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Pauli blocking effects in nα-nucleus-induced fusion reactions
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The hindrances in the nα-nucleus-induced fusion reactions at deep subbarrier energies are investigated by
using the coupled-channels model. Inspired by the microscopic Pauli-blocking effects of α-cluster decay in
radioactive nuclei, a Pauli blocking potential is constructed in the nα-nucleus-induced fusion reactions by using
a single folding procedure, in which the nα nuclei are assumed to be consisted of α particles. A shallow pocket
is formed in the inner part of the potential between two colliding nuclei as compared to the one obtained
from the double-folding potential with standard Michigan-3-Yukawa effective nucleon-nucleon interaction. The
experimental fusion cross sections are described well for fusion systems 12C + 198Pt, 16O + 208Pb, 12C + 30Si,
24Mg + 30Si, and 28Si + 30Si. At deep subbarrier energies, it is found that this shallow pocket potential reduces
the partial fusion cross sections and shields the contributions of high-angular-momentum partial waves to fusion
cross sections. In addition, a detailed comparison of fusion processes with different projectiles 12C, 24Mg, and
28Si on the same target 30Si shows the hindrance effect is stronger for heavier projectiles.
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I. INTRODUCTION

The fusion hindrance phenomenon observed recently
at deep subbarrier energies in heavy-ion fusion reactions
presents a new challenge to the current fusion theory [1].
This unexpected falloff feature in experimental fusion cross
sections [1–8] is hard to explain by the standard coupled-
channels (CC) model with the widely used Woods-Saxon
(WS) potential, which has been successful in describing the
enhancement of fusion cross sections at subbarrier energies
[9,10]. By adjusting the diffuseness parameter in WS nuclear
potential, the calculated fusion cross sections are found to be
in agreement with the experimental data at deep subbarrier
energies [11]. However, there is a large discrepancy between
the diffuseness parameters used in WS potential a ≈ 1.3 fm
[11] and the one extracted from scattering data a ≈ 0.63 fm
[12]. This discrepancy implies that the Woods-Saxon nuclear
potential is probably only valid in the surface region [13,14].
When the densities of projectile and target nuclei start over-
lapping, the effect of Pauli blocking interaction might become
more and more important in the inner region of the Coulomb
barrier.

In recent years, a number of theoretical work have been
devoted to investigating the fusion hindrance at deep sub-
barrier energies [15–27]. For instance, based on the frozen
density approximation, Mişicu and Esbensen introduced a
strong repulsive core to the calculation of fusion reactions
64Ni + 64Ni, etc., and the calculated fusion cross sections
at deep subbarrier energies reproduce the experimental data
very well [16–18]. Uegaki and Abe also proposed a strong
repulsive potential to treat the density overlap problem, which

*Corresponding author: cxu@nju.edu.cn

is found to be necessary for the folding potential in describing
the high-spin resonances observed in scattering reactions [28].
With the repulsive potential, the calculated resonance levels
are in good agreement with experimental data [28]. Very
recently, a preliminary work about the Pauli blocking effects
in α-induced fusion reactions also provided a good description
of the fusion cross sections for reactions α + 208Pb, etc. [29].

Until now, the hindrance phenomenon has been mainly
observed in the fusion systems with heavy target [2,3]. What is
interesting is whether this hindrance also occurs in light fusion
systems [30,31]. In light nuclei, especially for nα nuclei 12C,
16O, 24Mg, and 28Si, it is a well-known fact that many states
are of α cluster type and this description has enjoyed consid-
erable success [32–36]. In this paper, based on the α-cluster
structures in nα nuclei, the Pauli blocking effects in nα-
nucleus-induced fusion reactions are introduced to explain the
fusion hindrance at deep subbarrier energies. By considering
the Pauli blocking effects, the partial fusion cross sections
at colliding energies far below the Coulomb barrier are ana-
lyzed. The comparison of total fusion cross sections is made
between the experimental data and calculation results for
12C + 30Si [4], 12C + 198Pt [5], 16O + 208Pb [6], 24Mg + 30Si
[7], and 28Si + 30Si [8] fusion systems. In addition, the Pauli
blocking potentials between different projectiles and the same
target, i.e., 12C + 30Si, 24Mg + 30Si, and 28Si + 30Si fusion
systems, are employed to explore the fusion hindrance from
light projectile to heavy one. The above analysis might be
helpful not only in exploring the hindrance of the heavy-ion
fusion reactions at deep subbarrier energies under laboratory
conditions but also in understanding the fusion process of
the light systems in the astrophysical environments, such as
12C + 12C and 16O + 16O fusion reactions.

The rest of paper is organized as follows. In Sec. II, we
describe the theoretical framework of CC model and the
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construction process of Pauli blocking potential in nα-
nucleus-induced fusion reactions. In Sec. III, the total poten-
tials and calculated fusion cross sections are compared. The
density dependence of the Pauli blocking effects is analyzed.
The summary is displayed in Sec. IV.

II. THEORETICAL FRAMEWORK

We apply the CCFULL code to calculate the fusion cross
sections [10,37]. In the calculations, the incoming wave
boundary condition (IWBC) is imposed and the absorption
radius is taken to be at the minimum of the potential inside
the Coulomb barrier [10,37]. With the IWBC, the coupled-
channels equations can be given by [10][

− h̄2

2μ

d2

dR2
+ J (J + 1)h̄2

2μR2
+ V (R) + εn − E

]
un(R)

+
∑

m

Vnm(R)um(R) = 0, (1)

where E is the incident energy in the center-of-mass frame, εn

is the excitation energy of the nth channel, and un is the radial
wave function of the nth channel. The total potential V (R)
between two colliding nuclei consists of both Coulomb and
nuclear interactions, i.e., V (R) = VN (R) + VC (R). The nuclear
interaction VN (R) and Coulomb interaction VC (R) used in
calculations are obtained by double folding procedure.

The symbol Vnm(R) in Eq. (1) denotes the matrix of
coupling Hamiltonian which includes both the Coulomb and
nuclear components. The Coulomb coupling matrix elements
V C

nm are calculated by the linear coupling approximation
[10,37,38]. The nuclear coupling Hamiltonian is generated
by introducing a dynamical operator Ôλ in the calcula-
tions and given by ṼN (R, Ôλ) = VN (R − Ôλ) [10,37]. For
the vibrational coupling, the operator Ôλ is given by Ôλ =
(β∗/

√
4π )Ri(α

†
λ0 + αλ0) [10,37,38], where α

†
λ0 and αλ0 are

the creation and annihilation operators of the phonons, respec-
tively, the eigenvalues λ and eigenvectors |α〉 of the operator
Ô satisfy Ôλ|α〉 = λα|α〉, Ri is the radius of the projectile or
target, and β∗ denotes the corresponding deformation param-
eter. The nuclear coupling matrix elements are then evaluated
by [10,37,38]

V N
nm = 〈n|ṼN (R, Ôλ)|m〉 − VN (R)δn,m

=
∑

α

〈n|α〉〈α|m〉ṼN (R, λα ) − VN (R)δn,m. (2)

The nuclear coupling potential ṼN (R, λα ) = VN (R − λα ) is
taken up to the second order of λα [10,37,38]

ṼN (R, λα ) = VN (R) − dVN (R)

dR
λα + 1

2

d2VN (R)

dR2
λ2

α, (3)

where the first term VN (R) is the nuclear potential in the
absence of the coupling, which consists of not only the direct
term but also the Pauli blocking term V nα

P (R) [see Eq. (5)
below]. The second and third terms are the nuclear coupling
form factor, which is closely associated with the nuclear
potential. As a part of VN (R), the Pauli blocking potential
V nα

P (R) plays a nonnegligible role in the nuclear coupling
matrix elements.

TABLE I. Parameters of the density distribution for 12C, 16O,
24Mg, and 28Si nuclei. The last column is the corresponding refer-
ences from where the parameters are taken.

ρ0p ω γ

Nucleus (fm−3) (fm−2) (fm−2) Ref.

12C 0.1644 0.4988 0.3741 [41]
16O 0.1317 0.6457 0.3228 [41]
24Mg 0.2161 0.1513 0.2186 [42]
28Si 0.2052 0.1941 0.2112 [42]

By solving the CC equations the penetrability PJ can be
obtained and the total fusion cross section σfus is then given
by summing the partial fusion cross section [10]

σfus(E ) = π

k2

∑
J

(2J + 1)PJ (E ), (4)

where k =
√

2μE/h̄2 is the wave number associated with the
energy E .

Let us now discuss the explicit form of the potential
between projectile and target. In addition to the attractive
nuclear interaction and the repulsive Coulomb interaction,
there is a nonnegligible Pauli repulsive interaction between
two colliding nuclei. When the projectile and target nuclei
start touching each other, the Pauli blocking effects become
increasingly important due to the density overlap. To this
end, a Pauli blocking potential, V nα

P , as the consequence of
antisymmetrization, is introduced to replace the exchange
term in the standard Michigan-3-Yukawa (M3Y) potential as
follows:

VN (R) =
∫

dr1dr2ρp(r1)ρt (r2)g(|s|) + V nα
P (R), (5)

with

g(|s|) =
[
c1

exp(−4s)

4s
− c2

exp(−2.5s)

2.5s

]
F (ρ), (6)

and

F (ρ) = C[1 + α exp(−βρ)]. (7)

In Eq. (5), the symbol R denotes the distance between the
center-of-mass of two colliding nuclei and the quantity |s|(s =
R − r1 + r2) is the distance between a nucleon in the target
and a nucleon in the projectile.

The density distribution of projectiles ρp employed in
Eq. (5) is a modified Gaussian shape [39,40]

ρp(r) = ρ0p(1 + ωr2) exp(−γ r2), (8)

where the parameters ω and γ are obtained by fitting the
corresponding root-mean-square (rms) radii and ρ0p is de-
termined by integrating the density distribution equivalent to
the corresponding mass number [41,42]. Their values used in
calculations are listed in Table I.

The density distribution of target ρt adopted in Eq. (5) can
be given by the standard Fermi form [43]

ρt (r) = ρ0t

1 + exp
(

r−c
a

) , (9)
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TABLE II. Parameters of the density distribution for 30Si, 198Pt,
and 208Pb target nuclei. The symbols cp, ap, cn, and an denote the
half-density radius and diffuseness parameters of proton and neutron
in target nuclei. The last column is the corresponding references.

cp ap cn an

Nucleus (fm) (fm) (fm) (fm) Ref.

30Si 3.165 0.48 3.17 0.43 [44]
198Pt 6.510 0.495 6.645 0.557 [45]
208Pb 6.68 0.447 6.7 0.55 [46]

in which c and a are half-density radius and diffuseness pa-
rameters and ρ0t is determined by the normalization condition.
The values of c and a used in calculations are listed in Table II.

In what follows we focus attention on the construction of
the Pauli blocking potential V nα

P in Eq. (5). In our analysis,
all projectile nuclei studied are assumed to be composed of
α particles, i.e., the mass number of projectile A = 4n. The
α clusters in these projectiles are regarded as the elementary
units and the Pauli blocking potential of two colliding nuclei
V nα

P depends on the density distribution of both projectile and
target.

The density distribution of α particle in projectile is the
widely used Gaussian form [47–49]

ρα (r) = ρ0α exp(−λr2), (10)

where the parameters are taken as ρ0α = 0.4229 fm−3 and
λ = 0.7024 fm−2 from Ref. [47]. In order to relate the density
distribution of projectile ρp to that of the α particle ρα , an
α-cluster distribution function inside the nucleus, ρc(r), was
proposed to satisfy the condition in Ref. [39],

ρp(r) =
∫

ρc(r′)ρα (|r − r′|)dr′. (11)

By using the Fourier transform techniques [47], the α-
cluster distribution function ρc(r) can be given by [40]

ρc(r) = ρ0c(1 + μr2) exp(−ξr2), (12)

with

η = λ − γ , ξ = γ λ/η, μ = 2ωλ2

η(2η − 3ω)
, (13)

where ρ0c is obtained by integrating Eq. (11) equivalent to the
mass number of projectiles.

Therefore, the Pauli blocking potential of nα nuclei in
fusion reactions can be constructed by using a single folding
procedure,

V nα
P (R) =

∫
ρc(r′)V α

p (R + r′)dr′, (14)

in which V α
p is the Pauli blocking potential of one α particle

in nuclear matter. This microscopic Pauli blocking potential
V α

p is obtained by solving the in-medium four-nucleon wave
equation with a variational approach and a good fit formula is
given by [46,50,51]

V α
P (ρt ) = 4515.9ρt − 100935ρ2

t + 1202538ρ3
t . (15)

FIG. 1. Comparison of the total potentials obtained from stan-
dard M3Y nuclear interaction (dotted lines) with the one obtained
from M3Y+ Pauli nuclear interaction (solid lines) for 12C + 198Pt,
16O + 208Pb, and 24Mg + 30Si fusion systems. The shadow region
denotes the experimental threshold energy Es of fusion hindrance
[5–7]. The Pauli blocking interaction in 24Mg + 30Si is given by the
dashed line in (c).

As a reverse quantum tunneling process with fusion, this
Pauli blcking potential has been successfully applied into the
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TABLE III. Parameters used in the CC calculations. The symbol
λπ denotes the multipolarity and the parity of a state. The symbol Eex

denotes the excitation energy of a state. The deformation parameter
is denoted by symbol β∗. The symbol Nph in the last column is the
number of phonons included in the calculations.

Nucleus λπ Eex (MeV) β∗ Nph

(1) 12C + 198Pt (Refs. [5,53])
12C 2+ 4.44 0.59 1
198Pt 2+ 0.407 0.11 1

3− 1.5 0.1 1
(2) 16O + 208Pb (Ref. [18])
16O 2+ 6.92 0.352 1

3− 6.13 0.713 1
198Pb 3− 2.615 0.111 1

5− 3.198 0.059 1
(3) 24Mg + 30Si (Ref. [7])
24Mg 2+ 1.369 0.608 1
30Si 2+ 2.235 0.33 1

3− 5.488 0.275 1
(4) 28Si + 30Si (Ref. [7])
30Si 2+ 2.235 0.33 1

3− 5.488 0.275 1

radioactive α-cluster decay in heavy nuclei and superheavy
nuclei [46,50,51]. For α-induced fusion reactions, the prelim-
inary work shows this Pauli blocking potential also has a good
adaptability [29].

Next we detail the parameters used in the direct part, g(|s|),
of the density-dependent M3Y effective nucleon-nucleon in-
teraction in Eq. (5). The symbols c1 and c2 in Eq. (6) are
the strength of the Yukawa interactions and their fitted values
are c1 = 2535 MeV fm and c2 = 1563 MeV fm, respectively.
The density dependence of the nucleon-nucleon interaction
adopted here is the CDM3Y1 interaction. The values of the
density-dependent parameters C, α, and β in Eq. (7) are
0.3428, 3.0232, and 3.5512 fm3, respectively [13,52]. The
density ρ in Eq. (7) is defined as ρ = ρp + ρt .

III. RESULTS AND DISCUSSION

Taking the 12C + 198Pt, 16O + 208Pb, and 24Mg + 30Si fu-
sion systems as examples, we first compare in Fig. 1 the
total potentials constructed from the “M3Y + Pauli” nuclear
interaction with the one constructed from the “standard M3Y”
nuclear interaction. The parameters of density distribution
of the projectiles and targets are listed in Tables I and II,
respectively.

In Fig. 1, it is seen that the M3Y+ Pauli potential has
a thicker barrier width than standard M3Y potential below
the experimental threshold energy (shadow region), which is
considered as the onset of energy in the fusion hindrance
phenomenon [31]. More interestingly, a shallow pocket in
the inner region of the Coulomb barrier is generated by the
M3Y + Pauli potential, while there is a rapid decrease at short
distance for the standard M3Y potential, in which the Pauli
blocking effect after the density overlap of two colliding nu-
clei is not fully considered [13]. The minimum energy of this

FIG. 2. The partial fusion cross sections calculated by standard
M3Y potential (the solid lines with solid squares and the dotted
lines with open squares) and M3Y + Pauli potential (the solid lines
with solid circles and the dotted lines with open circles) at different
colliding energies for (a) 16O + 208Pb and (b) 24Mg + 30Si fusion
systems. Note that the results at E = 66.77 MeV for 16O + 208Pb
system have been multiplied by 1000. The values of total fusion cross
sections calculated by various potentials and the experimental data
σ exp [6,7,54] at specified colliding energies are given.

pocket for each system Vmin is denoted by the solid circle. This
energy determines the minimum energy of the occurrance of
the fusion reaction in present model and below this energy, the
calculated cross section will be zero. In addition, as shown in
Fig. 1(c) the Pauli blocking potential V nα

P for 24Mg + 30Si
fusion system (denoted by the dashed line) becomes more and
more important with the decrease of the distances between the
centers of projectile and target. After a large distance (R � 10
fm), this Pauli blocking potential becomes very weak and
could be neglected and two potentials have almost the same
behavior in the outer region.

We incorporate the above two potentials in the computer
code CCFULL [37] to calculate the fusion cross sections.
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FIG. 3. The experimental fusion cross sections for 12C + 198Pt [5,55], 16O + 208Pb [6,54], and 24Mg + 30Si [7,56] fusion systems compared
with the CC calculations obtained by standard M3Y potential (dashed lines) and M3Y + Pauli potential (solid lines). The dotted lines denote
the no-coupling results for the standard M3Y potential.

Note that the potential between two nuclei is, of course, an
important input in the CC calculation. Other inputting pa-
rameters for the coupling strengths are tabulated in Table III.
In Fig. 2, we calculate the partial fusion cross sections as
a function of the angular momentum and compare the total
fusion cross sections with the experimental data σ exp at several
typical experimental colliding energies, namely, 72.20 MeV,
66.77 MeV for 16O + 208Pb [6,54] and 21.10 MeV, 20.29 MeV
for 24Mg + 30Si [7]. The total fusion cross sections calculated
by M3Y+ Pauli potential agree more closely with the exper-
imental data than the results of standard M3Y potential. At
deep subbarrier energies, such as 66.77 MeV for 16O + 208Pb
and 21.10 and 20.29 MeV for 24Mg + 30Si, the partial fusion
cross sections have a significant reduction by considering the
Pauli blocking effects as compared to the values calculated by
standard M3Y potential. In addition, the maximum angular
momentum calculated in M3Y + Pauli potential is much
smaller than the one calculated in standard M3Y potential,
i.e., the M3Y + Pauli potential prevents the penetration of
high-order partial waves to the Coulomb barrier and results
in a slight reduction of total fusion cross sections.

In Fig. 3, the total fusion cross sections calculated by
M3Y + Pauli and standard M3Y potentials versus the col-
liding energies are compared with the experimental data for
12C + 198Pt [5,55], 16O + 208Pb [6,54], and 24Mg + 30Si [7,56]
fusion systems. The dotted and dashed lines are the fusion
cross sections calculated by the standard M3Y potential with-
out and with the CC effects, respectively. The solid lines
denote the results obtained from the M3Y + Pauli potential
with the CC effects. By taking into account the Pauli blocking
effects, the fusion cross sections obtained from M3Y + Pauli
potential are in agreement with the experimental data, while
the results calculated by standard M3Y potential overestimate
the experimental data at deep subbarrier energies. Note that
in Figs. 3(b) and 3(c), the calculated cross sections vanish
at the center-of-mass energies E < Vmin (63.81 MeV for
16O + 208Pb and 19.21 MeV for 24Mg + 30Si) as mentioned
above.

To further study the density dependence of the Pauli
blocking effects, we compare the fusion processes of the
different projectiles 12C, 24Mg, and 28Si with the same target
30Si in Fig. 4. The parameters used in CC calculations for

28Si + 30Si system are listed in Table III and the calculated
fusion cross sections of 12C + 30Si system result from the
one-dimensional potential model. Figure 4 shows that the
fusion cross sections calculated by M3Y + Pauli potential for
12C + 30Si [4], 24Mg + 30Si [7,56], and 28Si + 30Si [8] fusion
systems are in agreement with the experimental data. The
insert shows the Pauli blocking potential verses the density
of target 30Si for corresponding fusion systems. As expected,
the heavier projectiles, namely 24Mg and 28Si, are subjected
to the stronger Pauli blocking effects in target 30Si than
projectile 12C. Moreover, the Pauli blocking potentials in rela-
tively heavy-mass fusion systems 24Mg + 30Si and 28Si + 30Si
increase rapidly with the increasing of the target density,
while a slow increasing is shown in light-mass fusion system
12C + 30Si. This result indicates the fusion hindrance becomes
gradually obvious in moving from the lighter (12C) to the

FIG. 4. The experimental fusion cross sections for 12C + 30Si [4],
24Mg + 30Si [7,56], and 28Si + 30Si [8] fusion systems compared with
the results calculated by M3Y + Pauli potential. The Pauli blocking
potentials versus the density of target are given in the insert, in which
the bottom horizontal axis ρt is the matter density of 30Si and the top
horizontal axis R is the corresponding internuclear distance.

014619-5



KAIXUAN CHENG AND CHANG XU PHYSICAL REVIEW C 102, 014619 (2020)

heavier projectiles (24Mg and 28Si) with the same target (30Si)
and a similar phenomenon is also found in the experimental
fusion cross sections of 6,7Li, 12C + 198Pt by Shrivastava
et al. [5].

IV. SUMMARY

Based on the Pauli blocking term obtained from the finite-
temperature Green function approach [57], a Pauli blocking
potential is constructed in the nα-nucleus-induced fusion
reactions by using a single folding procedure, in which the
nα-nuclei are assumed to be consisted of α particles and can
be described by an α-cluster distribution function. By intro-
ducing this Pauli blocking potential, it is found there exists a
shallow pocket in the potentials of 12C + 198Pt, 16O + 208Pb,
and 24Mg + 30Si fusion systems.

For fusion systems 16O + 208Pb and 24Mg + 30Si, it is found
that, at deep subbarrier energies, the partial fusion cross
sections calculated by considering the Pauli blocking effects
are much smaller than the ones calculated by standard M3Y
potential and the high-angular-momentum partial waves in

fusion process are shielded by the potential with a shallow
pocket. The fusion hindrances in 12C + 198Pt, 16O + 208Pb,
12C + 30Si, 24Mg + 30Si, and 28Si + 30Si systems at deep sub-
barrier energies are described well by using the M3Y + Pauli
potential.

By comparing the Pauli blocking effects in different pro-
jectiles 12C, 24Mg, and 28Si with the same target 30Si, it
is found that the Pauli blocking potentials in the heavier
projectiles 24Mg and 28Si have a rapid increase along with
the density of target 30Si, while a gentle increasing is shown
in lighter projectile 12C. This, to some extent, can be helpful
to understanding the fusion process at astrophysical energies
for light fusion systems, such as 12C + 12C and 16O + 16O
reactions.
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X. Wang, S. Zhu, S. Mişicu, P. Collon, and X. D. Tang, Phys.
Rev. C 78, 017601 (2008).

[9] A. B. Balantekin and N. Takigawa, Rev. Mod. Phys. 70, 77
(1998).

[10] K. Hagino and N. Takigawa, Prog. Theor. Phys. 128, 1061
(2012).

[11] K. Hagino, N. Rowley, and M. Dasgupta, Phys. Rev. C 67,
054603 (2003).

[12] K. Washiyama, K. Hagino, and M. Dasgupta, Phys. Rev. C 73,
034607 (2006).

[13] I. I. Gontchar, D. J. Hinde, M. Dasgupta, and J. O. Newton,
Phys. Rev. C 69, 024610 (2004).

[14] J. O. Newton, R. D. Butt, M. Dasgupta, D. J. Hinde, I. I.
Gontchar, C. R. Morton, and K. Hagino, Phys. Rev. C 70,
024605 (2004).

[15] C. J. Lin, Phys. Rev. Lett. 91, 229201 (2003).
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