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We approximate the realistic α-core nuclear interaction between the inner turning point and Coulomb barrier,
derived within the double folding procedure, by a parabolic dependence. It turns out that the corresponding
harmonic oscillator frequency is concentrated in a narrow interval around h̄ω1 ≈ 9 MeV for all analyzed
transitions from even-even and odd-mass α emitters. The penetrability through the nuclear barrier has an
exponential dependence on the ratio between the fragmentation potential and this harmonic oscillator frequency.
On the other hand, the Coulomb penetrability has the standard dependence on the Coulomb parameter. Our
analysis revealed that the reduced width, extracted by using the nuclear plus Coulomb penetrability factors,
exponentially decreases versus the number of α clusters along all analyzed α lines, except one region where
it increases by approaching the neutron magic number Nmag = 126. In that case, the number of valence proton
pairs is much smaller than the number of valence neutron pairs. The reduced width exponentially depends on
the magic neutron-proton asymmetry above doubly magic nuclei. These dependencies allow us to propose a
systematics for reduced widths in terms of the quartet number and magic asymmetry evaluated above the closest
doubly magic nuclei.
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I. INTRODUCTION

The α-particle has a large binding energy/nucleon and
therefore it survives as a basic building block in the struc-
ture of light nuclei [1,2]. A striking example is given by
quasimolecular rotational bands in light nuclei [3]. These
states naturally occur in a quasimolecular pocketlike α-core
potential, with a minimum in the nuclear surface region.
The importance of α clustering in the nuclear structure above
doubly magic nuclei was stressed not only for light but also
for heavy systems [4–6]. On the other hand, the strong α

clustering feature is revealed by decaying nuclei with Z � 50.
In the early years of quantum mechanics this process was
interpreted as a penetration of “preformed” α clusters through
the Coulomb barrier [7,8]. The later attempts to explain the
α formation in terms of two proton and two neutron single-
particle orbitals, generated by the nuclear mean field, failed
[9,10]. It is a well-established fact that the α-decay width can-
not be described without an important clustering component
mixed with standard shell orbitals [11]. It turns out that the
four-body correlations are enhanced in the surface region and
this can be simulated by adding a Gaussian component on
top of the standard nuclear mean field [12]. Thus, α-like con-
figurations are favored at small densities beyond the nuclear
surface, due to the fact that the Pauli principle prohibits their
existence inside nuclei [13,14]. This leads to a quasimolecular
pocketlike α-core interaction, centered on the nuclear surface,
explaining the systematics of the decay width between ground
states [15]. A very significant result concerning the quasi-

molecular interpretation of the α-daughter rotating configu-
rations is given in Ref. [16]. Namely, the strength of the α-
daughter quadrupole-quadrupole interaction reproducing the
experimental widths to 2+ states in even-even nuclei is larger
above magic nuclei and linearly decreases by adding α-cluster
configurations. Therefore, the spectroscopic factor also has
larger values above magic numbers, thus revealing a rotating
α-daughter molecular [L+ ⊗ L+]0 configuration with a large
probability.

The first goal of this paper is to give a simple analytical
approach for the α-core interaction by analyzing its realistic
shape provided within the double-folding procedure. The
second goal is to use the parameters of this potential in
order to extract the penetration factor through the nuclear plus
Coulomb barrier and to analyze the remaining reduced width
in terms of α clusters plus the excess neutron pairs on top of
a doubly magic nucleus. The paper is organized as follows:
In Sec. II we give theoretical details concerning the α-core
potential and reduced decay width, and in Sec. III we analyze
potential parameters and α-decay data. In the last section we
draw conclusions.

II. THEORETICAL BACKGROUND

The two-body dynamics of composite objects, like the
α-daughter system, is described within the resonating group
method (RGM). It accounts exactly for the Pauli exchange
effects, leading to the occurrence of a repulsive core in the
Hamiltonian kernel [17,18]. However, an effective pocketlike
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FIG. 1. Realistic α-daughter double-folding plus ho repulsive
potential versus radius for the system 208Pb + α, plotted by a solid
line. The repulsive ho part is plotted by dots, the parabolic approx-
imation of the double folding interaction by triple dot-dashes, and
the pure Coulomb potential by a dot-dashed line. The horizontal
line corresponds to the Q value of the emission process 212Po →
208Pb + α.

local potential simulating the Pauli principle for α decay can
be introduced to analyze data in a simpler way [19].

A. Interaction potential

We will investigate α transitions P(JP ) → D(JD) + α(l ),
where JP/D is the short-hand notation for the spinparity of the
parent/daughter nucleus. The wave function, describing the
relative α-core dynamics, can be expanded as follows:

�(R) =
JP+JD∑

l=|JP−JD|

fl (R)

R
Ylm(R̂), (2.1)

where R = (R, R̂) denotes the α-core distance. Each radial
partial wave satisfies the stationary Schrödinger equation,[

− d2

dρ2
+ Vl (R)

Q
− 1

]
fl (R) = 0

Vl (R)

Q
≡ l (l + 1)

ρ2
+ V (R)

Q
, (2.2)

written in terms of the reduced radius

ρ = κR, κ = μαv/h̄, (2.3)

where μα is the reduced mass of the α-core system, Q denotes
the energy release of the process (Q value), and v = √

2Q/μα

is the asymptotic velocity.
Recently, we have shown in Ref. [20] that the α emission

process is described by a shifted harmonic oscillator (ho)
quasimolecular potential matched to a realistic double folding
interaction [21–23]. This potential is plotted in Fig. 1 by a
solid line for the emission process 212Po → 208Pb + α. A
very good approximation of this interaction is given by the

following ansatz:

V (R) = V0 + 1

2
h̄ω0β0(R − R0)2, R � R2, (0)

= VB − 1

2
h̄ω1β1(R − RB)2, R2 < R � RB, (1)

= VB − a

(
R

RB
− 1

)2

, RB < R � Rm, (2)

= VC (R) ≡ ZZαe2

R
, R > Rm, (3) (2.4)

where h̄ωk denote ho frequencies, a is the strength of the
potential in the transitional region, Z is the charge of the
daughter nucleus, and R2 is the second turning point, i.e., the
second solution of the equation V (R) = Q.

We obtained the following rule for the barrier height in
terms of the Coulomb potential:

VB ≈ 0.939 VC (RB), σ = 0.003. (2.5)

The ho parameters of the two parabolas are defined as follows:

βk = μαωk

h̄
= 1

b2
k

≡ dα h̄ωk, k = 0, 1, (2.6)

where bk define ho size parameters. Notice that for heavy α

emitters μα ≈ 4MN and one obtains

dα = μαc2

(h̄c)2
≈ 0.096 MeV−1 fm−2. (2.7)

From Eq. (2.4) it is obvious that our potential in continuous at
the barrier radius RB. We use the continuity between functions
and derivatives at Rm connecting the regions (2) and (3) in
order to obtain

Rm = 3

4

VC (RB)

VB

[
1 +

√
1 − 8

9

VB

VC (RB)

]
RB ≈ 1.123 RB

a = VB − VC (Rc)

(Rc/RB − 1)2
≈ 3.208 VC (RB). (2.8)

We will show in the next subsection that the wave func-
tion in the region (2) can be approximated by the standard
Wentzel-Kramer-Brillouin (WKB) semiclassical ansatz for a
pure Coulomb potential.

In region (3), defining the pure Coulomb interaction, the
Schrödinger equation (2.2) acquires the following form:[

− d2

dρ2
+ l (l + 1)

ρ2
+ χ

ρ
− 1

]
fl (R) = 0, (2.9)

depending on the Coulomb parameter,

χ = 2ZZα

h̄v
, h̄v = h̄c

√
2Q

μαc2
. (2.10)

For the first ho potential we use the condition that the first
eigenvalue is the Q value

Q − V0 = 1
2 h̄ω0, (2.11)

giving for the length ho parameter

b0 = R2 − R0. (2.12)
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Concerning the second inverted ho potential in (2.4) we use
the obvious condition

1

2
β1h̄ω1 = 1

2
dα (h̄ω1)2 = VB − Q

(RB − R2)2
, (2.13)

giving the expression of the barrier frequency,

h̄ω1 = 1

RB − R2

√
2Vfrag

dα

, (2.14)

and the following representation of the potential:

V (R) − Q = (VB − Q)

[
1 −

(
RB − R

RB − R2

)2
]

≡ Vfrag(1 − x2), (2.15)

in terms of the fragmentation potential

Vfrag = VB − Q, (2.16)

and dimensionless coordinate,

x = RB − R

RB − R2
. (2.17)

Imposing the continuity of potential derivatives given by using
Eq. (2.4) at the turning point R2,

h̄ω0β0(R2 − R0) = h̄ω1β1(RB − R2), (2.18)

one obtains through Eqs. (2.6), (2.12), and (2.14) the follow-
ing connection between ho frequencies:

(h̄ω0)3 = (h̄ω1)4dα (RB − R2)2

= 4

dα

(
Vfrag

RB − R2

)2

. (2.19)

B. Decay width

We use the standard form of the decay width for decays
between ground states of even-even nuclei with JP = JD = 0
in Eq. (2.1), where the angular momentum carried by the α-
particle is l = 0 [10]


0 = h̄v

[
fint (R)

fext (R)

]2

. (2.20)

Here fext is given by the monopole irregular Coulomb wave
with the WKB estimate of Eq. (A10)

fext (R) = G0(χ, ρ)

≈
[

Q

VC (R) − Q

]1/4

exp

[
χ

(
α − 1

2
sin 2α

)]
, (2.21)

where

cos2 α ≡ ρ

χ
= Q

VC (R)
. (2.22)

Notice that the above semiclassical estimate, valid for a pure
Coulomb potential, gives an error of 3–5% with respect to
the exact function. At the Coulomb barrier, where VB ≈
0.94VC (RB), according to the second line of Eq. (A12), a
change of 5% in χ corresponds to a similar variation by 5%
of the irregular Coulomb function for a typical α-decay value

χ ∼ 40. This is the reason we used the same relation (2.21) in
the barrier region (2) of the potential (2.4).

By using the expression of the internal wave function at the
barrier radius (A2)

fint (RB) = N1 f1(RB)

= N1

(
Q

Vfrag

)1/4

exp

(
−πVfrag

2h̄ω1

)
, (2.23)

one obtains the following factorization of the decay width:


0 = h̄v

[
fint (RB)

fext (RB)

]2

≡ γ 2
0 P0, (2.24)

in terms of the “reduced width,” which coincides with the
squared barrier scattering amplitude

γ 2
0 = N2

1 , (2.25)

and the “barrier penetrability”,

P0 = h̄v exp

[
−πVfrag

h̄ω1
− 2χ

(
αB − 1

2
sin 2αB

)]
= PN

0 PC
0 , (2.26)

proportional to the product between the nuclear and Coulomb
penetrabilities. Notice that at the barrier the common factor
(Q/Vfrag)1/4, multiplying the exponential part of the external
Coulomb (2.21) and internal nuclear (2.23) wave functions,
simplifies in Eq. (2.24) and therefore the above relation be-
comes proportional to the usual penetrability integral,

P0 ≈ h̄v exp

[
−2

∫ R3

R2

√
2μα

h̄2 (V (R) − Q)dR

]
, (2.27)

where R2 and R3 are the second and third turning points of
the α-core interaction defined by the nuclear plus Coulomb
barrier in Fig. 1. This expression is simpler than that given
in Ref. [24], due to the approximation we made in the barrier
region.

Let us also mention that the above “reduced width” intro-
duced by us is proportional to the standard reduced width at
the barrier radius [10],

γ 2
0 = f 2

int (RB)

2dαRB
, (2.28)

defined by considering the standard Coulomb penetrability,

P
C
0 = 2ρB

f 2
ext (RB)

, (2.29)

in the factorization of the decay width,


0 = γ 2
0P

C
0 . (2.30)

Thus, one obtains the following relation:

log10 γ 2
0(RB) ∼ −π log10 e

h̄ω1
Vfrag, (2.31)

called in Ref. [15] the “universal law for reduced widths,” ev-
idencing the linear dependence on the fragmentation potential
(2.16) with a negative slope which is inversely proportional to
the ho frequency characterizing the nuclear interaction h̄ω1. It
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FIG. 2. Radial parameters versus mass number of the daugh-
ter even-even nucleus corresponding to the fitting relation Ra =
ra (A1/3 + R1/3

α ) (dots) for the minimum of the ho potential r0 (a),
second turning point r2 (b), realistic Coulomb barrier rB (c), and
schematic Coulomb barrier given by Eq. (2.4) rC (d).

turns out that this law is fulfilled not only for α decay but also
for all particle and cluster emission processes.

The generalization to transitions within odd-mass nuclei is
straightforward by considering the lowest transferred angu-
lar momentum l = |JP − JD| in the irregular Coulomb wave
Gl (χ, ρ), leading to the largest barrier penetrability. For fa-
vored transitions with JP = JD, where the state of the unpaired
nucleon remains unchanged during transition, one obtains the
same penetrability (2.26) with l = 0.

III. NUMERICAL APPLICATION

A. Transitions from even-even emitters

We included in our analysis 149 even-even emitters with α-
decay experimental data (decay widths and Q values) having
a high degree of confidence concerning the branching ratio to
the ground state [25].

The analysis by means of the potential (2.4), plotted in
Fig. 1, evidenced the following parametrization of the relevant
radii:

Ra = ra
(
A1/3 + A1/3

α

)
, a = 0, 2, B, C, (3.1)

where the values of ra are given in Fig. 2.
By dotted curves we plotted the corresponding fitting lines.

Let us stress on the fact that the small rms errors (standard
deviation) with respect to these lines, σ < 0.09, suggest that
we can use the fitted values of r2 and rB given in Fig. 2 in
order to estimate the nuclear and Coulomb penetrability terms
in Eq. (2.26).

Notice that the radius RC , where the ho repulsion crosses
the pure Coulomb interaction (schematic Coulomb barrier), is
comparable with the geometrical touching radius, estimated
by the standard relation

RT = RN + Rα = rT
(
A1/3 + A1/3

α

)
rT = 1.2 fm. (3.2)

TABLE I. Regions of α emitters.

Region Z N Symbol

I 50 < Z < 82 50 � N < 82 Open squares
II 50 < Z < 82 82 � N < 126 Dark squares
III 82 � Z � 100 82 � N < 126 Open circles
IV 82 � Z � 100 N � 126 Dark circles
V Z > 100 N � 126 Open triangles

The nuclear radius RN = 1.2 A1/3, where the nuclear density
diminished to about 50% of the central value, is by about
1 fm smaller than the radius defining the minimal value of
the potential pocket R0 = 1.1 (A1/3 + 41/3), where the wave
function reaches its maximal value [20]. Therefore this model
indeed predicts that the α cluster is mainly born in a region
where the nuclear density is less than 20% (Mott density) with
respect to the central value, as suggested by recent theoretical
estimates [14,26].

We then analyzed the α-core interaction potential for the
regions described in Table I, denoted by the corresponding
symbols in the following plots. In Fig. 3(a), we plotted
the Coulomb parameter χ (2.10), definining the Coulomb
penetrability PC

0 , and in Fig. 3(b) the fragmentation poten-
tial (2.16) entering the nuclear penetrability PN

0 versus the
neutron number. Notice the pronounced minima, especially
for the fragmentation potential, corresponding to the neutron
N = 126 and proton magic numbers Z = 82. Let us mention
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FIG. 3. Coulomb parameter χ (2.10) (a) and fragmentation po-
tential (2.16) (b) versus the neutron number.
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emitters. The parameters listed for each k are the slope, intercept,
and standard deviation of the linear fit versus the mass number.

a smaller minimum, separating the regions IV and V and
corresponding to the semimagic neutron number N = 152.

In Fig. 4 we plotted the values of ho frequencies h̄ωk ,
defined by Eq. (2.18) for k = 0, corresponding to the internal
pocket, and by Eq. (2.14) for k = 1, corresponding to the
nuclear attraction, versus the mass number. Notice that the ho
frequency, characterizing the shape of the nuclear attraction
region (1) of Eq. (2.4), has a universal value h̄ω1 ≈ 9 MeV
with a small rms error σ ≈ 0.26.

In Fig. 5 we estimated the length parameters bk , defined by
Eq. (2.6) for even-even emitters. Let us remark the persistence
of a quasiconstant behavior with respect to the mass number
around the values b0 ≈ 0.9 fm and b1 ≈ 1.1 fm. In Ref. [20]
we estimated values scattered in the interval b0 ∈ [0.6, 0.8]
fm, due to the fact that we used a different procedure involving
not only the matching between potentials at the second turning
point R2 but also between logarithmic derivatives of internal
and external wave functions defining the resonant Gamow
state.
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FIG. 5. The ho length parameters bk , defined by Eq. (2.6), versus
the mass number for even-even emitters.
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FIG. 6. The logarithm of the reduced width versus the number of
α clusters above the closest doubly magic nuclei Nq for even-even
emitters. The α lines connect nuclei with the same magic asymmetry
Imag = nν − nπ .

We used the factorization (2.24) in order to extract the
experimental reduced width

γ 2
exp = 
exp

P0
. (3.3)

The logarithm of this quantity was fitted by the following
linear dependence:

log10 γ 2
exp = −(CkNq + AkImag + Bk ) ≡ Vα, (3.4)

where k labels the regions I–V given in Table I. We introduced
the number of quartets above the closest magic number,

Nq = nπ , (3.5)

multiplying the quartet slope Ck and the magic asymmetry,

Imag = nν − nπ , (3.6)

multiplying the asymmetry slope Ak , with

nπ = Z − Zmag

2
, nν = N − Nmag

2
, (3.7)

these quantities being the number of proton/neutron
pairs above the closest proton/neutron magic number
Zmag/Nmag. The lines connecting various quartet numbers
Nq = N (0)

q , N (0)
q + 1, . . . above some doubly magic nucleus

plus a given magic asymmetry Imag are called α lines. In
Ref. [27] was evidenced a dependence of the α-decay Q value
along α lines on the standard asymmetry I = (N − Z )/A.
Let us mention here that a dependence of log10(
exp) on
the above-mentioned standard asymmetry was considered in
Refs. [28–31].

In Fig. 6 we plotted the logarithm of the experimental
reduced width (3.3) versus the number of quartets Nq along
different α lines. The general trend, excepting region III,
shows a decreasing behavior which can be explained in
terms of the Pauli exclusion principle between α clusters.
Our analysis revealed that this quantity has a maximal value
for one cluster moving around a doubly magic nucleus. It
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TABLE II. Fitted parameters of the reduced width systematics,
given by Eq. (3.4) for even-even (a) and odd-mass emitters (b) in the
regions defined by Table I.

k Ck Ak Bk rms error emitters

(a) Even-even emitters

I and II 0.105 0.033 4.682 0.154 3 + 41
III −0.075 0.107 4.746 0.207 33
IV 0.118 0.021 5.620 0.122 60
V 0.051 0.043 6.023 0.233 12

(b) Odd-mass emitters

IV 0.182 −0.027 5.874 0.148 21

exponentially decreases,

γ 2
exp(Nq) = γ 2

exp(0) 10−CkNq , (3.8)

as soon as more Nq clusters are added, because the Pauli
exchange effect destroys the four-body correlations. The max-
imal reduced width above a doubly magic nucleus,

γ 2
exp(0) = 10−AkImag−Bk , (3.9)

exponentially depends on the magic asymmetry Imag.
We used the ansatz (3.4) in order to fit experimental

reduced widths for each region defined by Table I. Let us
mention here that for the superheavy region V we excluded
from the fitting procedure the two points with the low-
est reduced widths. The obtained parameters are given in
Table II(a). Notice the similarity of Ck and Ak slope pa-
rameters for the regions I and II and IV and V, while for
region III they are significantly different, due to its specific
character. Here the quartet slope Ck has a similar value but
with an opposite sign. Therefore, clustering increases here
by approaching the neutron magic number Nmag = 126, as
already suggested from the corresponding α-like chains in
Fig. 6. Let us mention that this transitional region has a spe-
cial “neutron hole” character, namely the number of valence
neutron pairs is closer to the upper magic number Nmag = 126
than the lower one Nmag = 82. In Fig. 7(a) we plotted the
dependence of the lowest quartet number versus the magic
asymmetry for even-even emitters. Notice that the region III
(open circles) is indeed characterized by the largest values of
the magic asymmetry Imag. Most α chains have positive magic
asymmetries, except region II and partially region IV. Let us
also emphasize the fact that all α chains start with a small
number of clusters, N (0)

q ∼ 0. The superheavy region V, where
N (0)

q = 10, has a special character, suggestive of a semimagic
proton number Zmag � 102.

By using the parameters fitted in these regions, we plotted
in Fig. 8 the logarithm of the reduced width versus the
variable Vα = −(CkNq + AkImag + Bk ). This dependence is
concentrated around the first bisector by covering four orders
of magnitude with a small rms error σ ∼ 0.2, corresponding
to a mean error factor of 1.6. This plot is a clear evidence
of the similar Pauli supression of α clusters along different α

lines.
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FIG. 7. The lowest quartet number N (0)
q versus the magic asym-

metry Imag, defining the α line, for even-even (a) and odd-mass
emitters (b). The symbols are the same as in Fig. 6.

B. Favored transitions from odd-mass emitters

We analyzed 21 favored α transitions from odd mass
nuclei. These transitions are similar to those from even-even
emitters, due to the fact that the state of the odd nucleon
remains unchanged during the emission process. Available
experimental data concerning favored transitions covers only
region IV of Table I. Thus, the dependence of the Coulomb
parameter and fragmentation potential is given by the
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FIG. 8. Logarithm of the reduced width versus the variable Vα

(3.4) for even-even emitters.
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FIG. 9. Radial parameters for odd-mass emitters. The notations
are the same as in Fig. 2.

corresponding neutron region (dark circles) of Figs. 3(a) and
3(b), respectively.

From Fig. 7(b) one can see that the dependence of the
lowest quartet number versus the magic asymmetry, defining
a given α line, is very similar to the even-even region IV in
Fig. 7(a) (dark circles).

In Fig. 9 we represented radial parameters given by
Eq. (3.1). Notice that they are very similar to the parameters
given in Fig. 2 for even-even emitters, with smaller errors.

We obtained similar dependencies as for even-even emit-
ters concerning ho frequencies h̄ωk , given in Fig. 10(a), and
length parameters bk , plotted in Fig. 10(b), with k = 0, 1,
respectively. Notice that the nuclear ho parameter has a very
close value to that of the even-even case h̄ω1 ≈ 9 MeV, with
a small rms error.

We used these parameters to compute the penetration factor
(2.26) in order to estimate the experimental reduced width
(3.3). It is plotted in Fig. 11(a) versus the number of quar-
tets Nq calculated along different α lines. Using the fitting
procedure we obtained a similar quartet slope parameter CIV

but a negative value of the asymmetry slope parameter AIV,
given in Table II(b). In Fig. 11(b) we plotted the logarithm of
the reduced width versus the variable Vα (3.4). One obtains
a linear dependence in both panels, similar to the even-even
case.

Finally, in Fig. 12 we plotted the logarithm of the experi-
mental decay width versus the variable log10 P0 + Vα for all
analyzed even-even and odd-mass emitters. We obtained a
straight line along the first bisector in terms of the variable Vα

(3.4), depending on the quartet slope and magic asymmetry
parameters.

IV. CONCLUSIONS AND PERSPECTIVES

We approximated the realistic α-core nuclear interac-
tion, derived within the double folding procedure, by a
parabolic dependence. The corresponding harmonic oscillator
frequency has a quasiconstant value h̄ω1 ≈ 9 MeV for all ana-
lyzed α emitters. The penetrability through the nuclear barrier

0

5
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 20

 210  220  230  240  250  260

<hω1>=8.945, σ=0.131
a=-0.002, b=9.392, σ=0.129
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a=0.006, b=12.347, σ=0.186
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A
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b0

b1

(b)
b k

 (
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)

A

FIG. 10. (a) The ho frequencies h̄ωk , defined by Eqs. (2.18), for
k = 0 and (2.14) for k = 1 versus the mass number for odd-mass
emitters. (b) The ho length parameters bk , defined by Eq. (2.6), versus
the mass number for odd-mass emitters. The parameters listed for
each k are the slope, intercept, and standard deviation of the linear fit
versus the mass number.

depends on the ratio between the fragmentation potential and
this ho frequency.

Let us stress that our purpose was not to provide yet an-
other empirical systematics of the α-decay width versus some
parameters, like in Fig. 12, but mainly to analyze the physical
similarities of the reduced width along α lines defined by the
magic neutron-proton asymmetry parameter Imag = nν − nπ ,
in terms of the quartet slope Ck and asymmetry slope Ak .
We obtained an important result, namely that all regions
defined by proton Zmag = 50, 82 and neutron magic numbers
Nmag = 50, 82, 126 have similar parameters, except for a
special region, region III, defined in Table I. Thus, we have
shown that the logarithm of the reduced width for even-even
emitters linearly decreases along various α lines with respect
to the number of clusters above doubly magic nuclei except
for region III, where the number of proton valence pairs is
much smaller than the number of neutron valence pairs. We
also evidenced that the logarithm of the reduced width linearly
depends on the magic asymmetry Imag for even-even, as well
as for odd-mass emitters.

Our next goal is to explain the behavior of the preformation
amplitude, proportional to the square root of the reduced
width given by Eqs. (3.8) and (3.9), in terms of the overlap
between the parent and the antisymmetrized product between
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FIG. 11. Logarithm of the reduced width versus the number of α

clusters Nq (a) and versus the variable Vα (3.4) and (b) for odd-mass
emitters.

the daughter and internal α-particle wave functions [10],

γ0 ∼ 〈�P|A(�Dψα )〉. (4.1)

We will use simple microscopic quartetting models taking into
account the Pauli exclusion principle between fermionic pairs
[32–34].
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FIG. 12. Logarithm of the experimental decay width versus the
variable log10 P0 + Vα for all analyzed emitters.
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APPENDIX: SEMICLASSICAL ESTIMATE
OF WAVE FUNCTIONS

1. Internal barrier

The barrier in region (1) of the nuclear interaction (2.4)
can be approximated with good accuracy by a parabolic
dependence. The solution of the Schrödinger equation for the
inverted harmonic oscillator has an analytical form in terms
of the confluent hypergeometric function [35], but in our
case one can obtain the following simple WKB ansatz of the
decreasing solution

f1(R) ≈
[

V (R)

Q
− 1

]−1/4

exp

[
−

∫ R

R2

√
2μα

h̄2 (V (R) − Q)dR

]

=
[

Vfrag

Q
(1 − x2)

]−1/4

× exp

[
−Vfrag

h̄ω1

(π

2
− sin−1 x − x

√
1 − x2

)]
≡ f1(RB)F

(
Vfrag

h̄ω1
, x

)
, (A1)

in terms of the dimensionless coordinate (2.17).
Here we introduced the WKB function at the barrier R =

RB (x = 0)

f1(RB) =
(

Q

Vfrag

)1/4

exp

(
−πVfrag

2h̄ω1

)
, (A2)

and the universal function

F (a, x) ≡ (1 − x2)−1/4 exp[a(sin−1 x + x
√

1 − x2)], (A3)

depending on the dimensionless parameter,

a = Vfrag

h̄ω1
. (A4)

Let us mention that the function lnF (a, x) versus x, given in
Fig. 13 by solid lines for realistic values a = 1, 1.5, 2, and 2.5,
(see Fig. 3) can be approximated in the interval x ∈ [0, 0.9] by
a linear dependence (dashed lines), i.e.,

F (a, x) ≈ edx, d ≈ a(2.15 − 0.1a), (A5)

thus obtaining the extrapolated values at the second turning
point R = R2 (x = 1).

Notice that the wave function in the pocket region (0) of
the potential defined by Eq. (1) is given by a shifted Gaussian,

f0(R) = N0

(
β0

π

)1/4

e− 1
2 β0(R−R0 )2

, (A6)

and the normalization factor N0 can be determined in terms
of the barrier scattering amplitude N1 by matching it with the
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FIG. 13. The function lnF (a, x) versus x for a = 1, 1.5, 2, and 2.5.

wave function in the barrier region (1),

fint (R) = N1 f1(RB)F

(
Vfrag

h̄ω1
, x

)
, (A7)

at the second turning point x = 1. By considering its exponen-
tial approximation (A5),

f0(R2) = N0

(
β0

π

)1/4

e−1/2 = N1 f1(RB)ed , (A8)

one obtains the following expression:

N0 = N1 f1(RB)

(
π

β0

)1/4

ed+1/2. (A9)

2. External barrier

The WKB estimate of the monopole irregular Coulomb
function in terms of the reduced radius, valid for the pure
Coulombian region (3) of the potential (2.4), is given by [10]

G0(χ, ρ) ≈ (cot α)1/2 exp
[
χ

(
α − 1

2 sin 2α
)]

, (A10)

where

cos2 α = ρ

χ
= Q

VC (R)

(cot α)1/2 =
[

Q

VC (R) − Q

]1/4

. (A11)

Concerning the pre-exponential factor, at the barrier RB one
obviously obtains the same factor in front of the exponent
as for the internal wave function (A2). For its logarithmic
derivatives one obtains

1

G0

dG0

dρ
= 1

χ sin 2α

[
1

sin 2α
− χ (1 − cos 2α) − l (l + 1)

χ cos2 α

]
1

G0

dG0

dχ
= − 1

4χ sin2 α
+ α − 1

2
sin 2α

+ 1

2
(1 − cos 2α) cot α. (A12)

Let us mention in this context that in the pure Coulomb
region (3) of Eq. (2.4) the relative error of the approximation
for the relation (A10) is less than 5%, and the error of
the derivatives (A12) is less than 1% with respect to the
corresponding exact solution. It turns out that the irregular
function (A10) gives also a very good approximation, with
an error less than 5%, with respect to the exact solution at the
Coulomb barrier where V (RB) ∼ 0.94VC (RB).
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