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High-precision studies of the soft dipole mode in two-neutron halo nuclei: The 6He case
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The soft dipole E1 strength function is calculated for the transition from the 6He 0+ ground state to the
1− continuum 4He +n + n. The calculations were performed within the hyperspherical harmonics formalism.
The sensitivity of the results to the 6He ground-state structure and to final-state interactions, are analyzed. The
large-basis calculations show the reliably converged results for soft dipole strength function and for momentum
correlations of the 6He → 4He +n + n dissociation products. Transition mechanisms are analyzed based on the
momentum correlations. The comparison with experimental data is provided.
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I. INTRODUCTION

The basic idea of the soft dipole mode (SDM) is quite sim-
ple. The wave function (WF) of a weakly bound state has long
asymptotic tail spreading in the classically forbidden region
(nucleon halo). Acting on such a WF by electromagnetic oper-
ator (with a power dependence on radius) further enhances the
asymptotic region and we get a very long-range source, which
populates the continuum. In this situation the transition matrix
element may get noticeable low-energy enhancement even in
the case of smooth (nonresonant) continuum in the final state.
For one-neutron halos this scenario becomes important for
binding energies smaller than 1 MeV, providing the peak in
the E1 strength function (SF) at decay energies smaller than 1
MeV.

We would like to begin this paper with a terminological
note, which in reality is deeply connected with the essence
of the discussed problem. There exists certain controversy
about the idea of the SDM on which we would like to
dwell a little. Sometimes this phenomenon is characterized as
soft dipole resonance. Such a notion contradicts the standard
vision of resonance as an entity, which is totally independent
of the population mechanism. It stems, however, from vision
of the SDM as a low-energy offspring of the giant dipole
resonance (GDR). The GDR phenomenon is not, strictly
speaking, resonance itself, but it unifies resonances of certain
collective nature clustering in the certain energy range. The
two-body SDM evidently does not belong to this realm being a
single-particle geometric phenomenon. In contrast, the Pigmi
dipole resonance (PDR) [1,2] can be seen as a true collective
excitation connected with several neutrons contributing to
formation of neutron skin. In any case it should be understood
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that the existence of both the SDM and the PDR excitations
is based on the separation of scales in the nucleon WF. These
are radial scales of halo nucleons (or skin nucleons) WF and
radial scale of the bulk of nucleons. The bulk of nucleons
contributes to GDR formation, while the nucleons of halo (or
skin) produce the sizable low-energy enhancement in the E1
strength function: SDM (or PDR).

In contrast to the one-neutron halo case, the SDM in the
case of three-cluster systems (two-nucleon halos) is quite
complicated. (i) The SDM in the three-cluster systems can not
be attributed entirely to initial state geometry as in the two-
body case. The continuum dynamics in this case can not be
neglected if we would like to produce a decent approximation
to the real situation. (ii) The continuum dynamics in this
case is an entangled mixture of resonant and nonresonant
dynamics. Qualitatively, in the odd-parity continuum one of
the nucleons populates a natural parity state where it has
strong resonating interaction with core (l = 1 for 6He), while
the other nucleon is in nonresonating non-natural parity state
(e.g., l = 0, 2 for 6He), see Fig. 1(b) for illustration. Thus
the three-body SDM can be seen as a collective phenomenon
with only valence nucleons involved in the collective motion.
This form of continuum dynamics is especially difficult for
treatment and demands high calculation accuracy.

The soft dipole excitations of 6He were studied theoret-
ically by different methods [3–11]. Shortcomings of these
studies will be discussed later in present paper. We obtain
accurate fully converged results for E1 SF and well-converged
results for three-body correlations. Reliable convergence al-
lows us to understand a lot of problematic issues of the previ-
ous studies. An important aspect of the analysis illustrated in
Fig. 1(a) is the transition from three-body dynamics of SDM
at low energies (ET � 1 MeV) to semisequential dynamics
at high energies (ET � 2.5 MeV); three-body energy ET is
defined relative to the three-body breakup threshold.
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FIG. 1. (a) Energy levels of 6He (left), 5He (middle), and (right)
population mechanisms for the soft dipole excitation in 6He at
different energies. (b) Population of the major configurations of the
SDM source (10) from the major configurations of the 6He g.s. WF
(8).

The only experimental data available for the 6He →
4He +n + n dissociation is the studies of Ref. [12]. This
material was further elaborated in the review paper [13]. The
three-body correlation aspect of these data was analyzed in
Ref. [14]. The data are over 20 years old and quality of them
is not very high. It is also important to note that a lot of experi-
mental efforts were dedicated to the SDM in 11Li. The general
experimental situation regarding the Coulomb dissociation of
11Li is quite controversial ([15] and references therein). More
recent experimental results on different inelastic excitations
of 11Li [16,17] support the idea of very pronounced SDM in
11Li but do not allow full quantitative description. The 6He
nucleus could have been a reference case for SDM studies
in the three-cluster systems, but very detailed and accurate
experimental data are needed, which are not available so far.

The interest to studies of SDM (or/and PDR) is partly
based on the common nowadays idea that the radiative capture
rates for the three-body capture processes can be based on
the experimentally measured Coulomb dissociation cross sec-
tions. The procedure can not be absolutely straightforward be-
cause it involves an extrapolation from intermediate energies
(available experimentally) to quite low energies (contributing
to the astrophysical capture rates at temperatures of astro-
physical interest). The prerequisite of such an extrapolation
is, of course, an accurate treatment of the E1 SF. Problems of
this treatment were discussed in Refs. [18,19] for the case of
the 15O +p + p → 17Ne +γ process. A discussion of low-
energy behavior of the E1 SF for the case of the 4He +n +
n → 6He +γ process will be given in a forthcoming paper
[20].

II. THEORETICAL MODEL

The formalism we apply here has already been used for
studies of the soft dipole excitation of 17Ne in Ref. [18] and
for the isovector soft dipole excitation of 6Be in Ref. [21].
However, it was given there briefly, so adding some more
technical details is appropriate. The hyperspherical harmonics
(HH) method itself has already been described in our previous
works [22–24], and the details are provided here more for
completeness of the description.

A. Model for the 6He E1 dissociation process

The bound 6He ground-state wave function is obtained in
a 4He +n + n model by solving the homogeneous three-body
Schrödinger equation (SE)

[Ĥ3 + V3(ρ) + Eb]�JiMi
gs = 0,

Ĥ3 = T̂3 + Vcn1 (rcn1 ) + Vcn2 (rcn2 ) + Vn1n2 (rn1n2 ), (1)

see also Refs. [22,25,26]. The ideology of our approach is that
the three-body formalism theoretically extrapolates the prop-
erties of the two-body subsystems [these are introduced via
the phenomenologically defined pairwise potentials Vi j (ri j )]
to the properties of the composite three-body systems. This
works well for systems with developed clusterization and
strongly bound clusters. 6He is one of the best systems
appropriate for such theoretical studies. Nevertheless, this
description is never perfect and for careful calculations of
certain observables we need to fit the basic properties of the
three-body system [binding energy for the ground state (g.s.)]
to the experimental ones. For this reason phenomenological
three-body potential V3(ρ) depending on the hyperradius only
is added to the Schrödinger equation.

To obtain the E1 strength function we solve the following
inhomogeneous SE

[Ĥ3 + Ṽ3(ρ) − ET ]�JM(+)
Mim

= OE1,m�JiMi
gs . (2)

The phenomenological three-body potential, which is appro-
priate for the continuum is expected to be different from that
for the ground state and also somehow smaller 〈Ṽ3〉 � 〈V3〉.

Within the hyperspherical method the three-body Jacobi
vectors

{X, Y} = {X,�x,Y,�y},
and corresponding hyperspherical variables in coordinate
space

{ρ,�ρ} , �ρ = {θρ,�x,�y},
are defined as

X = r1 − r2 , Y = A1r1 + A2r2

A1 + A2
− r3 , (3)

ρ2 = A1A2

A1 + A2
X 2 + (A1 + A2)A3

A
Y 2

= (
A1A2r2

12 + A2A3r2
23 + A3A1r2

31

)
/A , (4)

θρ = arctan

[√
A1A2A

A3(A1 + A2)2

X

Y

]
, (5)

where A = A1 + A2 + A3. The three-body Schrödinger equa-
tions for core+N + N systems are solved in the so-called T
Jacobi system (core is particle number 3). Jacobi vectors and
hyperangle θρ in the other Jacobi systems can be obtained
by cyclic permutations of the cluster coordinates and mass
numbers. The hyperradius ρ is invariant under permutations,
see Eq. (4).

014611-2



HIGH-PRECISION STUDIES OF THE SOFT DIPOLE … PHYSICAL REVIEW C 102, 014611 (2020)

The E1 transition operator has the following definition and
relation to the dipole operator

OE1,m = e
∑
i=1,3

Zi ri Y1m(r̂i ) =
√

3

4π
Dm,

where D = ∑
i=1,3 eZiri. Attention should be paid on a mis-

print in the definition of this operator in Ref. [19], which,
however, did not affect the results of this paper. For two-
neutron halo case of 6He the dipole operator acts on the core
particle only

OE1,m = e Z3 r3 Y1m(r̂3) = Zeff ρ cos(θρ )Y1m(ŷ),

Z2
eff = e2 Z2

3 (A1 + A2)

A3(A1 + A2 + A3)
= e2

3
. (6)

For two-proton case this is also true, but with effective core
charge

Z3 → Z3 − A3,

because in the center-of-mass we have the relation A1r1 +
A2r2 ≡ −A3r3.

The three-body continuum WF �
JM(+)
Mim

and the initial
bound state WF �JiMi

gs are defined as

�
JM(+)
Mim

= CJM
JiMi1m ρ−5/2

∑
Kγ

χ
(+)
JKγ (κρ)J JM

Kγ (�ρ ), (7)

�JiMi
gs = ρ−5/2

∑
JKiγi

χJiKiγi (ρ)J JiMi
Kiγi

(�ρ ). (8)

The functions J JM
Kγ (�ρ ) are hyperspherical harmonics cou-

pled with spin functions to total spin J . Multi-index γ denotes
the complete set of three-body quantum numbers except the
principal quantum number K : for spinless core cluster γ =
{L, S, lx, ly}.

For these WFs the Schrödinger equation (2) is reduced to a
set of coupled inhomogeneous differential equations

[
d2

dρ2
− L(L + 1)

ρ2
− 2M(ET − VKγ ,Kγ (ρ))

]
χ

(+)
JKγ (κρ)

= 2M
∑

K ′γ ′ �=Kγ

VK ′γ ′,Kγ (ρ)χ (+)
JK ′γ ′ (κρ) + 2MφKγ (ρ), (9)

where M is scaling mass, taken in this work as average
nucleon mass in 6He. The generalized angular momentum is
defined by the principal hyperspherical quantum number K as

L = K + 3/2.

The partial wave decomposition of the SDM source is given
by

φKγ (ρ) = Zeff

∑
Kiγi

〈Kγ | cos(θρ )|Kiγi〉

× 〈Jγ ‖Y1(ŷ)‖Jiγi〉 ρ χJiKiγi (ρ). (10)

The hyperspherical and reduced angular matrix elements are

〈Kγ |cos(θ )|Kiγi〉 =
∫ π/2

0
dθρψ

lx ly
K (θρ )ψ

l i
x l i

y

Ki
(θρ ) sin2(θρ ) cos3(θρ ),

〈Jγ ‖Y1(ŷ)‖Jiγi〉 = l̂ i
y l̂xL̂iL̂ŜĴ i1̂3 δSiS

⎧⎨
⎩

l i
x l i

y Li

0 1 1
lx ly L

⎫⎬
⎭

⎧⎨
⎩

Li Si Ji

1 0 1
L S J

⎫⎬
⎭

C
ly0
l i
y010√
4π

,

where we use the shortcut notation m̂ = √
2m + 1.

The asymptotic expression for the WF χ
(+)
Jf Kf γ f

(κρ) is

χ
(+)
JKγ (κρ) = AJKγ H(+)

L (κρ).

Here H(±)
L = NL ± iJL are the Riccati-Bessel functions of

half-integer index L, with the long-range asymptotics ≈
exp(±iκρ), describing the in- and outgoing three-body spher-
ical waves. The outgoing flux through the hypersphere of a
large radius is

jJ = κ

M

∑
Kγ

|AJKγ |2 =
∑
Kγ

√
2ET

M
|AJKγ |2,

and the E1 strength function is expressed via this flux as

dBE1

dET
= 1

2π

∑
J

2J + 1

2Ji + 1
jJ . (11)

Let us also establish a connection with more ordinary
formalism expressing the E1 strength function in terms of
the matrix elements of the dipole operator. Within the Green’s

function formalism for coupled channel differential equations
the asymptotic coefficient can be expressed as

AJKγ = −2M

κ

∫
dρ

∑
K ′γ ′

χJKγ ,K ′γ ′ (κρ) φK ′γ ′ (ρ),

where χJKγ ,K ′γ ′ is the solution of the homogeneous part of
Eqs. (9) diagonalizing the 3 → 3 elastic scattering S matrix

SKγ ,K ′γ ′ = exp(2iδKγ ,K ′γ ′ ),

χJKγ ,K ′γ ′ (κρ) = exp(iδKγ ,K ′γ ′ )[JL′ (κρ) cos(δKγ ,K ′γ ′ )

+NL′ (κρ) sin(δKγ ,K ′γ ′ )].

Then with definitions

AJKγ = −2M

κ

√
π

2
MJKγ ,

MJKγ =
∑

K ′γ ′,Kiγi

〈K ′γ ′| cos(θ )|Kiγi〉〈Jγ ′‖Y1(ŷ)‖Jiγi〉

×
∫

dρ

√
2

π
χJKγ ,K ′γ ′ (κρ) ρ χJiKiγi (ρ).
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one gets the conventional expression for the E1 strength
function

dBE1

dET
=

∑
J

2J + 1

2Ji + 1

∑
Kγ

√
M

2ET
|MJKγ |2,

which is equivalent to Eq. (11). However, the solution of
inhomogeneous set of equations (9) is found to be technically
preferable.

It is easy to find out that energy integrated value of the E1
strength function is connected with the ground-state rms value
of the core distance 〈r2

3〉 from the center of mass of the whole
three-body system.∫

dBE1

dET
dET = 3

4π
e2 Z2

3

〈
r2

3

〉
.

This is so-called non-energy-weighted (NEW) E1 sum rule,
which can be used for crosscheck of the theoretical calcula-
tions as well as for determination of the ground-state geometry
from experimental data.

B. Momentum distributions

To define momentum distributions of the three-body decay
products we should introduce Jacobi vectors {kx, ky} in the
momentum space and hyperspherical variables {κ,�κ}

kx = A2

A1 + A2
k1 − A1

A1 + A2
k2,

ky = A3

A
(k1 + k2) − A1 + A2

A
k3,

κ
2 = 2MET = 2M(Ex + Ey)

= A1 + A2

A1A2
k2

x + A

(A1 + A2)A3
k2

y , (12)

�κ = {θκ,�kx ,�ky} , θκ = arctan[
√

Ex/Ey]. (13)

For the fixed decay energy, the three-body correlations are
defined by five parameters of �κ . It is more practical to split
the correlation space into internal correlations (relative motion
of three particles) and external correlations (orientation of the
three-body decay plane in the space). It is convenient to de-
scribe internal correlations with two parameters {ε, cos(θk )},
where ε is the energy distribution between X and Y subsys-
tems and θk is the angle between the Jacobi momenta:

ε = Ex

ET
, cos(θk ) = (kx, ky)

kx ky
. (14)

These parameters can be constructed in any of three Jacobi
systems. The correlations constructed in different Jacobi sys-
tems are just different representations of the same physical
picture. However, different aspects of the correlations may
be better revealed in a particular Jacobi system. For the
core+N+N systems there are two nonequivalent Jacobi sys-
tems: T and Y (the correlation information for the second Y
system is the same).

The external correlations are connected with spin align-
ment of three-body systems populated in reactions. Practical
significance of such studies for the three-body systems is dis-
cussed in Refs. [27–30] and in the review [31]. No information
of this kind is available for the electromagnetic dissociation

(EMD) of three-body systems and no further discussion of
this topic will be provided here. However, we should em-
phasize that the relevant theoretical methods are already well
developed and have proven to be useful in many experimental
situations. So, the application of the corresponding analysis to
the prospective EMD dissociation data is encouraged.

C. Potentials

We follow potential prescription for A = 6 systems, which
has shown to be efficient in Refs. [22,24,25,32]. The NN
potential is taken either as a simple s-wave single-Gaussian
form BJ (from the book of Brown and Jackson [33])

Vnn(r) = V0 exp
(−r2/r2

0

)
, (15)

with V0 = −31 MeV and r0 = 1.8 fm, or the realistic soft-core
potential GPT (Gogny-Pires-de Tourreil [34]).

In the α-n channel we use an �-dependent potential SBB
(Sack-Biedenharn-Breit [35])

Vαn(r) = V (�)
c exp

(−r2/r2
0

) + (l · s)V�s exp
( − r2/r2

0

)
,

(16)

where r0 = 2.30 fm, V (0)
c = 50 MeV, V (1)

c = −47.32 MeV,
V (2)

c = −23 MeV, and Vls = −11.71 MeV.
To get the phenomenological binding-energy correction for

6He g.s. an additional short-range three-body potential V3 in
Eq. (1) is used in the form

V3(ρ) = δKγ ,K ′γ ′ V (0)
3 /[1 + exp((ρ − ρ0)/d3)] , (17)

where ρ0 = 2.5 fm and d3 = 0.4 fm. This short-range three-
body potential (note also the small diffuseness) does not
distort the interactions in the sub-barrier region, which was
found to be important for consistent studies of the asymptotic
WF properties, see, e.g., the discussion in Ref. [36].

We do not have clear physical motivation for introducing Ṽ3

in Eq. (2). However, the form this potantial is taken the same
as in Eq. (17) and arbitrary variation of the potential depth is
used in Sec. V for studies of characteristic sensitivities of the
theoretical model.

D. 6He ground-state wave function

Different aspect of the 6He g.s. WF was studied in the
hyperspherical harmonics method several times [22,25]. The
obtained 6He and 6Li g.s. WF were tested against various
observables in several works [5,22,26,32,37,38]. They are
known to provide consistent description of various long-range
observables for the 6He and 6Li nuclei. The detailed account
of the isobaric symmetry of 6He and 6Be g.s. can be found in
Ref. [24]. For that reason we give here the most basic infor-
mation about 6He g.s. and properties of the source function
induced by the dipole operator, see Fig. 2 and Table I. In
Sec. V the impact of the 6He g.s. WF variation on the E1
SF is studied. In this section the additional information about
6He g.s. WF can be found, see Table II.

E. Comment on Pauli principle treatment

The three-body description of the six-body dynamics is
an approximation, used by many scientific groups all over
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FIG. 2. Main components (squared) of the 6He g.s. WF (a) and
the source function Eq. (10) for the 1− continuum (b).

the world for A = 6 systems. In our approach Pauli principle
between valence neutrons and neutrons of the α-core clus-
ter is accounted approximately. The repulsive interaction is
employed in the s-wave α-n channel, which well reproduces
the experimental α-n scattering phases and largely prevent
valence neutrons from entering core interior. Various ways
of Pauli principle treatment both approximate and exact were
used in the last three decades for studies of the A = 6 systems.
Different approaches could be more successful for some as-
pects of dynamics and less to the others, but no silver bullet
observable was found, which can confidently rule out some
approaches.

The approximation used in this work is pragmatically jus-
tified by the mentioned above proper descriptions of various
observables for 6He ground state. Our confidence in the three-
body model applicability to E1 excitation in 6He is strongly
supported by successful studies of continuum states in 6Be
(both resonant and nonresonant) in Refs. [21,24,30,39]. One
may see in these works that even such subtle observables as
very fine details of three-body correlation patterns are nicely

TABLE I. Major components of the 6He g.s. WF (left three
columns) and major components of the source function induced by
the dipole operator (right three columns). Relative probabilities W
are in percent and rms hyperradii 〈ρ〉 are in fm.

K, L, S, lx, ly W 〈ρ〉 K, L, S, lx, ly W 〈ρ〉
0 0 0 0 0 4.61 1.35 1 1 0 0 1 39.02 0.526
2 0 0 0 0 80.8 4.49 1 1 1 1 0 2.09 0.028
2 1 1 1 1 11.3 1.65 3 1 0 0 1 48.22 0.650
4 0 0 2 2 0.50 0.38 3 1 1 1 2 1.26 0.017
6 0 0 2 2 1.17 0.75 3 2 1 1 2 3.78 0.051
6 1 1 3 3 0.53 0.51 5 1 0 2 1 0.77 0.011

reproduced in the three-body model in spite of some defi-
ciency in the Pauli principle treatment. It should be also noted
that E1 excitation is a very peripheral process, becoming even
more peripheral in the low-energy limit. We find in this work
that the major computational problems take place exactly in
this energy range. This makes the antisymmetrization issue
presumably not of a prime importance for the problem we
study.

III. CONVERGENCE OF SDM STRENGTH FUNCTION

The value Kmax truncates the hyperspherical expansion in
the system Eq. (9). For each K value all the possible basis
states, namely all the possible combinations of lx + ly � K ,
are included in the HH expansion.

The SE are solved up to ρmax = 400 fm. The matching of
the momentum distribution is performed at ρmax = 70–90 fm.
At larger distances the artifacts of the boundary conditions
begin to arise. At Kmax = 25 the number of channels reaches
260, making further direct basis increase problematic. The
basis size can be effectively increased using the adiabatic
procedure based on the so-called Feshbach reduction (FR)
[24,36]. Feshbach reduction eliminates from the total WF
� = �p + �q, an arbitrary subspace q using the Green’s
function of this subspace:

Hp = Tp + Vp − VpqGqVpq. (18)

In an adiabatic approximation, we can assume that the kinetic
energy term is small compared to the centrifugal barrier in
the channels where this barrier is large (these are evidently
the channels with large K values) and can be approximated
by a constant (Feshbach energy E f ). In this approximation the
Green’s function for the q subspace can be defined by matrix
inversion from

(H − ET )Kγ ,K ′γ ′ =
[

E f −ET +L(L + 1)

2Mρ2

]
δKγ ,K ′γ ′ +VKγ ,K ′γ ′

= G−1
Kγ ,K ′γ ′ . (19)

In this way the FR procedure is reduced to the construction of
effective three-body interactions

V eff
Kγ ,K ′γ ′ = VKγ ,K ′γ ′ −

∑
K̄ γ̄ ,K̄ ′γ̄ ′

VKγ ,K̄ γ̄ GK̄ γ̄ ,K̄ ′γ̄ ′VK̄ ′γ̄ ′,K ′γ ′ . (20)

Summations over indexes with the bar are carried out for the
eliminated channels (the q subspace). Technically, we elimi-
nate all the channels with K > KFR, and the KFR value defines
the sector of the HH basis where the calculations remains
fully dynamical. We take E f ≡ ET in our calculations as no
significant sensitivity to this parameter in a broad variation
range was found.

There are two forms of convergence to be studied to
control the reliability of the FR procedure. (i) One can
gradually reduce Kmax value for the fixed KFR value taken
as maximum attainable in the dynamic calculations. (ii) For
the maximum achieved Kmax value one can gradually reduce
KFR value (using smaller and smaller dynamic basis size).
The calculations of the strength function for wide ET energy
range is defined entirely by the Kmax value. The basis size
for the dynamical calculations can be taken as very modest
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TABLE II. Properties of different versions of the 6He g.s. WFs. Energies are in MeV. The radial characteristics show root mean square
values; 〈rα〉 ≡ 〈r3〉 is the rms distance from α cluster to 6He c.m. The last two columns show the E1 NEW sum rule value for ET < 3 MeV
and the total value in e2fm2 units.

Calculation Eb 〈ρ〉 〈rα〉 〈rnn〉 �ECoul rmat rch S(3)
NEW S(∞)

NEW

GPT n-n 0.973 5.16 1.17 4.50 2.302 2.43 2.019 0.568 1.307
GPT n-n, strong V3 1.1 5.02 1.14 4.41 2.400 2.39 2.002 0.514 1.241
GPT n-n, weak V3 0.85 5.24 1.19 4.57 2.251 2.46 2.031 0.630 1.352
BJ n-n 0.973 5.10 1.15 4.48 2.345 2.41 2.008 0.562 1.262
Mod. strong BJ n-n 0.973 5.53 1.31 4.52 2.095 2.57 2.103 0.854 1.639
Mod. weak BJ n-n 0.973 4.66 0.99 4.44 2.680 2.26 1.922 0.317 0.936
As in Ref. [22] 0.973 5.49 1.23 4.88 2.111 2.54 2.048 0.672 1.445
Experiment 0.973 2.344 2.30(7) [43] 2.068(11) [44] 0.45(12) [12]

2.48(3) [45]

KFR = 13–15 without deterioration of the SF quality. How-
ever, the majority of the presented calculations were per-
formed with KFR = 25, which is a very reliable value. The
largest basis size is really needed (for ET > 0.4 MeV) for
calculations of the correlation patterns in the α + n + n con-
tinuum since the convergence for the correlations appears to
be essentially slower than for the strength function. These
aspects of the convergence is discussed in Sec. IV B 2.

The convergence trends for small and large basis sizes
are illustrated in Figs. 3 and 4. We may see the following
important trends in the convergence patterns.

(i) The easiest way to get converged calculations is to re-
move FSI. The convergence here is defined by convergence of
the source function expansion, which is practically achieved
at Kmax = 5–7, see Table I.

(ii) The convergence of test calculations with n-n FSI
switched off is achieved at Kmax = 30–40. The conditions
for calculations with full three-body FSI is much worse, and
complete convergence is achieved at Kmax = 60–70. The max-
imum basis size used in the calculations Kmax = 101, which is
very safe value for the SF calculations at ET > 0.4 MeV.

(iii) There is some form of systematic wavy behavior of
the strength function in the process of convergence. It seems
that for small basis sizes the SF oscillates around the final
converged value. When the basis is increased, these oscilla-

FIG. 3. Convergence of the E1 strength function calculations
with and without n-n FSI for Kmax < 30.

tions are shifted toward smaller energies and the magnitude
of the oscillations decreases. This form of the wavy behavior
can be connected with some kind of internal reflections in
the system of three particles, which arise as an artifact of
boundary conditions treatment in the situation of the basis
truncation.

(iv) Analogous picture of convergence spoiling the low-
energy part of the E1 SF was observed in the three-body
calculations of SDM in 17Ne [18]. The cure for this problem
was found in use of a model with simplified Hamiltonian
(without p-p FSI), which allowed us to use the exact three-
body Green’s function providing precise SF treatment [18,19].
Application of such a model is based on the fact that p-p
FSI was found to be not important for the low-energy E1
SF calculations. In 6He this option is evidently not available,
since there is very large difference between calculations with
and without n-n FSI.

(v) Although the wavy behavior can be seen in Fig. 3
the position of peak in SF and the behavior of the SF low-
energy slope visually stabilize at Kmax ≈ 30. For the basis
sizes achieved, these artificial waves are shifted to ET < 0.4
MeV. The aspect of the low-energy SF convergence is quite
intriguing and it is discussed separately in Ref. [20].

Comparison of calculations performed with quasirealistic
GPT n-n potential and with simple central BJ n-n potential

FIG. 4. Convergence of the E1 strength function calculations
with and without n-n FSI for Kmax > 30.
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FIG. 5. The dominating contributions to the E1 strength function.

provides very close results. This is a clear consequence of an
extreme peripheral character of the SDM dynamics. However,
the convergence of calculations with GPT potential is much
slower. For that reason the largest-basis calculations were
performed with the central n-n potential only.

IV. SDM DECAY DYNAMICS

The partial wave decomposition of the 6He SDM SF is
shown in Fig. 5. The low-energy part of the SF below ET = 1
MeV is strongly dominated by the lowest hyperspherical com-
ponent {K, γ } = {1 1 0 0 1}. Sometimes this fact is interpreted
as an opportunity to use only one channel (lowest possible
channel with K = 1) in calculations of SDM. However, this
is not the case: although the relative weights of higher-K
channels are small, their cumulative effects to a large extent
determine the magnitude of the K = 1 component in the low-
energy domain.

The decay dynamics of the soft dipole mode can be clari-
fied by momentum distribution analysis of the decay products.
The energy evolution of the complete (energy-angular) three-
body correlation patterns for 6He SDM is illustrated in Fig. 6
for different decay energies. The inclusive energy distribu-
tions are shown in Figs. 7, 8, 9, and 12. It can be found that
correlation patterns are qualitatively different in three regions:
(i) ET � 1 MeV, (ii) 1 � ET � 2.5 MeV, (iii) 2.5 � ET

MeV.

A. True three-body decay dynamics

The region (i) with ET � 1 MeV corresponds to so-called
true three-body emission. This is a situation of essentially
collective three-body motion. Technically, it is expected that
such a motion is well described by a small number of HH
terms. In the low-energy limit it should be just one term
with K = Kmin = lx(min) + ly(min), most likely, the lowest
hyperspherical term (or, possibly, terms for Kmin > 0). The
corresponding correlation pattern is called three-body phase
volume and it has meaning of phase volume corrected for
angular momenta. For single HH with definite lx and ly values
the three-body phase space is

dW/dε ≈
√

ε1+2lx (1 − ε)1+2ly . (21)

It can be seen in Fig. 7 that in the low-energy limit the energy
distribution in the Jacobi T system tends to phase volume for
[sp] configuration with lx = 0 and ly = 1

dW/dε ≈
√

ε(1 − ε)3. (22)

For the “no n-n FSI” calculations this is exactly true for ET �
0.3 MeV. In full three-body case there is a strong enhancement
of the low-energy part of the distribution due to the dineutron
FSI. This effect is important even at energy as low as ET ≈

FIG. 6. Complete energy-angular three-body correlations for 6He SDM transitions in the Y Jacobi systems. Top row corresponds to the
full three-body calculation; bottom row corresponds to calculation without n-n FSI. The columns correspond to decay energies ET equal to
0.04, 1, 2, 3, and 4 MeV.
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FIG. 7. Evolution of energy correlations over ET for 6He SDM
transitions in the T Jacobi system. (a) and (b) correspond to full three-
body calculation and “no n-n FSI” case, respectively. The thick gray
curves show the phase volume Eq. (22).

0.04 MeV and only for ET � 5 keV the three-body phase
volume behavior is retained.

In a Y Jacobi system the corresponding three-body phase
volume behavior is defined by symmetry property of identical
valence nucleons, which leads to [sp] + [ps] configuration
mixing with almost equal weights

dW/dε ≈
√

ε3(1 − ε) +
√

ε(1 − ε)3 =
√

ε(1 − ε). (23)

This expression is equivalent to the most trivial three-body
s-wave phase volume (lx = 0 and ly = 0 case). It can be found
in Fig. 8 that this simplistic expectation is well justified for
ET � 0.3 MeV. For energies ET � 1 MeV and above the
energy distribution in the Y Jacobi system tends to relatively
symmetric profiles with maximum at ε ≈ 0.5, which are
typical for democratic decays of light 2p emitters [39,40].

B. Sequential decay dynamics

In the region (iii) with 2.5 � ET MeV the decay regime is
sequential: the emission of nucleons proceed via population of
the intermediate p3/2 resonance in the 5He. This can be well
seen in Fig. 9 as the two-hump structure of distributions for
ET � 2.5 MeV. The sequential decay peak drifts to lower ε

with ET increase. However, it can be found from distributions
of Fig. 9 that the peak with lower ε value always takes place
at the same energy Er = 0.84–0.86 MeV. Where this energy
Er is coming from?

1. Sequential peak energy

The information on the 5He p3/2 resonance, governing
the properties of the sequential decay, is given in Fig. 10(a).
The standard description of the resonance is represented by
the elastic phase shift and the corresponding elastic cross

FIG. 8. Evolution of energy correlations over ET for 6He SDM
transitions in the Y Jacobi system. (a) and (b) correspond to full
three-body calculation and “no n-n FSI” case, respectively. The thick
gray curves show the phase volume Eq. (23).

section. The elastic cross section for the potential used in our
calculations has the peak value at Er = 0.95 MeV. However,
this resonance is quite broad and we may question another
continuum responses. Figure 10(b) shows also the internal

FIG. 9. Evolution of energy correlations for 6He SDM transi-
tions in the Y Jacobi system for ET = {3, 4, 5, 6, 7} MeV. (a) and
(b) correspond to full three-body calculation and “no n-n FSI” case,
respectively. All the left peaks in (a) have exactly the same absolute
energy εET = 0.87 MeV, which agrees very well with Fig. 10(b).

014611-8



HIGH-PRECISION STUDIES OF THE SOFT DIPOLE … PHYSICAL REVIEW C 102, 014611 (2020)

FIG. 10. Characteristics of the 5He p3/2 resonance. (a) shows the
phase shift and elastic cross section. (b) shows internal normalization
Eq. (24) with different rnorm and continuum form factors Eq. (25)
with different rms radii rrms. Vertical dashed lines visualize positions
of the highest-energy (0.83 MeV) and lowest energy (0.87 MeV)
peaks in (b).

normalization

Nl (E ) =
∫ rnorm

0
dr | fl (kr)|2, (24)

where rnorm is the size of the normalization region, and con-
tinuum form factor

Fl (E ) =
∫ ∞

0
dr fl (kr)φ(r). (25)

Function fl (kr) is two-body scattering WF normalized as
sin(kr + lπ/2 + δl ) and the source WF φ(r) taken in a simple
analytical form (so-called Hulten ansatz)

φ(r) =
√

2(r01 + r02)

(r01 − r02)2
(exp[−r/r01] − exp[−r/r02]). (26)

Here we use r01 = 0.5 fm and vary r02 to get different rms
radii for φ(r). It can be seen in Fig. 10(b) that the energies of
the peak both for internal normalization and for form factors
are considerably different from the peak energy of elastic
cross section. The 5He peak energy Er = 0.84–0.87 MeV
inferred from Fig. 10(b) is very stable: it has a small variation
when changing the parameters in a broad range of reasonable
values. This range exactly corresponds to the stable peak
energies observed for different ET in Fig. 9.

2. Convergence of momentum distributions

Basing on our results that we have obtained from the
studies of two-nucleon emission and two-proton radioactivity
we can conclude that for the energies of the resonant states
the convergence is fastest, for width of this states it is slower,
and for momentum correlations the convergence is the slowest
[36].

FIG. 11. Convergence of the energy distributions in the Y co-
ordinate system for ET = 7 MeV. (a) Kmax convergence for fixed
KFR = 25. (b) KFR convergence for fixed Kmax = 101.

We can find in Figs. 3 and 4 that the convergence of
strength function is very good for Kmax > 50 in a broad
energy domain. If we look at the high-energy part of SF with
ET > 5 MeV, the result is well converged already at very
small basis sizes Kmax ≈ 13–15. In contrast, the convergence
of the momentum distributions for the high-energy part of
the E1 strength function is found to be most challenging
issue: here we need to describe the long-range formation of
the peaks in the distribution for sequential decay mode via
the p3/2 resonant g.s. of 5He. Extremely large basis sizes
are required for that. It can be seen in Fig. 11 that the
convergence is reasonably good, but not quite achieved yet.
This figure illustrates ET = 7 MeV case; for ET = 3–5 MeV
the convergence is much better and it is perfect for the lower
energies.

3. Antidineutron correlation

The energy correlations in the Jacobi T system at energies
ET � 2.5 MeV are shown in Fig. 12. We can see that in
contrast to the dineutron peak in the energy distribution at
low ET , a peculiar repulsive anticorrelation takes place here
between neutrons. In the calculations without n-n FSI there
is strong suppression of probability for ε � 0.2. In full three-
body calculation the n-n FSI try to compensate this effective
repulsion somehow. The energy distribution even has a sharp
increase at ε → 0. However, the intensity of the n-n FSI is
not sufficient to overcome the overall repulsive trend: the
probability for ε � 0.2–0.3 is still seriously suppressed.

C. Transitional decay dynamics

In the region (ii) with 1 � ET � 2.5 MeV the transition
from true three-body to sequential emission dynamics is tak-
ing place. Estimates show that from the penetrability point
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FIG. 12. Evolution of energy correlations for 6He SDM transi-
tions in the T Jacobi system for ET = {5, 6, 7} MeV for the full
three-body calculation (black curves) and “no n-n FSI” case (gray
curves).

of view the turnover to sequential emission regime (via the
p3/2 resonance in the 5He) should take place at ET � 1.2–1.5
MeV. However, at energies ET ≈ 1.8 MeV, the energies of
the first and the second emitted neutrons with respect to the
α core are nearly equal, and, thus, both these nucleons can
well populate the 5He p3/2 resonance via its broad wings.
For that reason the sequential decay can not be formed up
to ET ≈ 2.5 MeV and the emission has complex three-body
character. The major trends of transitional dynamics were
discussed in Ref. [40]. The forms of transition we face here
look analogous to transitional dynamics observed in the light
2p emitters, such as 6Be [39] and 16Ne [41,42] (so-called
democratic decay).

The transition from the three-body to sequential regime is
characterized by a rapid qualitative change of the correlation
patterns, see Fig. 6. This is well illustrated by energy distribu-
tion changes in Figs. 7 and 8. Two most important effects are
taking place in the transitional energy range.

(i) The dineutron correlation between emitted neutrons
(enhancement at low ε values) typical for the low-energy
ET range is dissolved, and replaced with antidineutron cor-
relation (depression at low ε values), as discussed above in
Sec. IV B 3.

(ii) The sequential decay patterns for population of the
intermediate p3/2 resonance in 5He are formed: we start from
distribution with one peak at ε ≈ 0.5 and end with sequential
two-peak correlation pattern.

V. WHAT CAN WE CHANGE?

Before we discuss the previous theoretical results, we ask
ourselves a natural question: how stable are our predictions
for E1 SF. To understand it we investigated (i) the impact of
the 6He g.s. WF variation and (ii) the impact of the three-
body potential Ṽ3 variation, see Eq. (2). The variations are not
necessarily realistic: our aim is to find out which variations of
the E1 SF in 6He are, in principle, attainable.

The basic information about different versions of the
6He g.s. WFs is provided in the Table II. The matter radius

FIG. 13. What we can change by varying different aspects of the
calculation.

of 6He is obtained as

6 r2
mat(

6He) = 〈ρ〉2 + 4 r2
mat(

4He).

The predicted matter radius of 6He lies somewhere in between
two values extracted from experiment, which disagree with
each other and, moreover, are quite old. The most restrictive
observables are the Coulomb displacement energy in A = 6
isobar and the charge radius. The �ECoul value is reproduced
nicely by our main calculation. The charge radius of 6He,
which in the cluster model is given by

r2
ch(6He) = r2

ch(4He) + 〈rα〉2 + r2
ch(n),

is a bit underestimated. However, we can not improve agree-
ment for this characteristic without coming to contradiction. If
we somehow expand the system to get correct charge radius,
the agreement for �ECoul will be get worse. It should be
also understood that calculation of this value in the cluster
model depends on a number of parameters, and not all of them
are confidently defined. We use the following ingredients:
rch(p) = 0.84 fm, rch(4He) = 1.681 fm, r2

ch(n) = −0.1161
fm, also leading to the rms matter radius of the core cluster
rmat(4He) = 1.495 fm.

The E1 SFs corresponding to different calculation options
are collected in Fig. 13.

(i) The old 6He g.s. WF from Ref. [22] produces the thick
gray curve in Fig. 13.

(ii) A strong variation of the Ṽ3 potential was performed,
see Eq. (2). The orange dotted curves correspond to V (0)

3 =
32 MeV (bottom) and V (0)

3 = −32 MeV (top). The scale of
this variation is unrealistically large. For example, for the
6He g.s. calculations the parameter V (0)

3 = −13.5 MeV is used
to adjust the binding energy to have exactly experimental
value. We think that such variations of Ṽ3 is much larger
than any reasonable value: the many-body effects beyond the
three-cluster approximation are expected to be smaller in 1−
continuum, compared to 0+ g.s.

(iii) The binding energy Eb of 6He was varied by changing
V3 potential, see Eq. (1). The blue dashed curves correspond
to Eb = 1.1 MeV (bottom) and Eb = 0.85 MeV (top).

(iv) The geometry of the 6He g.s. WF has been modified
using stronger and weaker Vnn potentials. Red dash-dotted
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FIG. 14. Comparison of the results for the 6He E1 SF obtained
in present work with the previous calculations. (a) shows the results
of HH and HH-based methods [4,5,9,46]). (b) shows the results of
methods based on continuum discretization [6–8,11,47]).

curves show the results with 6He WF obtained with BJ
potential [see Eq. (15)] with V0 = −21 MeV (bottom) and
V0 = −36 MeV (top), instead of the standard value V0 = −31
MeV. The average angle between neutrons (as seen from the α

core) can be calculated as 60◦, 66◦, and 74◦ for strong, normal,
and weak n-n potentials.

It can be understood from Fig. 13 and Table II that the
result for E1 SF is quite stable. For variations (i)–(iii) of
parameters far beyond realistic we get a modest change in
the SF, which is mainly just scaling within ±(10–15)%. To
change the theoretical prediction considerably [case (iv)], we
need to change basic geometry of the 6He g.s. WF. This
can hardly be compatible with our common understanding of
structure, reactions, and observables for A = 6 isobar.

VI. DISCUSSION OF PREVIOUS THEORETICAL RESULTS

Comparison of the results for the 6He E1 SF obtained in
this work with the previous calculations is given in Fig. 14.
Calculations [5] were performed by members of our col-
laboration in a very similar formalism, but with numerical
limitations natural to a situation twenty years ago. The wavy
profile of the SF is analogous to the results obtained in the
present work with limited basis Kmax = 21, see Fig. 3. The
strength function does not match exactly ours, obtained within
the same limitations, because the Pauli principle treatment
in the core-n channel is different in Ref. [5] (so-called Pauli
projection method). Also the 6He g.s. WF used in Ref. [5] is
somewhat different from ours.

The calculations of Refs. [4] show the same wavy behav-
ior, which, as we demonstrate in this work, is a symptom
of insufficient convergence. The computational methods of
Ref. [4] and of present work are different, but both rely
on hyperspherical expansion of WF. Therefore, we may still
expect some analogy in convergence trends. The behavior
of the strength function in Refs. [4] on the left slope of the
peak (ET ≈ 0.2–0.8 MeV) is very close to the behavior of our
strength function. Basing on our experience, we do not expect
that this aspect of the SF [4] changes noticeably in the case of
the complete convergence.

The HH calculations of Ref. [9] again show the wavy
behavior discussed above. Several calculations were presented
in this work, divided in two groups by treatment of the Pauli
principle in the α-core channel: (i) Pauli projection and (ii)
supersymmetric transformation techniques. We have selected
the upper and lower results from group (i) and the lower
from group (ii); the other results from this group look a bit
unrealistic.

It can be seen in Fig. 14(a) that all the presented results
from Ref. [9] (actually all the results of HH-based methods)
are a kind of oscillating around the mean value represented by
our fully converged calculations. On the other hand, it should
be noted that all these methods give qualitatively very similar
SFs in the low-energy range, conforming the expected

dBE1

dET
≈ E3

T , (27)

behavior of the E1 SF for 6He. Having this correct low-energy
asymptotics is the natural feature of the HH method.

The results of Ref. [46] were obtained in the HH-based
method as well. However, this is six-body approach treating
photodissociation in the special framework (Lorentz integral
transformation). The three-body cluster α + n + n threshold
is not explicitly present in this approach (only the six-body
threshold) and the low-energy behavior in this channel can
be provided only by the basis convergence. However, the
maximum basis size achieved in this work is only Kmax =
11, which is far not sufficient even in the three-body case,
which is technically much easier. As a result the effective
strength function (recalculated very approximately from the
cross section given in Ref. [46]) does not demonstrate soft
dipole low-energy enhancement, which takes place in some
form in all other approaches.

The theoretical methods collected in Fig. 14(b) are based
on different forms of the continuum discretization. The calcu-
lations of Ref. [11] (this is essentially three-body model) give
a peak in the E1 SF at about 2.5 MeV, which is too different
from the mainstream value of 1.0–1.1 MeV.

The six-body variational method calculations of Ref. [47]
effectively takes into account different possible kinds of clus-
terization beside α + n + n. This method provides low-energy
concentration of the E1 strength at about 2 MeV, which is
higher than mainstream 1.0–1.1 MeV value but can be seen
as a nice result considering complexity of the approach. The
low-energy spectrum below 3 MeV is based on six to eight
discrete states and thus its specific profile is strongly sensitive
to the smoothing procedure.
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The strength function obtained in Ref. [6] has a peak at
higher energy (ET = 1.25 MeV) than in present work and
in the papers Ref. [4,7] (ET ≈ 0.9–1.1 MeV). This could
be a result of incomplete accounting of the n-n FSI. The
peak energy in Ref. [6] is close to 1.4 MeV (value obtained
in calculations without n-n FSI), see Fig. 14(b). Another
worrying issue is the high-energy behavior of the SF obtained
in the work [6]. The SF is shown up to 6 MeV only, but if
we smoothly extrapolate it to higher energies, we can infer
that the E1 NEW sum rule value for this SF is around 1.8
e2fm2. This value corresponds to rα = 1.37 fm rms distance
of α cluster from the center of mass in the 6He g.s. This is
considerably larger than rα = 1.17 fm for 6He WF used in
the present work (similar radial properties of 6He WF were
used also in the calculations [4,7]). The rms matter radius of
the 6He is rmat = 2.43 fm in our work (based on the 1.495
fm rms matter radius of α cluster) and the corresponding
rmat = 2.46 fm can be found in Ref. [6]. The difference here
is not that large. Thus we have to presume very different
geometry of 6He in the work [6]: the rms distance between
two neutrons recalculated from rα and rmat is rnn = 3.11 fm.
This is drastically smaller than the value rnn = 4.49 fm used in
present work. In general, the values rnn > 4.3 fm are typically
found in all other model calculations of 6He.

The 6He E1 SF of Refs. [7,8] noticeably differs from our
SF and from SF in Refs. [4,9]. Namely, the low-energy be-
havior of the SF in Refs. [7,8] is strongly enhanced compared
to the HH-based works. Such a behavior is very difficult to
reproduce in realistic calculations. This is an important issue
since astrophysical capture rates are very sensitive to the low-
energy behavior of the SF in a broad range of temperatures
of interest. Therefore, we will return to this problem in a
forthcoming paper [20]. It seems that all the methods collected
in Fig. 14(b) have problems with correct treatment of the
low-energy part of the E1 SF in 6He. All these SFs tend at
ET → 0 either to constant, or to something visually different
from the expected behavior of Eq. (27), see Fig. 14(a).

The correlation aspect of the SDM in 6He has been frag-
mentarily discussed in Refs. [5,10]. The results of Ref. [5]
we discuss below when comparing with experimental data. In
Ref. [10] the inclusive En-n and Ecore-n distributions were con-
structed for the Coulomb breakup reaction. No comparison of
this information with our results is possible.

VII. COMPARISON WITH EXPERIMENTAL DATA

The results of the 6He E1 dissociation calculations are
compared with available experimental data in Fig. 15 for SF
and in Figs. 16, 17 for fragment correlations. Our SF, as well
as other predictions [4–7], are consistent with each other and
with experimental data [12] for ET > 2 MeV. However, for
lower energies there is strong disagreement between exper-
iment and all the calculations. There are certain differences
in details, which we discussed above, but all the theoretical
calculations in Fig. 15 predict a pronounced peak of E1
SF in 6He at ET ≈ 0.9–1.25 MeV with peak values in the
range ≈0.27–0.33 e2fm2/MeV. This feature of all the existing
calculations disagrees with data far beyond the experimental
uncertainty declared in Ref. [12].

FIG. 15. Comparison of the results for the 6He E1 SF obtained
in present work with experimental data [12].

Let us take a look at the correlation patterns observed for
the E1 dissociation of 6He in the experiment Ref. [12] and
later published in Ref. [14]. It should be understood that the
theoretical distributions are shown together with experimental
data as is, without any accounting for the experimental bias,
so this comparison can not be truly quantitative. Nevertheless,
in Figs. 16 and 17 we may see that the agreement of the
theoretical correlations with experimental data significantly
improves, compared to the predictions of Ref. [5]. For ex-
ample, there was a strong qualitative disagreement between
theory of Ref. [5] and experiment in Figs. 16(b), 16(c) which
is cured in our modern calculations.

There is, however, a considerable disagreement with the
experimental data in correlations, which we should empha-
size. The data is much smaller than theory in the energy

FIG. 16. The energy (a), (c) and angular (b), (d) distributions for
products of the E1 dissociation of 6He in T (a), (b) and Y (c), (d) Ja-
cobi coordinate systems obtained in the continuum energy region
ET = 1–3 MeV. The experimental data from Ref. [14] are shown
by diamonds. The solid black curves correspond to the calculation
results of present work. The red dashed curves show the results of
model Ref. [5] as given in Ref. [14].
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FIG. 17. The same as in Fig. 16, but for the continuum energy
region ET = 3–6 MeV.

distribution Fig. 16(a) for ε < 0.3 and in the angular dis-
tribution Fig. 16(d) for cos(θk ) < −0.6. Both these ranges
correspond to the same physical situation of low momentum
between two neutrons. One may see in Fig. 7(a) that the
energy distribution around ET ≈ 1 MeV has a pronounced
low-energy n-n peak (at higher ET energies the low-energy
n-n correlation is supressed, see also Fig. 12). If we assume
that the efficiency of the registration of the low-energy two-
neutron events was underestimated in the data treatment of
Ref. [12], then both of these disagreements in correlations
and the absence of the ET ≈ 1 MeV peak in experimental
reconstructed strength function in Fig. 15 get explanation. To
clarify this issue new high-precision experiments dedicated to
SDM in 6He are necessary.

VIII. CONCLUSIONS

Accurate calculations of the E1 strength function (or soft
dipole mode) for 6He are presented in this work. The results of
these calculations significantly improved the older results of

the same collaboration Ref. [5]. Both the E1 strength function
and three-body decay correlation pattern are found to be fully
converged for ET > 0.1 MeV. Fully converged results of this
work allow us to understand strange wavy behavior of the
E1 SF predicted in theoretical papers [3,4,9] and correspond-
ing strong disagreement among them. For the first time we
are able to get insight for the decay dynamics for the soft
dipole excitations. The transition from true three-body decay
dynamics to sequential decay mechanism is taking place in
the energy range ET = 1.0–2.5 MeV, which is reflected in the
evolution of the correlation patterns.

It was demonstrated that the SDM results, obtained in
this work, have important advantages compared to the other
available theoretical calculations. However, the interpretation
of the soft dipole excitation is a fragile issue, very sensitive to
details of the models. Therefore the theoretical results have to
be confirmed by the experimental data. Unfortunately, there
is no agreement between E1 SF for 6He obtained in the
calculations and the E1 strength function extracted from the
6He Coulomb dissociation cross section on the heavy target
for the low-energy range ET < 2 MeV. This is true not only
for our calculations, but for all the theoretical results available
so far. Such a situation is unsatisfactory, since the radiative
capture rates in nuclear astrophysics can be obtained only
by the extrapolation based on the Coulomb dissociation cross
section data. This is exactly the low-energy range, where the
quality of the data are crucial for extrapolation to energies of
astrophysical interest.

Intensive 6He beams are easily accessible at the modern
RIB facilities, so it would be expected that the measurements
with 6He should become a benchmark case for all the studies
of this kind. So, highly precise measurements of the E1 SF in
6He with modern techniques, as well as scrupulous compari-
son with theoretical calculations, taking the experimental bias
into account, are very desirable.
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