. In
Ref. [66], a quantal expression of the diffusion coefficient
was proposed, further refined by eliminating particle states
from the expression with the completeness relation [67],
which is expressed in terms of the single-particle orbitals
from the mean-field theory. The quantal expression was ap-
plied for central collisions of symmetric systems, 28O + 28O,
40,48Ca + 40,48Ca, and 56Ni + 56Ni, just below the Coulomb
barrier, and also for head-on collisions of 238U + 238U [68].
Finally, the quantal diffusion description was generalized for
noncentral collisions [69]. The approach was successfully ap-
plied to 48Ca + 238U [69], 58,60Ni + 60Ni [70], 136Xe + 208Pb
[71,72], and 48Ca + 208Pb [73] systems. We mention here that
the SMF approach has also been applied in other contexts such
as spinordal instabilities of nuclear matter [74–80], symmetry
breaking [81], Fermionic Hubbard clusters [82], as well as
nuclear fission [83]. (For other mean-field approaches with
stochastic extensions, see discussions in, e.g., Refs. [60,84],
and references therein.)

In this work, we analyze the multinucleon transfer pro-
cesses in the 64Ni + 208Pb reaction at Ec.m. = 268 MeV and
the 58Ni + 208Pb reaction at Ec.m. = 270 MeV, for which
experimental data are available [85,86]. Because of the rel-
atively large isospin asymmetry of the systems, a fast isospin
equilibration process takes place. Also, since the systems have
a relatively large charge product, ZPZT = 2296, an onset
of quasifission emerges accompanying a transfer of many
nucleons from heavy to light nuclei that drives the system
toward the mass symmetry. The comparison of these two
systems at almost the same center-of-mass energy will reveal
detailed reaction mechanisms, especially isospin dependence
of the dynamics. In the experiments by Królas et al. [85,86],
a thick target was utilized and a full set of reaction prod-
ucts were thoroughly analyzed, which were stopped in the
target material. They performed elaborated analyses of in-
beam and off-line γ -γ coincidences [86], supplemented with
off-line radioactivity measurements [85]. Production yields
were then identified for abundant isotopes, both projectile-
like fragments (PLFs) and target-like fragments (TLFs), au-
tomatically covering the whole angular range, and from var-
ious origins, not only deep-inelastic collisions but also frag-
ments of transfer-induced fission. The comparison between
the measurements and the calculations thus sheds light on
the applicability of theoretical approaches. It is shown clearly
that the SMF approach provides much better description
for many-nucleon transfer processes, where TDHF fails to

describe magnitude of production cross sections by orders
of magnitude. Finally, the possibility to produce neutron-rich
nuclei along the neutron magic number N = 126 is discussed.

The article is organized as follows. In Sec. II, the theoret-
ical frameworks of TDHF and the quantal diffusion approach
for multinucleon transfer processes based on the SMF theory
are recalled. In Sec. III, we present the results of TDHF and
SMF calculations for the 58,64Ni + 208Pb reactions, which are
compared with the available experimental data. Conclusions
are given in Sec. IV.

II. METHODS

A. The TDHF theory

The TDHF theory in nuclear physics has a long history
since the 1970s [87]. With the continuous development of
computational technology, it has become a standard tool to in-
vestigate various nuclear dynamics microscopically within the
self-consistent mean-field picture. It is nowadays regarded as a
time-dependent energy density functional (TDEDF) approach
rooted with the concept of nuclear density functional theory
(DFT) and its time-dependent extension (TDDFT) [88]. With
the use of a local EDF, the TDHF equation has a generic form,

ih̄
∂φ

q
h (rσ, t )

∂t
=

∑
σ ′

ĥq
σσ ′ (r, t )φq

h (rσ ′, t ), (1)

where φ
q
h (rσ, t ) are the h th occupied (hole) state with spatial,

spin, and isospin coordinates, r, σ , and q (q = n for neutrons
and q = p for protons), respectively. ĥq

σσ ′ (r, t ) denotes the
single-particle Hamiltonian which depends on various densi-
ties. For instance, the number and the current densities are
expressed in terms of the single-particle orbitals as follows:

ρq(r, t ) =
occ.∑
h,σ

∣∣φq
h (rσ, t )

∣∣2
, (2)

jq(r, t ) = h̄

m

occ.∑
h,σ

Im
[
φ

q∗
h (rσ, t )∇φ

q
h (rσ, t )

]
. (3)

EDF is constructed so as to reproduce static properties of finite
nuclei over a wide range in the nuclear chart and basic nuclear
matter properties in the spirit of nuclear DFT. With the use
of the same form of EDF for static and dynamic calculations
(disregarding possible memory effects in the functional), the
TDHF approach offers a unified description of nuclear struc-
ture and dynamics without empirical parameters.

We note that the Pauli exclusion principle is automatically
ensured for all times. With the spin-orbit interaction, the shell
effects and deformation, both static and dynamic, are auto-
matically described in a unified way. It is therefore possible to
self-consistently describe complex reaction dynamics not only
nucleon transfer, but also shape deformation (neck formation),
surface vibrations, single-particle excitations, energy and an-
gular momentum dissipation, microscopically from nucleonic
degrees of freedom. The application of the TDHF approach
ranges from collective excitation modes of an isolated nucleus
[89–97] to nuclear reactions like transfer [37–49,98–101],
quasifission [50,102–111], fusion [112–119], and fission
[120–125]. For more details of the TDHF approach and its
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various applications, see, e.g., Refs. [34,36,87,88,126–128].
In this way, the TDHF approach is a versatile tool for studying
quantum many-body dynamics in nuclear systems at low
energies. However, the inherent suppression of fluctuations by
the common mean field needs to be overcome. The aim of the
present paper is to tackle this problem by the SMF approach.

B. The SMF theory

We recall the basic concepts of the SMF approach. We will
omit here the spin and isospin indexes for simplicity. For a
detailed derivation and discussions, we refer the readers to,
e.g., Refs. [57,60,69].

In low-energy heavy-ion reactions at energies around the
Coulomb barrier, two-body dissipation would play a minor
role owing to the Pauli exclusion principle, and one-body
dissipation presumably plays a predominant role. The ob-
served agreements between recent TDHF calculations and
experimental data offer strong support on this picture (see,
e.g., Refs. [42,55,104]). It is therefore reasonable to assume
that one-body (mean-field) fluctuations, the counterpart of the
one-body dissipation, are the major source for generating a
distribution of observables in nuclear reactions at low ener-
gies. Generally, the ground-state wave function of an atomic
nucleus is not a mere single Slater determinant, but rather a
superposition of many Slater determinants, as shown in, e.g.,
the success of the generator coordinate method (GCM) for
nuclear structure calculations [129,130], that can be viewed
as quantal zero-point fluctuations of the mean-field potential.

To take into account the mean-field fluctuations, Ayik
proposed [57] to introduce fluctuations in the density matrix
at the initial time,

ρλ(r, r′, t0) =
∑
i, j

φ∗
i (r, t0)ρλ

i jφ j (r′, t0), (4)

where λ labels each stochastically generated event. Note that
the stochastic elements ρλ

i j in the right hand side of Eq. (4)
do not depend on time. The generated density matrices evolve
in time independently from each other according to its own
self-consistent mean-field potential, i.e.:

ih̄
dρλ

dt
= [h[ρλ(t )], ρλ]. (5)

Note that in the SMF approach the stochasticity is introduced
only at the initial time, and the time evolution of the mean-
field in each event λ itself is not a stochastic process. The key
question, and this is the most important element behind the
SMF theory, is how to imprint the initial fluctuations.

The initial fluctuations are introduced in the following
way. Each event λ generates the expectation value of a one-
body observable, 〈A〉λ = Tr[ρλA]. In the SMF approach, the
original quantum mechanical framework is then replaced with
a statistical treatment. Namely, the expectation value and the
variance of a one-body observable are, respectively, evaluated
as [131]

〈A〉λ = Tr[ρλA] =
∑

i j

ρλ
i jA ji, (6)

(〈A〉λ − 〈A〉λ)2 = (Tr[δρλA])2 =
∑
i jkl

δρλ
i jδρ

λ
kl A jiAlk, (7)

where δρλ is the fluctuating part of the density matrix, i.e.,
δρλ = ρλ − ρλ. Here and henceforth, the bar over quanti-
ties represents the ensemble average over the stochastically
generated events. On the other hand, for the natural basis
satisfying 〈i|ρ| j〉 = niδi j at the initial time, where ni are
average occupation numbers of the single-particle states, the
quantum mechanical expressions of the expectation value and
the variance of a one-body observable are, respectively, given
by [131]

〈A〉 =
∑

i

niAii, (8)

〈A2〉 − 〈A〉2 = 1

2

∑
i j

[ni(1 − n j ) + n j (1 − ni )]AjiAi j . (9)

The essential point of the SMF theory is that it is designed
in such a way that the expectation value and the variance ob-
tained with the statistical treatment, Eqs. (6) and (7), coincide
with the quantum expressions, Eqs. (8) and (9), respectively,
at the initial time. It is accomplished by setting the initial
fluctuations according to [57]

ρλ
i j = niδi j, (10)

δρλ
i jδρ

λ
kl = 1

2 [ni(1 − n j ) + n j (1 − ni )]δk jδli. (11)

Since the fluctuating components of the density matrix have
zero mean, by construction, an ensemble average of those
events reproduces the ordinary mean-field (TDHF) result.

We note that when the initial state has zero temperature
such as the ground state of projectile and target nuclei before
collision, the average occupation numbers ni are zero or one.
If an observable is diagonal at the initial state, Ai j = Aiδi j ,
such as particle number operators for the projectile and target,
as seen in Eq. (9), the variance of such observables are strictly
zero and therefore they do not exhibit fluctuations at the initial
state. If the initial state has a finite temperature, in the case
of induced fission of a compound nucleus for instance, the
average values of the occupation numbers are determined by
the Fermi-Dirac distribution.

As mentioned in the introduction, it is worth noting here
that although the SMF approach was originally proposed to
take into account one-body (mean-field) fluctuations at the
initial time, it has been shown that it grasps part of many-body
correlations through a simplified BBGKY hierarchy [59]. In
addition, in the original formulation of the SMF approach
[57], the stochastic matrix elements δρλ

i j are assumed to
be uncorrelated Gaussian random numbers with zero mean.
Recently, in Ref. [131], by analyzing higher order moments
of one-body observables (the first and the second moments
correspond to the mean and the variance, respectively), it
has been shown that the description can be further improved
by relaxing the Gaussian assumption (see also Ref. [132]).
In the present article, however, we adopt the Gaussian as-
sumption for the stochastic matrix elements, which allow us
to formulate a quantal diffusion description for multinucleon
exchanges, as described in Sec. II C. We leave further im-
provements of such model ingredients as future works.
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FIG. 1. Snapshots of density distribution in the 64Ni + 208Pb re-
action at Ec.m. = 268 MeV with L = 50h̄ are shown in the reaction
plane. The blue line indicates the elongation axis which passes
through the centers of mass of the projectile-like and target-like
subsystems. The red line indicates the position of the window plane.
A contour of ρ = 0.01 fm−3 is indicated by dotted lines. Elapsed
time is indicated in each panel in zeptoseconds (1 zs = 10−21 s).

C. The quantal diffusion description

When dinuclear structure is maintained during a collision
(cf. Fig. 1), it is possible to define a window at the neck region
and derive quantal diffusion descriptions for multinucleon
exchanges. Namely, it allows us to define neutron and proton
numbers of a projectile-like subsystem, Nλ

1 (t ) and Zλ
1 (t ),

respectively, as macroscopic variables. Then, the nucleon
exchange can be described as a diffusion process [133]. The
evolution of the neutron and proton numbers is described by
the Langevin equation:

d

dt

(
Nλ

1 (t )
Zλ

1 (t )

)
=

∫
g(x′)

(
ê · jλn (r, t )

ê · jλp(r, t )

)
dr =

(
νλ

n (t )
νλ

p (t )

)
, (12)

where jλq (t ) and νλ
q (t ) (q = n or p) are the current densities

and drift coefficients in the event λ, respectively. The unit
vector ê is perpendicular to the window plane and directed
along the relative position vector from the center of the target-
like subsystem to the center of the projectile-like subsys-
tem, ê(t ) = cos θ (t )x̂ + sin θ (t )ŷ. Here, θ (t ) represents the
(initially) smaller angle between the elongation axis of the
colliding system and the collision axis. The elongation axis
and the rotation angle θ (t ) can be determined by diagonalizing
the mass quadrupole matrix as described in Refs. [64,69]. The
smoothing function, g(x′) = 1√

2πκ
exp[−x′2/2κ2], extracts the

contribution at the vicinity of the window plane, where x′ =
ê · (r − r0) with r0 indicating the center of the window plane.
The smoothing parameter κ = 1.0 fm is used, which is the
same order of the lattice spacing, as described in Ref. [67].

To obtain equations for the variances and the covariance,
we use the stochastic part of the Langevin equation (12),

which is linearized assuming small fluctuations around the
mean evolution:

d

dt

(
δNλ

1 (t )
δZλ

1 (t )

)
=

(
∂νn
∂Z1

δZλ
1 (t ) + ∂νn

∂N1
δNλ

1 (t )
∂νp

∂Z1
δZλ

1 (t ) + ∂νp

∂N1
δNλ

1 (t )

)
+

(
δνλ

n (t )
δνλ

p (t )

)
.

(13)

Here, δNλ
1 = Nλ

1 − N1 and δZλ
1 = Zλ

1 − Z1 denote the stochas-
tic part of neutron and proton numbers of the projectile-like
subsystem, respectively, with N1 = Nλ

1 and Z1 = Zλ
1 . Similarly,

δνλ
n = νλ

n − νn and δνλ
p = νλ

p − νp denote the stochastic parts
of neutron and proton drift coefficients, respectively, with
νn = νλ

n and νp = νλ
p . The derivatives of the drift coefficients

are evaluated at the mean trajectory. Multiplying both sides
of Eq. (13) by δNλ

1 and δZλ
1 and taking the ensemble average,

one can derive a set of coupled partial differential equations
[65,69]:

∂σ 2
NN

∂t
= 2

∂νn

∂N1
σ 2

NN + 2
∂νn

∂Z1
σ 2

NZ + 2DNN , (14)

∂σ 2
ZZ

∂t
= 2

∂νp

∂Z1
σ 2

ZZ + 2
∂νp

∂N1
σ 2

NZ + 2DZZ , (15)

∂σ 2
NZ

∂t
= ∂νp

∂N1
σ 2

NN + ∂νn

∂Z1
σ 2

ZZ +
(

∂νn

∂N1
+ ∂νp

∂Z1

)
σ 2

NZ ,

(16)

with the initial conditions σNN = σZZ = σNZ = 0 at t = 0.
Note that the particle number is not fluctuating at the initial

time. σ 2
NN = (Nλ

1 − Nλ
1 )2 and σ 2

ZZ = (Zλ
1 − Zλ

1 )2 are the
variances of neutron and proton numbers, respectively, and

σ 2
NZ = (Nλ

1 − Nλ
1 )(Zλ

1 − Zλ
1 ) is the covariance (or the mixed

variance) of neutron and proton numbers. DNN and DZZ

are the quantal diffusion coefficients of neutron and proton
exchanges, respectively. The same set of partial differential
equations was employed in phenomenological nucleon ex-
change models for deep-inelastic collisions [134,135]. It is
worth emphasizing that all ingredients of Eqs. (14)–(16) are
determined from the time evolution of the single-particle
orbitals in TDHF, as described in Sec. II D. Therefore, it
does not actually require us either to generate an ensemble
of mean-field trajectories or to specify magnitude of fluctua-
tions of δρλ

i j . In practice, only a single TDHF calculation is
sufficient to solve Eqs. (14)–(16), for a given set of initial
conditions. Thus, a systematic investigation is feasible with
moderate computational costs comparable to ordinary TDHF
calculations.

D. Transport coefficients

To solve Eqs. (14)–(16), we need to have the drift and
diffusion coefficients. While the mean drift coefficients, νn

and νp, can be evaluated directly from the net mean currents
[Eq. (3)] passing through the window in TDHF, it is not
straightforward to take derivatives of them with respect to the
neutron and proton numbers of the projectile-like subsystem
[cf. Eqs. (14)–(16)]. We note that the Langevin equation (13)
describes the evolution of macroscopic variables N1 and Z1 in
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the overdamped limit in which the inertial terms and the diffu-
sion coefficients of the conjugate momentum of N1 and Z1 do
not appear. To evaluate the derivatives of the drift coefficients,
we employ the Einstein relations in the overdamped limit,

νn(t ) = −DNN (t )

T ∗
∂

∂N1
U (N1, Z1), (17)

νp(t ) = −DZZ (t )

T ∗
∂

∂Z1
U (N1, Z1), (18)

where T ∗ denotes the effective temperature and U (N1, Z1) is
the potential energy surface of the colliding dinuclear system.
The quantities DNN and DZZ are the diffusion coefficients of
the macroscopic variables N1 and Z1, not of the conjugate mo-
mentum variables. The effective temperature was introduced
by Randrup in Ref. [133]; see also Ref. [136]. In calculations
of the derivative of drift coefficients, we do not need an
explicit expression of the effective temperature. Only ratios of
the curvature parameters and the effective temperature appear
in Eqs. (17) and (18). It is possible to calculate these ratios,
which are referred to as the reduced curvature parameters,
α = a/T ∗ and β = b/T ∗, in terms of the mean drift path of the
collision. The details of determination of the driving potential
and the derivatives of the mean drift coefficients are given in
Appendix A.

The diffusion coefficient is related to the autocorrelation
function of the stochastic part of the drift coefficients, δνλ

q
[137,138]:

Dqq(t ) =
∫ t

0
δνλ

q (t )δνλ
q (t ′)dt ′, (19)

where

δνλ
q (t ) = ê · h̄

m

∑
i, j

∫
dr g(x′)

× Im
[
φ

q∗
i (r, t ; λ)∇φ

q
j (r, t ; λ)

]
δρλ

i j . (20)

Note that the summation over i and j in Eq. (20) is taken
for all the complete set of single-particle orbitals including
unoccupied (particle) states.

By using the main postulate of the SMF approach, Eq. (11),
together with the completeness relation in the diabatic approx-
imation, it is possible to eliminate the unoccupied states from
the expression [67]. As a result, the diffusion coefficients,
including memory (non-Markovian) effects, are determined
entirely by the occupied states in TDHF and are given by
[67,69]

Dqq(t ) =
∫ t

0
dτ

∫
dr g̃(x′)

[
GT(τ )Jq

T

(
r, t − τ

2

)

+ GP(τ )Jq
P

(
r, t − τ

2

)]

−
∫ t

0
dτ Re

⎡
⎣ occ.∑

h′∈P,h∈T

Aq
h′h(t )Aq∗

h′h(t − τ )

+
occ.∑

h′∈T,h∈P

Aq
h′h(t )Aq∗

h′h(t − τ )

⎤
⎦, (21)

where g̃(x′) = 1√
πκ ′ exp[−(x′/κ ′)2] is another smoothing

function with a dispersion κ ′ = 0.5 fm. GP(T)(τ ) =
1√

4πτ0
exp[−(τ/2τ0)2] is the averaged memory kernel for

hole states. The memory time is given by τ0 = κ ′/|u0|,
where u0 stands for the average flow speed of hole states
across the window. Jq

μ denotes the sum of magnitude of the
current densities perpendicular to the window plane, whose
contribution comes only from hole states which initially
belong to either projectile (μ = P) or target (μ = T), i.e.,

Jq
μ(r, t ) = h̄

m

occ.∑
h∈μ

∣∣ê · Im
[
φ

q∗
h (r, t )∇φ

q
h (r, t )

]∣∣. (22)

The hole-hole matrix elements, Aq
h′h(t ), are given by

Aq
h′h(t ) = ê · h̄

2m

∫
dr g(x′)

[
φ

q∗
h′ (r, t )∇φ

q
h (r, t )

−φ
q∗
h (r, t )∇φ

q
h′ (r, t )

]
. (23)

(See Refs. [67,69] for more details.)
The first term in the quantal diffusion coefficient (21) rep-

resents the sum of the nucleon currents between two subsys-
tems across the window, which is integrated over the memory.
It resembles the diffusion coefficient in the random walk
problem, which is given by the sum of the rate for forward and
backward steps [133,137,138]. On the other hand, the second
term represents the Pauli blocking effect in nucleon transfer
processes, which does not have a classical counterpart. In this
way, the diffusion coefficients, which govern the fluctuation
mechanism of the collective motion, can be determined en-
tirely from the occupied single-particle orbitals in TDHF. It
is rational because the one-body dissipation mechanism does
present within the TDHF approach, which is related to the
fluctuation mechanism as stated in the fluctuation-dissipation
theorem.

E. Primary production cross sections

To evaluate production cross sections, we need to compute
the probability for production of each isotope. Within the
TDHF approach, one can employ the particle-number projec-
tion method to obtain the probability to find n nucleons in a
reaction product [37,38],

P(q)
n (b) = 1

2π

∫ 2π

0
einθ det

{〈
φ

q
i

∣∣e−iN̂ (q)
1 θ

∣∣φq
j

〉}
dθ, (24)

where N̂ (q)
1 denotes the number operator for neutrons (q = n)

or protons (q = p) in a fragment 1 and b is the impact param-
eter. The probability distribution, PN,Z (b), for the production
of nuclei specified by (N, Z) has a product form,

PTDHF
N,Z (b) = P(n)

N (b)P(p)
Z (b). (25)

Therefore, there is essentially no correlation between neutron
and proton transfers beyond mean field (meaning that, e.g.,
neutrons and protons can still transfer in the same direction via
shape evolution) in the TDHF approach. In other words, the
covariance, σ 2

NZ = 〈N̂ (n)
1 N̂ (p)

1 〉 − 〈N̂ (n)
1 〉〈N̂ (p)

1 〉, is strictly zero
in TDHF, by construction. As already mentioned in the in-
troduction, the particle-number projection method is merely a
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way to extract the probabilities from the TDHF wave function
after collision [37,38]. Thus, it misses correlations between
neutron and proton transfers and underestimates the widths of
neutron and proton number distributions.

In the SMF approach, by solving the set of quantal diffu-
sion equations, Eqs. (14)–(16), we can obtain the variances
and the covariance of neutron and proton numbers of reaction
products. For uncorrelated Gaussian random numbers, it can
be shown that the Langevin equation (12) is equivalent to
the Fokker-Plank description for the probability distribution
PN,Z (b) [139]. In particular, when the drift coefficients have
linear dependence as in the present case of the linearized form
of the Langevin equation, the probability distribution is deter-
mined by a correlated Gaussian function. By employing this
equivalence, we can write down the probability distribution,
PN,Z (b), as follows:

PSMF
N,Z (b) = exp[−CN,Z (b)]

2πσNN (b)σZZ (b)
√

1 − η2
b

, (26)

with

CN,Z (b) = 1

2
(
1 − η2

b

)[(
N − N̄b

σNN (b)

)2

+
(

Z − Z̄b

σZZ (b)

)2

− 2ηb

(
N − N̄b

σNN (b)

)(
Z − Z̄b

σZZ (b)

)]
, (27)

where ηb is the correlation coefficient, defined by the ratio
of the covariance to the product of neutron and proton dis-
persions, i.e., ηb ≡ σ 2

NZ (b)/σNN (b)σZZ (b). N̄b and Z̄b denote,
respectively, the mean neutron and proton numbers of the
reaction product in TDHF.

The production cross sections for primary reaction prod-
ucts (i.e., just after the collision before de-excitation) are then
evaluated by an integration over the impact parameter:

σ (N, Z ) = 2π

∫ bmax

bmin

b PN,Z (b) db, (28)

where the minimum and the maximum values of the impact
parameters, bmin and bmax, are chosen according to the an-
gular coverage of the corresponding experiment. Note that
after multinucleon transfer processes reaction products can be
highly excited, and one must evaluate effects of secondary
de-excitation processes to make a direct comparison with
experimental data.

F. Secondary production cross sections

For the evaluation of the production cross sections for
secondary reaction products (i.e., after de-excitation via par-
ticle evaporation, fission, and γ -ray emissions), we employ
a statistical model for compound-nucleus disintegration pro-
cesses. To this end, we follow the strategy as in Ref. [39].
In Ref. [39], the average total excitation energy (the sum of
excitation energies of a PLF and a TLF) was estimated by

E∗
N,Z (b) = Ec.m. − E∞

kin(b) + Qgg(N, Z ), (29)

where Qgg(N, Z ) denotes the ground-to-ground Q value for
the exit channel involving a nucleus specified by (N, Z ). Here,

E∞
kin(b) denotes the asymptotic value of TKE of outgoing

fragments for the average products in TDHF. The average
total excitation energy is then distributed to PLFs and TLFs in
an appropriate way. This prescription was also used by other
authors [45–48].

However, in the present systems under study as dis-
cussed in Sec. III D, reaction products involve transfer of
many (more than 10) protons due to the quantal diffusion
mechanism. In such a case, the Coulomb potential at the
scission configuration can be substantially different from
that of the mean trajectory. To have a feeling of it, imag-
ine that we have touching Ni and Pb nuclei at distance
R = 1.2(A1/3

P + A1/3
T ) � 12 fm, for which we have the

Coulomb potential VC � 275.5 MeV. If we exchange protons
between those nuclei, keeping the R value unchanged, the
Coulomb potential shall be V ′

C = (ZP + �Z )(ZT − �Z )e2/R,
where �Z denotes the number of exchanged protons. The
difference, �VC = V ′

C − VC, becomes, e.g., +6.4 MeV
(−6.6 MeV) for �Z = +1 (−1), +12.5 MeV (−13.4 MeV)
for �Z = +2 (−2), . . . , +52.8 MeV (−76.8 MeV) for
�Z = +10 (−10), and so on. The increase (decrease) of the
Coulomb potential results in increase (decrease) of TKE and,
thus, the total excitation energy will be decreased (increased).
This is a crude estimation, as the R value could be larger due to
fragment deformation, but it suggests that the secondary cross
sections may be affected.

Therefore, to grasp the possible energy change due to
proton transfers, we modify the expression of the average total
excitation energy as follows:

E∗
N,Z (b) = Ec.m. − E∞

kin(b) + Qgg(N, Z ) − �VC(b, Z ). (30)

Here, the additional Coulomb correction term is defined as

�VC(b, Z ) = Z (Ztot − Z ) − Z̄1(b, tc)Z̄2(b, tc)

R(b, tc)
e2, (31)

where Ztot = ZP + ZT is the total number of protons in the
system. tc is chosen in the following way: (1) When two
nuclei touch in the course of collision, tc is taken as the
instance at which a dinuclear system splits, assuming that
TKE is determined by the Coulomb potential at scission.
(2) When two nuclei do not touch, tc is taken as the instance
at the turning point, assuming that the proton transfer occurs
at the closest approach. Processes with a finite contact time
[see Sec. III A and Fig. 2(a)] are regarded as “touched.” Z̄μ

(μ = 1,2) and R represent the average number of protons
in respective fragments and the relative distance between
them, respectively, at the time tc. In this way, the excitation
energy becomes effectively transfer channel dependent by Qgg

and �VC. The estimated average total excitation energy (30)
is then distributed to reaction products proportional to their
mass. We should keep in mind that nonequilibrium excitation
energy division may be possible especially for asymmetric
systems (see, e.g., Refs. [136,140,141]). With the average
total angular momentum of each reaction product, secondary
processes are simulated by a statistical compound-nucleus
de-excitation model, GEMINII++ [142–144], which includes
particle evaporation and fission in competition with γ -ray
emission.
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FIG. 2. Results of the TDHF calculations for the 64Ni + 208Pb
reaction at Ec.m. = 268 MeV (red open circles) and the 58Ni + 208Pb
reaction at Ec.m. = 270 MeV (blue open squares). In panels (a) and
(b), contact time and average total kinetic energy loss (TKEL)
are shown, respectively, as a function of the initial orbital angular
momentum. In panel (c), average charge asymmetries, (N − Z )/A,
for a PLF and a TLF are shown as a function of the contact time. The
contact time is shown in zeptoseconds (1 zs = 10−21 s).

G. Computational details

To perform the SMF calculations, three-dimensional (3D)
parallel TDHF code [38] has been extended and applied. For
the EDF, we employ the Skyrme SLy4d functional [145]. In
the code, single-particle orbitals are represented on 3D uni-
form grid points with the isolated (box) boundary condition.
The grid spacing is set to 0.8 fm. First and second spatial
derivatives are computed with the 11-point finite-difference
formulas. The Coulomb potential is computed by Fourier
transforms. A computational box of 243 fm3 was used for the
ground-state calculations, while a box of 65 × 60 × 24 fm3

was used for the reaction calculations. With this setting, we
find that the ground state of 58Ni is of prolate shape with
β = 0.12, while 64Ni exhibits a shape with β = 0.14 with
γ = 47◦. 208Pb is of course of spherical shape. We place those
deformed projectiles to have an orientation with the smallest
Q22 to be lying in the reaction plane. For the time evolution,
the fourth-order Taylor expansion method was used with a

single predictor-corrector step with �t = 0.2 fm/c. The initial
separation distance between the projectile and target nuclei
was set to 28 fm along the collision axis. The time evolution
was stopped when the relative distance between PLF and TLF
exceeds 28 fm.

To solve the quantal diffusion equations, we need to define
the window plane which divides the colliding system into two
parts. We place the window plane at the minimum density
location along the elongation axis, as in Refs. [64,65,69,71]
(i.e., the window moves as a function of time). For a better
detection of the minimum density, we first define ρ(x, y) =∫

ρ(r)dz, integrated over the axis perpendicular to the reaction
plane, and then use the fifth-order polynomial interpolations
for x and y directions. See Fig. 1, which depicts a typical
example of the reaction dynamics and also shows the window
plane (indicated by a red line in each frame). To evaluate the
neutron and proton numbers of the projectile-like subsystem,
N1(t ) and Z1(t ), a smooth steplike function, �(x′) = 1

2 [1 +
tanh(αx′/�x)], is used, where |x′| is the distance from the
window plane and �x is the mesh spacing, with α = 3. For the
memory integral in the quantal diffusion coefficient, Eq. (21),
we replace

∫ t
0 dτ with

∫ T
0 dτ , setting T = 0.33 zs, which is

sufficiently long to include possible memory effects on the
diffusion process. We have confirmed that the memory effects
in the first term of Eq. (21) can be well approximated with
neglecting the memory-time dependence of the currents, i.e.,
with

∫ t
0 Gμ(τ )dτ ≈ 1/2. The details of the determination of

the curvature parameters for the driving potential in Eqs. (17)
and (18) are given in Appendix A.

For the particle-number projection method for TDHF
[Eq. (25)], the interval [0, 2π ] is discretized into 300 uniform
grids. Since the experiments [85,86] were carried out with
thick targets and reaction products were identified by subse-
quent decay properties, the data should contain information
of fragments in the whole angular range. To include all contri-
butions for transfer products, we include impact parameters of
b� 10 fm, which correspond to the orbital angular momentum
range up to L = 240h̄, where L = b(2μEc.m.)1/2 (in units of
h̄) with the reduced mass μ. We mention here that for the
64Ni + 208Pb system with L < 30h̄ (b � 1 fm), we observed an
abrupt change of the minimum density location in the course
of collision, which may be related to shell effects mentioned
in Sec. III A. We thus excluded L < 30h̄ from the cross-section
calculation, since it has little effect on the results. Also, for the
58Ni + 208Pb system with L = 45h̄, we observed formation of
binary products after a long contact time, about 25 zs. Since
the contact time is rapidly increasing and the system is on
the border between fusion and binary reactions, L = 45h̄ is
not included in the cross-section calculation. GEMINI++ cal-
culations were carried out with the default parameter set. We
confirmed that the statistical treatment provides a convergent
result.

III. RESULTS

A. Mean reaction dynamics in TDHF

We analyze the multinucleon transfer mechanism in
the 64Ni + 208Pb reaction at Ec.m. = 268 MeV and the
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FIG. 3. Results of the TDHF calculations for the 64Ni + 208Pb reaction at Ec.m. = 268 MeV (red open circles) and the 58Ni + 208Pb reaction
at Ec.m. = 270 MeV (blue open squares). In panels (a) and (b), average proton and neutron numbers of heavier (target-like) fragments, ZH

and NH, are shown, respectively, as a function of the initial orbital angular momentum. In panels (c) and (d), those for lighter (projectile-like)
fragments, ZL and NH, are shown.

58Ni + 208Pb reaction at Ec.m. = 270 MeV. Those collision
energies correspond to Ec.m./VB � 1.13 and Ec.m./VB � 1.09
for the 64Ni + 208Pb and 58Ni + 208Pb systems, respectively,
where VB denotes the Coulomb barrier height estimated with
the frozen Hartree-Fock method [146]. As a typical example
of the reaction dynamics, time evolution of the density in the
64Ni + 208Pb reaction at Ec.m. = 268 MeV with L = 50h̄ is
shown in Fig. 1. Density contour plots at typical instances are
shown in the reaction plane, where the elongation axis and the
window plane are indicated as well. A great advantage of the
TDHF approach is that it provides us intuitive information on
the time evolution of nuclear dynamics, which is not a direct
observable in experiments (See Ref. [147] for full movies of
the reactions within the TDHF approach.). In the course of the
reaction, two nuclei collide deeply and then form a dinuclear
structure connected with a thick neck (see, t = 2.67 zs)
that allows us to apply the quantal diffusion description for
multinucleon transfers (cf. Sec. II C). A number of nucleons
are exchanged between two subsystems through the window.
After substantial diffusion of nucleon numbers, the dinuclear
system eventually splits into two (see t = 4.48 zs). The well-
separated binary reaction products (see t = 5.3 zs) are then
analyzed and various observables are calculated. Numerical
results are presented in Tables I and II in Appendix B.

In Figs. 2 and 3, open circles show the results of TDHF
calculations for the 64Ni + 208Pb reaction, while open squares
show those for the 58Ni + 208Pb reaction. In Figs. 2(a) and
2(b), we show, respectively, the contact time and the average

TKEL as a function of the initial orbital angular momen-
tum. The contact time is defined as a duration during which
the minimal density between colliding nuclei exceeds half
the nuclear saturation density, ρsat/2 � 0.08 fm−3. From the
figure, we see a sharp increase of TKEL as the orbital angular
momentum decreases, where the contact time becomes finite.
In both collisions the maximum amount of TKEL is about
65–70 MeV, which occurs for the initial angular momentum
less than L � 100h̄ for the 64Ni + 208Pb system and L � 90h̄
for the 58Ni + 208Pb system.

In Fig. 2(c), we show the mean values of the charge asym-
metry of the primary PLF and TLF, δ = (N − Z )/(N + Z ),
as a function of the contact time. Note that each point corre-
sponds to the result with different orbital angular momenta.
The equilibrium values of the charge asymmetries of the
composite dinuclear systems are δ � 0.19 and 0.17, for the
64Ni + 208Pb and 58Ni + 208Pb systems, respectively. These
values are indicated by horizontal dotted lines in the figure. As
can be seen from Fig. 2(c), a fast charge equilibration process
takes place within about 1 zs. Then, the system evolves slowly
toward the mass equilibrium, keeping the isospin asymmetry
roughly constant. Note that the systems do not reach the
equilibrium values, because the systems do not reach the mass
equilibrium as well. The saturated values of δ correspond
to the N/Z ratios of about 1.4 and 1.5 for PLF and TLF,
respectively, in 64Ni + 208Pb and 1.46 for TLF in 58Ni + 208Pb,
which are in good agreement with the experimentally deduced
average N/Z ratios [85,86].
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FIG. 4. Diffusion coefficients for neutron and proton transfers
are shown as a function of time. Red solid line shows the diffusion
coefficient for neutron transfer, DNN (t ), while green dashed line
shows that for proton transfer, DZZ (t ). In panels (a) and (b), results
for the 64Ni + 208Pb reaction at Ec.m. = 268 MeV and the 58Ni + 208Pb
reaction at Ec.m. = 270 MeV are presented, respectively. The initial
orbital angular momentum is L = 50h̄ in both cases. Results were
smoothed by taking an average over 0.67 zs (see texts).

To provide more detailed information on nucleon trans-
fers, in Fig. 3 we show the average number of protons (left
panels) and neutrons (right panels) in reaction products as a
function of the initial orbital angular momentum. The upper
panels [Figs. 3(a) and 3(b)] show those of heavier (target-like)
fragments, ZH and NH, while the lower panels [Figs. 3(c)
and 3(d)] show those of lighter (projectile-like) fragments,
ZL and NL. For the quasielastic regime with large orbital
angular momenta (L � 150h̄), where TKEL and contact time
are almost zero, the average neutron and proton numbers
of the reaction products coincide with the initial values. As
the orbital angular momentum decreases, two nuclei touch in
the course of the collision and a rapid charge equilibration
process takes place. At this stage, neutrons and protons are
transferred toward the opposite directions as expected from
the initial isospin asymmetries, that is, 208Pb → 58,64Ni for
neutrons, and 58,64Ni → 208Pb for protons. The latter process
is relatively fast, which occurs within 1 zs [cf. Fig. 2(a)],
governed by nucleons around the Fermi level. As the orbital
angular momentum decreases further, the dinuclear system
starts evolving toward the mass symmetry. This trend is
visible for 80h̄ � L � 120h̄ and 50h̄ � L � 90h̄ for the
64Ni + 208Pb and 58Ni + 208Pb systems, respectively. We find,
however, that at small orbital angular momenta (L < 80h̄) the
mass equilibration process is terminated in the 64Ni + 208Pb
reaction. It is likely due to the shell effects around ZH =
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FIG. 5. Fluctuations and correlation for nucleon transfers are
shown as a function of time. Red solid line shows the fluctuation
in neutron transfer, σNN (t ), while green dashed line shows that in
proton transfer, σZZ (t ). By blue dotted line, the correlation between
the neutron and proton transfers, σNZ (t ), is shown. In panels (a) and
(b), results for the 64Ni + 208Pb reaction at Ec.m. = 268 MeV and the
58Ni + 208Pb reaction at Ec.m. = 270 MeV are presented, respectively.
The initial orbital angular momentum is L = 50h̄ in both cases.

82 and ZL = 28, which are weakened by the fast isospin
equilibration process in the 58Ni + 208Pb case. Notice that
the contact time increases more rapidly for 58Ni + 208Pb as
compared to 64Ni + 208Pb [see Fig. 2(a)], indicating that the
former system favors to fuse. In fact, we observe fusion
reactions for L � 40h̄ in the 58Ni + 208Pb reaction, where the
system does not splits for more than 40 zs, whereas no fusion
was observed in the 64Ni + 208Pb reaction. (We mention here
that in Ref. [38] the 58Ni + 208Pb reaction at slightly lower
energy, Ec.m. = 257 MeV, was investigated in TDHF and very
similar reaction dynamics were observed.)

B. Quantal diffusion for multinucleon transfers

In Fig. 4, we show the diffusion coefficients for neutron
and proton transfers, DNN (t ) (solid line) and DZZ (t ) (dashed
line), respectively, as a function of time. The diffusion coeffi-
cients are evaluated according to Eq. (21), which are entirely
determined by time evolution of the occupied single-particle
orbitals in TDHF, as described in Sec. II D. To eliminate
rapid oscillations due to complex dynamics of single-particle
degrees of freedom including shell effects, the diffusion co-
efficients are smoothed by taking an average over 0.67 zs, as
in the case of the mean drift path described in Appendix A.
In Figs. 4(a) and 4(b), the results for the 64Ni + 208Pb and
58Ni + 208Pb reactions are presented, respectively. The initial
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FIG. 6. Primary production cross sections for both light (projectile-like) and heavy (target-like) fragments are shown in the N-Z plane for
the 64Ni + 208Pb reaction at Ec.m. = 268 MeV (left panels) and the 58Ni + 208Pb reaction at Ec.m. = 270 MeV (right panels). Cross sections
are shown in logarithmic scale in the units of millibarn. Upper panels (a) and (b) show the results of TDHF calculations, while lower panels
(c) and (d) show the results obtained by the quantal diffusion approach based on the SMF theory. The horizontal lines indicate the proton magic
numbers, Z = 28, 50, and 82, while the vertical lines indicate the neutron magic numbers, N = 28, 50, 82, and 126. The crosses point at the
neutron and proton numbers of the projectile and target nuclei.

orbital angular momentum is L = 50h̄ for both cases (see
Fig. 1 for the corresponding density plots in the 64Ni + 208Pb
reaction). From the figure, it is clear that the diffusion coef-
ficient for neutron transfers is systematically larger than that
for protons, indicating influence of the Coulomb repulsion. In
the initial stage of the reaction up to t � 1.5 zs, both systems
exhibit very similar behavior of the diffusion coefficients.
The maximum values of the diffusion coefficients are around
27−30 zs−1 for neutrons and 18 zs −1 for protons. As men-
tioned above, the contact time is longer for the 58Ni + 208Pb
system, in particular since L = 50h̄ is close to the border
between fusion and binary events. As a result, the diffu-
sion coefficients extend for a longer period for 58Ni + 208Pb
[Fig. 4(b)] as compared to 64Ni + 208Pb [Fig. 4(a)].

In Fig. 5, the time evolution of the fluctuations and the
correlation in neutron and proton transfers are shown as
functions of time. Again, the results for the 64Ni + 208Pb
and 58Ni + 208Pb reactions are shown in Figs. 5(a) and 5(b),
respectively. The time evolution is obtained by solving the set
of partial differential equations, Eqs. (14)–(16). In the initial
stage of the reaction up to t � 1.25 zs, we find that the magni-
tude orders as σNZ < σZZ < σNN . As time evolves further, the
correlation develops, changing the order as σZZ < σNZ < σNN ,
indicating the importance of correlations after substantial
energy dissipation [cf. Figs. 2(a) and 2(b)]. We note that the
correlation σNZ is strictly zero within the TDHF approach.
The magnitude of the fluctuations in SMF is much larger
than that obtained in TDHF. For instance, in TDHF we
find σ TDHF

NN = 1.43 and σ TDHF
ZZ = 1.27 for 64Ni + 208Pb, and

σ TDHF
NN = 1.58 and σ TDHF

ZZ = 1.38 for 58Ni + 208Pb, at L = 50h̄.
Clearly, TDHF severely underestimates the magnitude of the
fluctuations and the correlation in dissipative collisions.

C. Primary production cross sections

In Fig. 6, we show the primary production cross sections
σ (N, Z ) in the N-Z plane for the 64Ni + 208Pb reaction at
Ec.m. = 268 MeV (left panels) and the 58Ni + 208Pb reaction
at Ec.m. = 270 MeV (right panels). In the upper panels
[Figs. 6(a) and 6(b)] the results of TDHF calculations are
shown, while the lower panels [Figs. 6(c) and 6(d)] show the
results obtained within the quantal diffusion approach. The
figure clearly exhibits the fact that TDHF indeed provides
quite narrow distributions in both systems. In stark contrast,
the SMF approach, as a result of the quantal diffusion mech-
anism, describes much broader distributions and therefore it
predicts production of a large number of primary fragments
in both systems. We note that the distributions in TDHF are
nearly of round shape in the N-Z plane, due to the product
form of PN,Z (b) [Eq. (25)] without correlations between neu-
tron and proton transfers. The slightly skewed shape is due
to the superposition of contributions from different impact
parameters. On the other hand, in the SMF approach, neutron
and proton transfers are substantially correlated, as indicated
by a well-developed correlation σNZ in Fig. 5. As a result,
the distributions in SMF exhibit a strongly correlated pattern
which extends toward the mass symmetry of the system.
The natural question is if such a very wide distribution is
realistic. We shall answer in the next section by comparing
the theoretical results with a full set of the experimental data
reported by Królas et al. in Refs. [85,86].

D. Secondary production cross sections

In Figs. 7 and 8, we show the secondary production cross
sections for PLFs and TLFs, respectively, in the 64Ni + 208Pb
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FIG. 7. Secondary production cross sections for lighter (projectile-like) fragments in the 64Ni + 208Pb reaction at Ec.m. = 268 MeV. In each
panel, production cross sections for different isotopes [as indicated by (±xp; X ), where x indicates the number of transferred protons and X
stands for the corresponding element] are shown as a function of the neutron number. Blue thick histograms show the results of SMF+GEMINI

calculations, while red thin histograms show those of TDHF+GEMINI. Red solid circles show the experimental data with error bars, taken from
Ref. [85]. The down arrows indicate upper bound of the measured cross sections [85].

reaction at Ec.m. = 268 MeV and compare the results with
the measured cross sections [85]. Similarly, in Figs. 9 and 10,
we show the secondary production cross sections for PLFs
and TLFs in the 58Ni + 208Pb reaction at Ec.m. = 270 MeV,
respectively, with the experimental data [86]. In those fig-
ures, the measured cross sections are shown by solid cir-
cles with error bars. Upper bound of the measured cross
sections [85,86] is also indicated by a down arrow when
available. The results obtained by the quantal diffusion ap-

proach based on the SMF theory are shown by thick his-
tograms, while the results of TDHF calculations are shown
by thin histograms. Each panel shows the isotopic distribu-
tion as a function of the neutron number of the reaction
product. The number of transferred protons and the corre-
sponding element are indicated by (±xp, X ), where the sign
indicates difference relative to the proton number of the
projectile or the target and X stands for the corresponding
element.
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FIG. 8. Same as Fig. 7, but for heavier (target-like) fragments.

We start with a discussion on the TDHF results (red
thin histograms, denoted by “TDHF+GEMINI” in the figures),
which are expected to work well around the average values
and do not include the correlation between neutron and proton
transfers. First, we focus on the channels accompanying pro-
ton transfer from nickel to lead, corresponding to the direction
of the isospin equilibration in the initial systems, 58,64Ni and
208Pb (the bottom row of the figures). The latter channels are
mainly contributed from the fast charge equilibration process
at peripheral (grazing) collisions [cf. Figs. 2 and 3]. This type
of processes is ubiquitous in systems with relatively large
isospin asymmetry (see, e.g., Refs. [38,148–152]). From the
figures, one can see that TDHF works fine when the number of
transferred nucleons is small [e.g., (0p) channel with transfer
of several neutrons, (−1p) and (−2p) channels with transfer
of a few neutrons in Fig. 7]. However, as the number of
transferred protons increases further [see, e.g., (−3p)–(−6p)
channels in Fig. 7], TDHF substantially underestimates the
magnitude of the production cross sections. Moreover, the
peak position of the isotopic distributions for PLFs appears
too neutron-rich [see, e.g., (−3p)–(−5p) channels in Fig. 7].
This trend was also observed for other systems [39], although

it was not clear if this is due to underestimation of neutron
evaporation effects or not. Interestingly, by looking at the
corresponding proton-transfer channels for the heavier parter
[i.e., (+3p)–(+5p) in Fig. 8], we find that the peak position
of the isotopic distributions for TLFs appears too neutron
deficient. The combination of those two observations indicates
that proton removal (addition) tends to accompany neutron
removal (addition), implying the importance of the correlation
in neutron and proton transfers.

Next, we discuss the TDHF results for channels accom-
panying transfer toward the direction of the mass symmetry.
As discussed in Sec. III A, for small initial orbital angular
momenta, an onset of quasifission emerges, where the system
starts evolving toward the mass symmetry. The latter process
corresponds to the proton pickup (+xp) with respect to the
projectile (Figs. 7 and 9) and to the proton removal (−xp)
with respect to the target (Figs. 8 and 10). Because of rela-
tively short contact times, however, the system does not reach
the mass equilibrium and we observed transfer of only two
protons from Ni to Pb on average in TDHF [cf. Figs. 3(a)
and 3(c)]. As a result, TDHF provides a good description
for channels with transfer of a few protons from Ni to Pb,
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FIG. 9. Same as Fig. 7, but for the 58Ni + 208Pb reaction at Ec.m. = 270 MeV. The experimental data were taken from Ref. [86].

which are close to the average value [see, e.g., (+1p), (+2p),
and (+3p) channels in Fig. 7 and (−1p), (−2p), and (−3p)
channels in Fig. 8]. As the number of transferred protons in-
creases further, however, TDHF substantially underestimates
the magnitude of the production cross sections [see, e.g.,
(+4p)–(+7p) channels in Fig. 7 and (−4p)–(−7p) channels in
Fig. 8]. Furthermore, the experimental data for PLFs (Figs. 7
and 9) exhibit considerable cross sections for channels with
transfer of a number of protons, up to (+26p) channel. We find
that the cross sections for those channels contain substantial
contributions from transfer-induced fission of heavy partners.
Comparing with the experimental data, the magnitude of those
cross sections are underestimated for 64Ni + 208Pb (Fig. 7),
while it is comparable to the data for 58Ni + 208Pb (Fig. 9).
It indicates that the transfer-induced fission is reasonably sim-

ulated by GEMINI++. On the other hand, for the TLFs, TDHF
completely fails to reproduce the experimental data for the
channels accompanying removal of many protons [see, e.g.,
(−8p)–(−18p) channels in Fig. 8]. This comparison clearly
illustrates the usefulness and limitation of TDHF+GEMINI in
describing multinucleon transfer processes in deep-inelastic
collisions.

We shall now turn to a discussion on the results obtained
by the quantal diffusion approach based on the SMF theory
(blue thick histograms, denoted by “SMF+GEMINI” in the
figures). As can be seen from Figs. 7–10, we find that the
SMF approach provides a very good overall description of
the measured production cross sections, all the way up to
(+26p) channel for lighter fragments (Figs. 7 and 9) and
(−18p) channel for heavier fragments (Fig. 8). Through an
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FIG. 10. Same as Fig. 9, but for heavier (target-like) fragments.

analysis of the data for PLFs [Figs. 7 and 9], we find that
the production cross sections up to around (+14p) are dom-
inated by the quantal diffusion mechanism. In contrast, the
production cross sections for Tc (Z = 43) to Xe (Z = 54)
isotopes [i.e., (+15p)–(+26p) channels in Figs. 7 and 9],
we find a substantial contribution of transfer-induced fission
of heavy partners. It is remarkable that the SMF approach
reproduces transfers in both directions, owing to the quantal
diffusion mechanism. The observed agreement between the
SMF results and the measurements suggests that a proper
description for the production of heavy nuclei and their sub-
sequent decays is essential to reproduce the experimental data
for the production of Tc to Xe isotopes.

We should point out, however, that the SMF approach
overestimates the width of isotopic distributions; see, e.g., the
bottom two rows of Figs. 7–10. We consider that this overes-
timation is associated with the linearization of the Langevin
equation (12). In addition, there is disagreement with the
experimental data, which is visible, for instance, in (−1p)
channel for TLF in the 64Ni + 208Pb system shown in Fig. 8
and (−1p) and (−2p) channels for TLF in the 58Ni + 208Pb
system shown in Fig. 10. Those channels are contributed by
collisions with large orbital angular momenta. We consider
that the probability distribution of the Gaussian form (26) is
inappropriate for this regime, as indicated by transfer proba-
bilities in TDHF [37,38]. Indeed, for those channels, TDHF
correctly describes the shape of the isotopic distributions. It
is actually possible to further improve the quantal diffusion
description by incorporating nonlinear effects in the Langevin

equation (12). Although we expect that the improved quantal
diffusion description provides a better description of the ex-
perimental data presented in this work, we leave it as a future
work.

For a complete representation of the data, we show in
Fig. 11 mass distributions of secondary reaction products.
In Figs. 11(a) and 11(b), the results for the 64Ni + 208Pb
and 58Ni + 208Pb reactions are presented, respectively. The
experimental data [85,86] are shown by open circles with error
bars, while solid lines represent the results of SMF+GEMINI

calculations. The results of TDHF+GEMINI are also shown by
thin dotted lines for comparison. We note that the data are
merely an integration of the absolute cross sections shown in
Figs. 7–10 for a given mass number A and do not involve any
renormalization for comparison. We also note that the exper-
imental data for the 58Ni + 208Pb reaction are less complete
than the other, since the off-line radioactivity measurement
was not carried out for this system [86]. From the figure, we
find that the SMF approach provides much wider mass dis-
tributions as compared to the TDHF approach. A comparison
with the SMF results and the measurements reveals that the
SMF approach predicts somewhat wider distributions, which
are larger in magnitude, as compared to the experimental data.
The overestimation may partly be due to the linearization
of the Langevin equation, as mentioned above. We note,
however, that the experimental data points in Figs. 7–10 are
limited in some regions, whereas the mass distributions in the
SMF approach involve the entire cross sections for all isotopes
that would result in larger magnitude. We note that there

014620-15



KAZUYUKI SEKIZAWA AND SAKIR AYIK PHYSICAL REVIEW C 102, 014620 (2020)

10−2

10−1

100

101

102

103

 0  50  100  150  200  250

′

(a)

σ  
(m

b)

A

64Ni+208Pb (Ec.m. = 268 MeV)

TDHF+GEMINI
SMF+GEMINI

Expt. Krolas et al.

10−2

10−1

100

101

102

103

 0  50  100  150  200  250

(b)

σ  
(m

b)

A

58Ni+208Pb (Ec.m. = 270 MeV)

FIG. 11. Mass distributions for secondary reaction products.
In panels (a) and (b), results for the 64Ni + 208Pb reaction at
Ec.m. = 268 MeV and the 58Ni + 208Pb reaction at Ec.m. = 270 MeV
are shown, respectively. The measured cross sections are shown by
red open circles with error bars, which were taken from Refs. [85,86].
Blue solid line represents the results of SMF+GEMINI calculations,
while the results of TDHF+GEMINI calculations are indicated by a
thin dotted line.

is a sizable contribution of transfer-induced fission around
A � 90–140 in both systems. We find a noticeable contribu-
tion of transfer-induced fission also in TDHF+GEMINI, while
it is much bigger in SMF+GEMINI. Those fission products
contribute to generate cross sections for Tc to Xe isotopes
[i.e., (+15p)–(+26p) channels in Figs. 7 and 9], as mentioned
above.

Finally, Fig. 12 illustrates the prediction of the secondary
production cross sections for N = 126 isotones in the
64Ni + 208Pb reaction at Ec.m. = 268 MeV. In the figure, open
and solid circles indicate the results of the SMF and TDHF
calculations, respectively. The magnitude of the cross sections
are closer for one-proton transfer, but the SMF approach
predicts cross sections larger by several orders of magnitude
with increased number of removed protons from lead. We
mention here that the experimentally deduced cross sections
for the N = 126 isotones production in the 136Xe + 198Pt
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FIG. 12. Secondary production cross sections for N = 126 iso-
tones in the 64Ni + 208Pb reaction at Ec.m. = 268 MeV are shown as
a function of the proton number of the reaction products. Blue open
circles represent the results of SMF+GEMINI calculations, while red
solid circles represent those of TDHF+GEMINI.

reaction [153] exhibit the magnitude which is comparable to
(or even slightly larger than) that indicated by SMF+GEMINI

for the present system. The figure highlights the necessity to
go beyond the standard TDHF description for a quantitative
prediction of production of unstable nuclei with neutron and
proton numbers which are far apart from the average values.

IV. SUMMARY AND CONCLUSIONS

Recently, it has been hoped that the multinucleon transfer
reaction in low-energy heavy-ion reactions may be an efficient
mechanism for production of yet-unknown neutron-rich heavy
nuclei and also for synthesizing neutron-rich superheavy ele-
ments. Aiming at the production of new neutron-rich nuclei,
much experimental effort has been undertaken already that
will be continued for the coming future. Several macroscopic
or microscopic transport approaches have been developed for
theoretical investigations of the multinucleon transfer mech-
anism [7]. These transport approaches are, in general, very
useful for analyzing the experimental data. However, because
of a number of adjustable parameters they involve, they have
limited predictive power. The time-dependent Hartree-Fock
(TDHF) approach provides a microscopic description for low-
energy heavy-ion reactions. While the mean-field approach
has been very successful for describing the most probable path
of the collective motion, it severely underestimates the dy-
namical fluctuations and distributions of observables around
their average values. Recently, as an extension of the TDHF
approach, the time-dependent random phase approximation
(TDRPA) has been applied to low-energy heavy-ion colli-
sions. Since the TDRPA formula is obtained by linearizing the
equation of motion around the mean evolution, it provides a
good approximation for dispersion of one-body observables
when amplitude of fluctuations is sufficiently small. How-
ever, this approach appears to have a technical problem in
describing dispersions of one-body observables in asymmet-
ric systems [55]. As seen from recent publications [69–73],
the quantal diffusion description for multinucleon exchanges
based on the stochastic mean-field (SMF) approach provides
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very good description for multinucleon transfer mechanism,
which is applicable for asymmetric reactions as well.

In this work, we have applied the quantal diffusion ap-
proach based on the SMF theory to analyze the multin-
ucleon transfer mechanism in the 64Ni + 208Pb reaction at
Ec.m. = 268 MeV and the 58Ni + 208Pb reaction at Ec.m. = 270
MeV. The rich experimental data by Królas et al. [85,86],
which were measured with thick targets and therefore in-
clude both projectile-like and target-like fragments as well
as transfer-induced fission products, allowed us to confirm
the usefulness and limitations in the TDHF and the SMF
approaches. In general, it turns out that the quantal diffusion
approach provides very reasonable description of the experi-
mental data, in both directions of transfers from projectile to
target and vice versa, for both projectile-like and target-like
fragments. A striking finding is a significant contribution of
transfer-induced fission of heavy reaction products, which
nicely agree with the experimental observation. In some
cases, the SMF calculations overestimate the isotopic widths,
which may be due to the linear approximation employed
in the Langevin equation for macroscopic variables. Based
on the quantal diffusion approach, we have found that the
production cross sections for N = 126 isotones could be
significantly larger than those expected within the TDHF ap-
proach [46–48]. It underlines the importance of going beyond,
especially to include one-body (mean-field) fluctuations and
correlations, the standard TDHF description for predicting
production cross sections of unknown neutron-rich heavy
nuclei.

With the SMF theory, we have achieved a remarkable
progress in microscopic description of low-energy heavy-
ion reactions, as compared to the standard TDHF approach.
Nevertheless, there still remains some room for further im-
provements of the theoretical framework. Below, we envision
possible future directions:

(1) Nonlinear effects in the quantal diffusion mechanism.
As outlined in Sec. II C, in deriving the quantal dif-
fusion description, we have linearized the Langevin
equation (12) around the mean trajectory, assuming
small amplitude fluctuations. Note that a similar as-
sumption is made in the TDRPA approach as well
[35,36,53–56]. In addition, a simple parabolic from
has been assumed for the driving potential U (N, Z )
[cf. Eq. (A1)], and it can be generalized by introducing
anharmonicity in the potential form. Such extensions
are expected to reduce the isotopic width and would
result in better agreement with the experimental data.

(2) TKE distributions. So far, we have not discussed
how to describe distributions of the collective relative
motion, namely, fluctuations in scattering angles as
well as total kinetic energy (TKE). The distribution of
TKE is, in turn, related to the total excitation energy
distribution as discussed in Sec. II F. In principle, one
can adapt the SMF concept to the relative motion
of a colliding system, which allows us to evaluate
fluctuations of, e.g., TKE based on microscopic mean-
field dynamics. A work is in progress along this line.

(3) Pairing correlations. In the present work, we have ne-
glected the pairing correlations, assuming that pairing
in atomic nuclei is so fragile and plays a minor role
in dissipative heavy-ion collisions. However, pairing
may alter reaction dynamics in an unexpected way, as
shown in, e.g., Refs. [154–158]. Actually, the SMF
approach has already been generalized to include the
pairing correlations [159]. With the recent develop-
ments of mean-field approaches including pairing for
static properties [160–163] and dynamics [92,154–
158,164–167], the application of the quantal diffusion
approach is feasible, as outlined in this work.

Finally, we comment on the Gaussian assumption of
the initial fluctuations in the density matrix, δρλ

i j . In
Refs. [131,132], effects of relaxing of the Gaussian assump-
tion have been explored. In particular, it has been shown that
third- and fourth-order moments of a one-body observable
can be better described by an appropriate relaxation [131].
We note, however, that the Gaussian assumption is used to
formulate the quantal diffusion approach for multinucleon
exchanges as described in Sec. II C. Thus, although it is
possible to further improve the model ingredients for more
realistic description including higher moments of one-body
observables by relaxing the Gaussian assumption, it is then
necessary to generate an ensemble of TDHF trajectories that
requires vast computational costs. We also mention here that
another possible extension has been proposed recently in
Ref. [168], where the SMF concept is applied to the time-
dependent reduced density matrix approach.

To conclude, in this work we have demonstrated that the
quantal diffusion approach based on the SMF theory is a
powerful and promising tool of choice to microscopically
and quantitatively describe multinucleon transfer processes
in low-energy heavy-ion reactions. We emphasize that the
quantal diffusion approach based on the SMF theory does
not involve any adjustable parameters, once an energy density
functional is given, and transport coefficients are entirely
determined from the occupied single-particle orbitals in the
TDHF approach. The observed agreement with the full set of
the experimental data is not only remarkable but also encour-
aging for microscopic mean-field theories for predicting and
understanding various outcomes from complex many-body
dynamics of low-energy heavy-ion reactions.
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APPENDIX A: DERIVATIVES OF THE MEAN
DRIFT COEFFICIENTS

To solve the partial differential equations, Eqs. (14)–(16),
one has to evaluate derivatives of the mean drift coefficients,
νn and νp, with respect to the numbers of neutrons and protons
in the projectile-like subsystem, N1 and Z1. In the present
article, we use the same strategy as in Refs. [65,135,169]. For
completeness, we provide below the details of the procedure
for the 58,64Ni + 208Pb reactions examined in the present pa-
per.

1. For the 64Ni + 208Pb system

From a TDHF calculation, one can compute time evolution
of the mean neutron and proton numbers in the projectile-like
subsystem, N1(t ) and Z1(t ). Because of the complex fluctua-
tions in the window position as well as shell structure, those
quantities show rapid fluctuations as a function of time. In
order to eliminate the rapid fluctuations in time, we carry out
a smoothing by taking an average over a short time interval,
Tave � 0.67 zs. In Fig. 13, we show the smoothed mean
neutron and proton numbers in the projectile-like subsystem,
N1(t ) (red solid line) and Z1(t ) (green dashed line), in the
64Ni + 208Pb reaction at Ec.m. = 268 MeV with the initial
orbital angular momentum L = 50h̄ as a function of time. One
can see that there is a fast charge equilibration process (from
tA to tB), followed by a slow mass equilibration process (from
tB to tC), during the collision process.

In Fig. 14, the same quantities as shown in Fig. 13 are
shown, but now they are plotted in the N-Z plane, which we
call the drift path. In the figure, green dashed line indicates
a collection of nuclei with nearly same charge asymmetry
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FIG. 14. The smoothed mean drift path in the N-Z plane
for the projectile-like subsystem in the 64Ni + 208Pb reaction at
Ec.m. = 268 MeV with the initial orbital angular momentum L = 50h̄.
Green dashed arrow indicates the isoscalar path which continues
along the mass symmetry point, (N0, Z0 ) = (81, 55). The angle
φ = 32.9◦ is the angle between the isoscalar path and the neutron
axis. The points A, B, and C correspond to the time tA, tB, and tC in
Fig. 13, respectively. Blue triangles help to understand the distances,
Eqs. (A2) and (A3).

values, δ = (N − Z )/(N + Z ) = 0.16–0.19. We call this
line the isoscalar path which extends along the β-stability
valley until the mass equilibrium at N0 = (36 + 126)/2 = 81
and Z0 = (28 + 82)/2 = 55. Starting from the point A, the
(N1, Z1) follows the red solid line until it reaches the charge
equilibrium at δ � 0.16 at the point B and drifts toward
the mass symmetry nearly along the isoscalar path. Note
that the binary system separates before reaching the mass
equilibrium of the system.

The potential energy surface of the dinuclear system with
respect to (N1, Z1) provided by the microscopic Skyrme en-
ergy density functional would have a rather complex structure.
Here, we approximate the potential by a two-parabolic form:
One parabola is along the isoscalar direction and the other is
perpendicular to it, which we call the isovector path. Namely,
the driving potential is expressed as

U (N1, Z1) = 1
2 aR2

S + 1
2 bR2

E , (A1)

where

RS = [N0 − N1] sin φ − [Z0 − Z1] cos φ, (A2)

RE = [N0 − N1] cos φ + [Z0 − Z1] sin φ. (A3)

RS (t ) represents the distance of (N1, Z1) on the drift path
from the isoscalar path, while RE (t ) represents the distance
of (N1, Z1) from the equilibrium point (N0, Z0) along the
isoscalar path. The angle, φ = 32.9◦, denotes the angle
between the isoscalar path and the neutron axis. The Einstein
relation relates the drift coefficients to the derivatives of the
potential energy surface according to

νn = −DNN

T ∗
∂

∂N1
U (N1, Z1), (A4)

νp = −DZZ

T ∗
∂

∂Z1
U (N1, Z1). (A5)
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Using the two-parabolic form of the potential (A1), one finds
analytical expressions of the drift coefficients:

νn(t ) = +DNN (t )[αRS (t ) sin φ + βRE (t ) cos φ], (A6)

νp(t ) = −DZZ (t )[αRS (t ) cos φ − βRE (t ) sin φ]. (A7)

Note that the effective temperature T ∗ has been absorbed to
the reduced curvature parameters, α = a/T ∗ and β = b/T ∗.
Having those analytical forms at hand, one can readily calcu-
late the derivatives of the drift coefficients, i.e.,

∂νn(t )

∂N1
= −DNN (t )[α sin2 φ + β cos2 φ], (A8)

∂νp(t )

∂Z1
= −DZZ (t )[α cos2 φ + β sin2 φ], (A9)

∂νn(t )

∂Z1
= DNN (t )(α − β ) sin φ cos φ, (A10)

∂νp(t )

∂N1
= DZZ (t )(α − β ) sin φ cos φ. (A11)

The remaining task is to determine the reduced cur-
vature parameters, α and β. Actually, the latter quanti-
ties can be determined with the mean drift coefficients,
νn(t ) = dN1(t )/dt and νp(t ) = dZ1(t )/dt , obtained from
TDHF. From Eqs. (A6) and (A7), we have the following
equalities:

α RS (t ) = νn(t ) sin φ

DNN (t )
− νp(t ) cos φ

DZZ (t )
, (A12)

β RE (t ) = νn(t ) cos φ

DNN (t )
+ νp(t ) sin φ

DZZ (t )
. (A13)

To derive macroscopic drift coefficients for the nucleon
diffusion mechanism, we need to eliminate microscopic
effects on the potential energy, e.g., complex dynamic
shell effects. Namely, due to the complex structure of
the microscopic potential energy surface in TDHF, the re-
duced curvature parameters of the simple parabolic approx-
imation may vary in time. We thus take the following
time average to determine the average reduced curvature
parameters:

ᾱ =
∫ tB

tA

(
νn(t ) sin φ

DNN (t )
− νp(t ) cos φ

DZZ (t )

)
dt

/∫ tB

tA

RS (t ) dt,

(A14)

β̄ =
∫ tC

tB

(
νn(t ) cos φ

DNN (t )
+ νp(t ) sin φ

DZZ (t )

)
dt

/∫ tC

tB

RE (t ) dt .

(A15)

Note that all quantities in the right-hand side of Eqs. (A14)
and (A15) can be computed within the TDHF approach. Here,
tA = 0.65 zs, tB = 1.35 zs, and tC = 4.00 zs indicate the times
at the points A, B, and C, respectively, in Figs. 13 and 14.
For the 64Ni + 208Pb system, we obtained the average reduced
curvature parameters of ᾱ = 0.289 and β̄ = 0.003 for the
isovector and isoscalar directions, respectively. With those ᾱ
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FIG. 15. Same as Fig. 13, but for the 58Ni + 208Pb reaction at
Ec.m. = 270 MeV with the initial orbital angular momentum L = 50h̄.

and β̄, the derivatives of the drift coefficients, Eqs. (A8)–
(A11), were evaluated.

2. For the 58Ni + 208Pb system

Figures 15 and 16 show the time evolution of the smoothed
mean neutron and proton numbers in the projectile-like sub-
system in the 58Ni + 208Pb reaction at Ec.m. = 270 MeV with
the initial orbital angular momentum L = 50h̄.

Basically, we repeat the same procedure also for the
58Ni + 208Pb system. The times tA = 0.65 zs, tB = 1.35 zs,
and tC = 7.00 zs of the averaging intervals indicated in Fig. 15
correspond to the points A, B, and C in Fig. 16, respectively. In
the isoscalar drift path of this system between the points B and
C in Fig. 16, the nuclei have nearly the same charge asymme-
try values of δ = 0.14–0.17. The angle between the isoscalar
path and the neutron axis is φ = 33.3◦, which is similar to
the one for the 64Ni + 208Pb system. The equilibrium values of
neutron and proton numbers are N0 = (30 + 126)/2 = 78 and
Z0 = (28 + 82)/2 = 55. The average curvature parameters
evaluated by Eqs. (A14) and (A15) have nearly the same
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FIG. 16. Same as Fig. 14, but for the 58Ni + 208Pb reaction at
Ec.m. = 270 MeV with the initial orbital angular momentum L = 50h̄.
The mass symmetry point is (N0, Z0) = (78, 55) and the angle be-
tween the isoscalar path and the neutron axis is φ = 33.3◦.
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magnitude as those for the 64Ni + 208Pb system, which are
given by ᾱ = 0.247 and β̄ = 0.002 for the isovector and
isoscalar directions, respectively.

We note that the isoscalar line (green dashed arrow) in
Figs. 14 and 16 should be extended further until the mass
equilibrium point, (N0, Z0).

APPENDIX B: TABLES OF THE TDHF AND SMF RESULTS

Here, we provide the numerical results of the TDHF and SMF calculations for the 64Ni + 208Pb reaction at Ec.m. = 268 MeV
in Table I and for the 58Ni + 208Pb reaction at Ec.m. = 270 MeV in Table II with various initial conditions.

TABLE I. Results of the TDHF and SMF calculations for the 64Ni + 208Pb reaction at Ec.m. = 268 MeV. From left to right columns, the
table lists the initial orbital angular momentum Li in h̄, the corresponding impact parameter b in fm, the final values of the average proton
and neutron numbers in a projectile-like fragment (PLF) (Z f

1 and N f
1 ) and a target-like fragment (TLF) (Z f

2 and N f
2 ), the final orbital angular

momentum Lf in h̄, the total kinetic energy loss (TKEL) in MeV, the contact time tcontact in zeptoseconds (1 zs = 10−21 s), the dispersions by
SMF (σNN , σZZ , σNZ , and σAA) and the mass dispersion by TDHF (σAA), and the scattering angles in the center-of-mass frame (θc.m.) and in the
laboratory frame for a PLF (ϑ lab

1 ) and a TLF (ϑ lab
2 ) in degrees.

Li (h̄) b (fm) Z f
1 N f

1 Z f
2 N f

2 Lf (h̄) TKEL (MeV) tcontact (zs) σNN σZZ σNZ σAA σ TDHF
AA θc.m. ϑ lab

1 ϑ lab
2 (deg)

0 0.00 27.75 37.99 82.23 123.81 0.0 64.1 4.66 11.98 7.85 9.50 19.64 1.94 180.0 180.0 0.0
5 0.20 27.73 37.98 82.24 123.83 4.3 64.3 4.62 11.92 7.81 9.45 19.53 1.94 169.9 164.3 4.7
10 0.40 27.69 37.95 82.29 123.85 8.4 65.2 4.56 11.85 7.77 9.40 19.43 1.94 160.2 149.8 9.3
15 0.60 27.60 37.88 82.37 123.91 12.8 66.9 4.45 11.80 7.74 9.36 19.34 1.94 150.8 136.4 13.7
20 0.80 27.49 37.79 82.48 123.99 17.4 68.7 4.36 11.74 7.70 9.30 19.24 1.94 141.8 124.4 17.8
25 0.99 27.48 37.87 82.49 123.92 21.0 70.7 4.37 11.30 7.41 8.94 18.50 1.94 133.2 113.8 21.7
30 1.19 27.72 38.25 82.26 123.55 23.5 71.5 4.35 11.24 7.37 8.89 18.41 1.96 125.4 104.7 25.3
35 1.39 28.14 38.83 81.83 122.99 25.1 70.0 4.30 11.16 7.32 8.83 18.27 1.97 118.5 97.1 28.7
40 1.59 28.40 39.34 81.57 122.50 27.1 67.9 4.10 11.01 7.23 8.71 18.03 1.97 112.4 90.7 31.7
45 1.79 28.62 39.86 81.36 121.99 33.3 65.0 3.82 10.76 7.06 8.50 17.61 1.98 106.7 85.1 34.6
50 1.99 28.99 40.69 80.99 121.18 37.3 62.3 3.57 10.41 6.83 8.20 17.02 1.91 104.4 82.8 36.1
55 2.19 29.31 41.14 80.67 120.73 41.6 61.8 3.23 10.00 6.56 7.86 16.33 1.91 102.8 81.1 37.1
60 2.39 29.33 41.09 80.66 120.77 46.0 65.1 3.02 9.67 6.36 7.60 15.79 1.92 99.8 78.1 38.3
65 2.59 29.27 40.94 80.72 120.93 49.6 66.3 2.82 9.34 6.13 7.31 15.23 1.94 96.7 75.3 39.6
70 2.79 29.19 40.86 80.80 121.03 53.8 64.1 2.54 8.95 5.88 6.99 14.58 1.91 94.2 73.2 40.9
75 2.98 29.12 40.99 80.87 120.91 59.2 63.1 2.34 8.56 5.63 6.66 13.92 1.88 91.8 71.1 42.1
80 3.18 29.26 41.15 80.73 120.76 63.9 62.6 2.15 8.16 5.37 6.33 13.25 1.86 90.5 69.9 42.8
85 3.38 29.29 40.73 80.70 121.18 67.5 62.3 1.96 7.74 5.10 5.98 12.55 1.85 90.0 69.6 42.9
90 3.58 28.96 39.90 81.04 122.03 70.7 62.3 1.79 7.31 4.83 5.61 11.82 1.85 89.8 69.6 42.7
95 3.78 28.61 39.05 81.38 122.86 76.9 65.7 1.69 6.85 4.53 5.22 11.04 1.85 88.6 68.6 42.7
100 3.98 27.89 37.84 82.10 124.07 80.8 70.0 1.48 6.28 4.18 4.74 10.09 1.80 88.5 68.7 41.8
110 4.38 26.92 36.81 83.06 125.10 86.9 66.9 1.02 5.16 3.45 3.74 8.16 1.68 91.4 71.7 40.2
120 4.77 26.77 36.69 83.22 125.23 100.1 54.0 0.66 4.12 2.79 2.78 6.34 1.50 92.8 73.6 40.4
130 5.17 27.30 36.45 82.70 125.52 118.5 29.9 0.02 2.85 1.79 1.38 3.89 1.16 93.5 75.1 41.6
140 5.57 27.86 36.20 82.14 125.80 137.0 6.1 0.00 1.72 0.92 0.41 2.03 0.74 93.2 75.7 43.1
150 5.97 27.96 36.10 82.04 125.90 148.8 2.3 0.00 1.20 0.64 0.20 1.39 0.52 90.5 73.3 44.6
160 6.37 27.98 36.06 82.02 125.94 159.4 1.3 0.00 0.92 0.50 0.12 1.06 0.40 87.4 70.5 46.3
170 6.76 27.99 36.03 82.01 125.96 169.7 0.9 0.00 0.73 0.40 0.08 0.84 0.32 84.2 67.6 47.9
180 7.16 28.00 36.02 82.00 125.98 179.9 0.7 0.00 0.60 0.33 0.05 0.69 0.26 81.1 64.9 49.4
190 7.56 28.00 36.01 82.00 125.98 189.9 0.5 0.00 0.50 0.27 0.03 0.57 0.21 78.2 62.3 50.9
200 7.96 28.00 36.01 82.00 125.99 200.0 0.4 0.00 0.42 0.22 0.02 0.48 0.17 75.4 59.9 52.3
210 8.36 28.00 36.01 82.00 125.99 210.0 0.4 0.00 0.36 0.18 0.02 0.40 0.13 72.7 57.7 53.6
220 8.75 28.00 36.00 82.00 126.00 220.0 0.3 0.00 0.31 0.15 0.01 0.34 0.11 70.2 55.5 54.9
230 9.15 28.00 36.00 82.00 126.00 230.0 0.3 0.00 0.26 0.12 0.01 0.29 0.09 67.9 53.6 56.0
240 9.55 28.00 36.00 82.00 126.00 240.0 0.3 0.00 0.23 0.10 0.01 0.25 0.07 65.7 51.7 57.1
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TABLE II. Same as Table I, but for the 58Ni + 208Pb reaction at Ec.m. = 270 MeV.

Li (h̄) b (fm) Z f
1 N f

1 Z f
2 N f

2 Lf (h̄) TKEL (MeV) tcontact (zs) σNN σZZ σNZ σAA σ TDHF
AA θc.m. ϑ lab

1 ϑ lab
2 (deg)

50 2.06 30.20 40.70 79.77 115.12 36.7 67.8 6.21 13.42 9.04 10.81 22.26 2.10 57.8 43.2 60.5
55 2.26 29.78 39.57 80.20 116.32 40.6 61.4 4.38 11.63 7.84 9.31 19.24 2.03 77.0 59.1 51.1
60 2.47 29.37 39.07 80.61 116.84 43.4 62.0 3.11 9.75 6.58 7.73 16.06 2.00 92.1 72.4 43.3
65 2.68 29.28 39.18 80.70 116.74 50.1 64.1 2.71 8.98 6.07 7.08 14.76 1.98 91.8 72.0 43.4
70 2.88 28.73 37.99 81.25 117.92 53.6 71.7 2.36 8.35 5.65 6.54 13.68 2.07 90.8 71.1 42.8
75 3.09 28.44 36.85 81.54 119.08 60.3 70.9 2.01 7.52 5.10 5.83 12.27 2.04 92.6 73.0 41.6
80 3.29 27.32 35.17 82.66 120.74 58.8 75.3 1.57 6.52 4.44 4.96 10.56 1.97 97.6 77.9 38.3
85 3.50 26.42 34.04 83.56 121.87 63.6 73.9 1.19 5.57 3.82 4.11 8.92 1.82 99.9 80.5 36.9
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Malenica, N. Mărginean, M. Milin, G. Montagnoli, F.
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