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Benchmark calculations of electromagnetic sum rules with a symmetry-adapted
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We demonstrate the ability to calculate electromagnetic sum rules with the ab initio symmetry-adapted no-core
shell model. By implementing the Lanczos algorithm, we compute nonenergy weighted, energy weighted, and
inverse energy weighted sum rules for electric monopole, dipole, and quadrupole transitions in 4He using
realistic interactions. We benchmark the results with the hyperspherical harmonics method and show agreement
within 2σ , where the uncertainties are estimated from the use of the many-body technique. We investigate
the dependence of the results on three different interactions, including chiral potentials, and we report on the
4He electric dipole polarizability calculated in the SA-NCSM that reproduces the experimental data and earlier
theoretical outcomes. We also detail a novel use of the Lawson procedure to remove the spurious center-of-mass
contribution to the sum rules that arises from using laboratory-frame coordinates. We further show that this same
technique can be applied in the Lorentz integral transform method, with a view toward studies of electromagnetic
reactions for light through medium-mass nuclei.
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I. INTRODUCTION

Electromagnetic transitions in atomic nuclei can reveal
important information about the dynamical structure of the
nucleus itself. Due to the perturbative nature of the electro-
magnetic interaction, calculations of these observables can be
compared in a straightforward way to experimental data and
important features of the strongly interacting nuclear system
can be studied. Considerable progress has been achieved
in computing these quantities with ab initio methods that
describe the nucleus as a system of protons and neutrons
interacting with each other as well as with external probes,
and solve the problem exactly or with controlled approxima-
tions [1]. Electromagnetic transitions are calculated as inner
products of electromagnetic operators between an initial state,
typically the ground state, and excited states. By varying
the nuclear excitation energy, one can study the so-called
response functions, or structure functions, from which elec-
tromagnetic cross sections can be computed and compared
to experiment. When excited states are above the break-up
threshold, the nucleus breaks into clusters and, depending
on the energy, possibly several break-up channels are si-
multaneously open. This makes the calculation of response
functions and cross sections considerably more complicated
(see, e.g., Ref. [2] and references therein). While it is desir-
able to compute the full response function, it is sometimes
easier to study its energy moments, the so-called sum rules,
which can be compared to experiment as well. A prominent
example is the electric dipole polarizability of a nucleus [3],
which is the inverse energy weighted sum rule of the dipole

response function and for which extensive comparison of
ab initio calculations to data have been recently performed
[4–8].

Response functions and sum rules have been successfully
calculated in the shell model [9] or using ab initio methods,
such as hyperspherical harmonics (HH) and no-core shell
model (NCSM) for light nuclei [1,10,11] or the coupled-
cluster (CC) method thus far for closed-shell nuclei [4,12,13].
Recent work has illustrated that the reach of ab initio methods
can now extend into the intermediate- and medium-mass
region, in particular in terms of structure observables (e.g.,
Refs. [14–20]). Further, the demonstration that the CC method
can examine the closed-shell 100Sn nucleus [18] suggests that
first-principles descriptions, albeit within some approxima-
tions, are feasible in heavy nuclei. This presents a unique
opportunity for these methods to investigate the robustness of
available nuclear interactions and to study dynamical observ-
ables in this heavier mass region. To this end, the symmetry-
adapted no-core shell model (SA-NCSM) [15,21,22] has been
shown to be a valuable approach capable of using only
physically relevant model spaces with dimensions that are
only a fraction of the standard NCSM model space, thereby
extending the reach of the NCSM toward heavier nuclei while
maintaining important physical features, such as collectivity
and clustering.

The main purpose of this work is to utilize the Lanczos
sum rule method (LSR) [23] and SA-NCSM wave functions
to compute sum rules. This is a first and important step toward
first-principles applications to sum rules and reactions for
open-shell nuclei up through the medium-mass region. In
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this paper we report results for 4He, where exact solutions
exist in the HH method and allow for a benchmark study
using the same realistic nucleon-nucleon (NN) interactions.
Several interactions are employed, including chiral potentials,
for which the effect of the three-nucleon forces (3NF) is
discussed. In addition, the SA-NCSM results calculated in
selected model spaces are compared against those in the
corresponding complete model spaces, which recover the
outcomes of the standard NCSM [24,25]. In these cases, we
find good agreement, while using much smaller model spaces,
corroborating earlier finding for structure observables and
form factors [15,26,27].

Another objective of this paper is to discuss techniques
for handling spurious center-of-mass (CM) excitations when
using laboratory-frame coordinates to calculate sum rules.
Specifically, we detail a novel use of the Lawson procedure
to calculate SA-NCSM sum rules, where the CM spurios-
ity can be removed exactly. This may be generalized for
other many-body methods that aim to calculate sum rules
using laboratory-frame coordinates. Finally, we show that the
SA-NCSM can be applied to the Lorentz integral transform
method (LIT), which can be used to calculate response func-
tions for medium-mass open-shell nuclei.

This paper is organized as follows. In Sec. II we provide a
brief overview of the many-body methods used in the bench-
mark study. In Sec. III, we present results for 4He for various
electromagnetic sum rules with different energy weightings
using realistic interactions. We also discuss the center-of-mass
considerations on sum rules and for the LIT. Finally, in Sec. IV
we present our conclusions.

II. THEORETICAL FRAMEWORK

A. Symmetry-adapted no-core shell model

The SA-NCSM framework [15] is an ab initio no-core shell
model that employs a symmetry-adapted basis. In this work,
we use an SU(3)-coupled basis. As in the NCSM, the particle
coordinates are specified in the laboratory frame. We employ
the many-body Nmax truncation where we enumerate all many-
body states, with the selected symmetries, possessing total
harmonic oscillator (HO) excitation quanta less than or equal
to Nmax. Specifically, the Nmax cutoff is defined as the maxi-
mum number of HO quanta allowed in a many-particle state
above the minimum for a given nucleus. Hence, basis states
where one nucleon carries all the Nmax quanta are included, in
which cases one nucleon occupies the highest HO shell.

The SA-NCSM allows one to down select from all possible
configurations to a subset that tracks with an inherent pref-
erence of a system towards low-spin and high-deformation
dominance—and symplectic multiples thereof in high-Nmax

spaces [21]—as revealed to be important in realistic NCSM
wave functions [28,29].

The many-nucleon basis states of the SA-NCSM are de-
composed into spatial and intrinsic spin parts, where the
spatial part is further classified according to the SU(3)⊃SO(3)
group chain. The significance of the SU(3) group for a
microscopic description of the nuclear collective dynamics
can be seen from the fact that it is the symmetry group

of the successful Elliott model [30,31], and a subgroup of
the physically relevant Sp(3, R) symplectic model [32–34],
which provides a comprehensive theoretical foundation for
understanding the dominant symmetries of nuclear collective
motion.

The SA-NCSM basis states are labeled schematically as

|�γ ; N (λ μ)κL; (SpSn)S; JM〉, (1)

where Sp, Sn, and S denote proton, neutron, and total intrinsic
spins, respectively. N is the total number of HO excita-
tion quanta. The values (λ μ) represent a set of quantum
numbers that labels an SU(3) irreducible representation, or
“irrep”—they bring forward important information about nu-
clear shapes and deformation, according to an established
mapping [32,35,36]; for example, (00), (λ 0), and (0 μ) de-
scribe spherical, prolate, and oblate deformation, respectively.
The label κ distinguishes multiple occurrences of the same or-
bital momentum L in the parent irrep (λ μ). The L is coupled
with S to the total angular momentum J and its projection M.
The symbol �γ schematically denotes the additional quantum
numbers needed to specify a distribution of nucleons over the
major HO shells and their single-shell and intershell quantum
numbers.

The SA-NCSM uses a Hamiltonian that, in its most general
form, is given as

Ĥ = T̂rel + V̂NN + V̂3N + V̂C, (2)

where Trel = 1
A

∑
i< j

( �pi−�p j )2

2m is the relative kinetic energy
(m is the nucleon mass), VNN(3N) is the nucleon-nucleon
(three-nucleon) interaction, and VC is the Coulomb interac-
tion between the protons. Similarly to the NCSM, where
Nmax is used to denote the model space, in the SA-NCSM,
we adopt a notation where an SA-NCSM model space of
〈N0〉Nmax includes all the basis states up through N0 total
excitation quanta and a selected set of basis states in N0 + 2,
N0 + 4, . . . up through Nmax. The selection is based on high-
deformation and low-spin dominance, along with symplectic
Sp(3, R) excitations thereof. Hence, configurations of largest
deformation (typically, large λ and μ) and lowest spin values
are included first. This ensures that the SA-NCSM model
spaces accommodate highly deformed configurations with
high-energy HO excitations together with essential mixing of
low-energy excitations [21,28,29].

B. Hyperspherical harmonics

In the HH method and its effective interaction counter-
part [37–40], the A-body problem is solved working in the
center-of-mass frame. Starting from particle coordinates, one
defines the Jacobi vectors and retains only the (A − 1) relative
vectors, removing the center-of-mass coordinate. From the
relative Jacobi vectors, one then introduces the hyperspherical
coordinates, which are constituted by a hyperradius ρ and
(3A − 4)-hyperangles, denoted cumulatively by �̂ [37,38].
The HH wave function is cast into spatial and spin-isospin part
(similarly to the SA-NCSM wave functions, which, however,
are given in the proton-neutron formalism). The spatial part,
described by the coordinates (ρ, �̂), is expanded in terms
of a product of hyperradial basis states and hyperspherical
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harmonics. Omitting the isospin for simplicity, the overall
basis states are labeled systematically as

|n, [K]A; (SpSn)S; JM〉, (3)

where n is a hyperradial quantum number—for example, the
order of Laguerre polynomials used to expand the hyperradial
wave function—and [K]A represents a cumulative quantum
number that includes the grandangular momentum quantum
number K , as well as the angular momentum L, while the
lower index indicates that the state is antisymmetrized. The
antisymmetrization is performed with a powerful algorithm
that exploits the group chain O(3A − 3) ⊃ O(3) ⊗ O(A − 1)
⊃ SA⊗ O(3) [41,42].

The intrinsic Hamiltonian used is the same as in Eq. (2),
where the relative kinetic energy can be written in hyperspher-
ical coordinates as

T̂rel = 1

2m

[
−Δρ + K̂2

ρ2

]
. (4)

Here, Δρ only depends on ρ and K̂2 is the hyperangular
momentum operator. The latter can be viewed as a general-
ization of the angular momentum in a multidimensional space.
Because the HH are eigenfunctions of K̂2, with eigenvalues re-
lated to hyperspherical quantum number K , the relative kinetic
energy is diagonal in this basis. For the general Hamiltonian
(2), the Hamiltonian matrix on the basis of Eq. (3) needs to
be diagonalized. In practice, the model space is truncated at
some maximal value Kmax and nmax of the quantum numbers
K and n, respectively, and convergence is reached when Kmax

and nmax are large enough that the calculated observables are
independent of these cutoffs [37,38,40,43].

C. Lanczos sum rule and Lorentz integral transform methods

The response of a nucleus to an external perturbation of
energy Ex is described by the response function, defined as

R(Ex ) =
∑∫

f
|〈ψ f |Ô|ψ0〉|2δ(E f − E0 − Ex ), (5)

where Ô is the operator that induces a transition from
the initial state |ψ0〉 into a set of final states |ψ f 〉. Here,
|ψ0( f )〉 and E0( f ) are eigenstates and the corresponding
eigenvalues, respectively, of the Hamiltonian Ĥ , and

∑
f

∫
includes the entire discrete and continuous spectrum, such that∑

f

∫ |ψ f 〉〈ψ f | = 1.
In this work, we focus on several moments of the response

function, i.e., sum rules of the form

mn =
∫

dEx R(Ex ) En
x , (6)

which, using the completeness of the eigenstates |ψ f 〉, can be
rewritten as

mn = 〈ψ0|Ô† (Ĥ − E0)n Ô|ψ0〉. (7)

This suggests that the calculation of mn does not require
explicit knowledge of the response function. Furthermore, if
the initial state |ψ0〉 is localized and well described within the
range of the interaction, then it is justified to use a bound-state
method to calculate the wave function |ψ0〉 and mn [23].

Of particular interest is the zeroth moment m0 or the square
of the norm of the transitional state Ô|ψ0〉

m0 = 〈ψ0|Ô† Ô|ψ0〉 =
∫

dExR(Ex ), (8)

which is also known as the nonenergy weighted sum rule
(NEWSR) or the total strength of the response function. In
this paper, besides m0, we also focus on m1 and m−1, which
are called the energy weighted sum rule (EWSR) and inverse
energy weighted sum rule (IEWSR), respectively, and perform
a study of the electric monopole, dipole, and quadrupole
operators.

To calculate the sum rules, we use the LSR method (see,
e.g., Refs. [23,44] and references therein). The LSR method
uses

mn = 〈ψ0|Ô†Ô|ψ0〉
NL−1∑
k=0

|Qk0|2(Ex,k )n, (9)

where NL is the number of Lanczos iterations, Qk0 is the
matrix that diagonalizes the tridiagonal Lanczos matrix, and
Ex,k is the excitation energy of the kth state. The method
benefits from a suitable choice of the Lanczos pivot, the
starting point of the iterative tridiagonalization process. In
particular, for the pivot we use the normalized transitional
state

|φ0〉 = Ô|ψ0〉√
m0

. (10)

The LSR method has been shown to be very efficacious [23]
and has, for example, allowed to reach the required precision
in the calculations of nuclear structure corrections to the
Lamb shift of light muonic atoms [23,45–47]. Furthermore,
the method has been recently applied to calculate m−1 for the
dipole operator within coupled-cluster theory [3,5,7].

Response functions can be obtained without explicitly
solving for the final eigenstates by utilizing integral transform
methods. A prominent example is the Lorentz integral trans-
form, which has been well documented in the literature and
used to obtain nuclear responses for electromagnetic and weak
operators [48,49]. The Lorentz integral transform is defined as

L(σ, �) = �

π

∫
dEx

R(Ex )

(Ex − σ )2 + �2
, (11)

where σ and � determine the peak position and width of the
Lorentzian kernel, respectively. It can be shown that

L(σ, �) = 〈ψ |ψ〉 , (12)

where |ψ〉 is found as a unique solution of the so-called LIT
equation

(Ĥ − z)|ψ〉 = Ô|ψ0〉, (13)

where z = E0 + σ + i�. From here, L(σ, �) is determined
by the Lanczos coefficients obtained by iterations from the
starting pivot of Eq. (10), as shown, e.g., in Eq. (3.40) of
Ref. [49].
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III. RESULTS

In this work, the aim is to illustrate the ability of the
SA-NCSM to reliably calculate the necessary nuclear states
required as input to the LSR and LIT methods. To achieve
this we focus on 4He and begin by studying the convergence
of results with increasing model space size, for a given SA
selection. We compare these results to computations obtained
in the HH. In addition, we present the complete-space SA-
NCSM results, which coincide with those obtained in the stan-
dard NCSM for the same Nmax (hence, labeled as “NCSM”).
Following this discussion, we detail the efficient way we
developed to remove the spurious CM contribution to sum
rules and LIT when operators that are not translationally
invariant are used, which may be applicable to other many-
body methods.

We discuss these aspects within the context of three elec-
tromagnetic operators, relevant to nuclear structure, namely,
the isoscalar electric monopole (carrying angular momen-
tum L = 0), the electric dipole (L = 1), and the electric
quadrupole (L = 2). These are, respectively, defined as

M̂ = 1

2

A∑
i=1

r2
i (14)

D̂ =
√

4π

3

A∑
i=1

eiriY10(r̂i ) (15)

Q̂ =
√

16π

5

A∑
i=1

eir
2
i Y20(r̂i ), (16)

where ei and �ri denote the charge and coordinates of the ith
particle. These coordinates can be defined with respect to
the center of mass, as done in HH that uses translationally
invariant operators. In the no-core shell-model framework, �ri

are particle coordinates in the laboratory frame, and hence, the
operators in Eq. (15) are not translationally invariant. Conse-
quently, special care is taken to remove the resulting spurious
CM contribution to the SA-NCSM sum rules presented in
Sec. III A (for details, see Sec. III C).

For all calculations presented in this paper, we use well-
established NN interactions: JISP16 [50], N3LO-EM [51],
and NNLOopt [52]. We present SA-NCSM calculations ob-
tained with h̄� = 25 MeV (unless otherwise indicated), while
a range of h̄� values between 22 and 28 MeV has been
used to allow for extrapolations to the infinite model space
and estimate uncertainties. These extrapolations are based on
the Shanks method [53,54] to determine the converged value
of an infinite sum. In particular, one can use the Shanks
transformation ansatz for a quantity X∞ = ∑∞

N=0 xN such that
XNmax = ∑Nmax

N=0 xN is given by XNmax = X∞ + AQNmax for large
Nmax, where 0 < Q < 1. Typically, for data on a converging
trend, it is sufficient to use the last three points to determine
the infinite-space value as

X∞ = XNmax+2 XNmax−2 − X 2
Nmax

XNmax+2 + XNmax−2 − 2XNmax

, (17)

where X∞ is the converged value of interest and XNmax is
the value calculated at Nmax. This calculation is performed

FIG. 1. (a) Ground-state energy and (b) point-proton rms radius
for 4He as a function of Kmax or Nmax with the JISP16 interaction.
NCSM and SA-NCSM points are shown for h̄� = 25 MeV, while
the extrapolated values are based on a range of Nmax and h̄� values.
Uncertainties of the extrapolated values are smaller than the size of
the plot markers.

for each value of h̄� and those extrapolated values are used
to estimate the combined theoretical uncertainty σ in each
quantity. Note that these uncertainties are associated with
the many-body SA-NCSM model of relevance to the present
benchmark study, and do not reflect uncertainties in the inter-
action used.

A. Benchmarks for sum rules

We start by reporting on the 4He ground-state properties,
because the sum rules for transitions to the ground state
depend on the structure of the ground-state wave function, in
accordance with Eq. (7). We present benchmark calculations
of the ground-state properties of 4He within the SA-NCSM
and the HH approaches. We show that both approaches are
well converged and agree with each other (Fig. 1). In partic-
ular, the ground-state energy and the point-proton rms radius
calculated using the JISP16 potential show a relatively quick
convergence with the model-space size, parameterized by
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TABLE I. Dimension of the NCSM and SA-NCSM model
spaces for 4He for the relevant Jπ states and largest Nmax spaces used.
The SA-NCSM model spaces are reported in the 〈N0〉Nmax notation
(see text for details).

NCSM SA-NCSM

Jπ Nmax Dimension Nmax Dimension

0+ 12 22,716 〈6〉12 10,357
14 58,080 〈6〉14 14,413
16 135,475 〈6〉16 14,902

1− 13 103,438 〈7〉13 49,055
15 255,074 〈7〉15 56,167
17 577,186 〈7〉17 57,547

2+ 12 92,958 〈6〉12 31,728
14 246,708 〈6〉14 42,226
16 591,548 〈6〉16 43,123

Kmax for the HH and Nmax for the SA-NCSM. This yields
small uncertainties for the binding energy and radius when
they are extrapolated to their infinite-space values (also shown
in Fig. 1), which practically coincide with the HH results.
Further, the SA-NCSM using SA selected model spaces is
able to reproduce the corresponding complete-space results,
or equivalently the NCSM results, for each Nmax and for the
extrapolated value. This is achieved with a fraction of the basis
states used in the SA-NCSM (for model space dimensions,
see Table I), while preserving the accuracy of the results, as
clearly evident in Fig. 1.

For calculations of sum rules (with no CM spurious con-
tributions), we find very good convergence with respect to
Kmax or Nmax and agreement between the SA-NCSM, NCSM,
and HH models, as illustrated in Fig. 2 for m0 for the electric
monopole, dipole, and quadrupole operators. For large Nmax,
the SA-NCSM calculations only slightly depend on the h̄�

parameter [see the inset of Fig. 2(b) for a 10% variation in
h̄� around h̄� = 25 MeV]. A full comparison of m0, m1

and m−1 for the JISP16 interaction is shown in Table II.
There, we find good overall agreement within 2σ between
the HH results and the extrapolated values for NCSM and
SA-NCSM. In Table II, we report m1/m0 and m−1/m0 to avoid
compounding the uncertainty of m0, as all other sum rules are
multiplied by m0 at the end, according to Eq. (9). We note
that SA-NCSM monopole and quadrupole m−1 moments yield
the largest relative uncertainties, which, however, given the
very small m−1 values, may be numerical in nature and further
improved.

We also examine the sum rules as a function of the excita-
tion energy, often referred to as running sum rules. We com-
pare the SA-NCSM and HH calculations for the monopole
and dipole energy weighted running sum rules for the JISP16
interaction (Fig. 3). We note that the detailed structure of
these running sums are different. The SA-NCSM and NCSM
curves in Fig. 3 show more discrete jumps, suggesting isolated
excited states with some transition strength to the ground
state, while the HH curve is smoother due to the higher
density of states. This fact indicates that the fine details of the
excitation spectrum calculated in a discretized basis would be

FIG. 2. Nonenergy weighted sum rule as a function of Nmax or
Kmax for 4He: (a) total monopole strength (L = 0) and quadrupole
strength (L = 2), along with (b) dipole strength (L = 1) and inset
showing convergence of three h̄� values toward the extrapolated
infinite-space value (black solid line). HH, NCSM, and SA-NCSM
calculations are performed for the JISP16 interaction; NCSM and
SA-NCSM points are shown for h̄� = 25 MeV, while the extrapo-
lated values are based on a range of Nmax and h̄� values. Uncertain-
ties of the extrapolated values are smaller than the size of the plot
markers.

slightly different. However, and most importantly, as expected
from Table II, when the sum rules are exhausted by including
states at sufficiently large energy, the different methods agree
and are able to compute converged sum rules with similar
accuracy, regardless of the basis used.

B. SA-NCSM sum rules with chiral potentials

With the goal to explore the dependence of the SA-NCSM
results on the nuclear interaction used, we also employ poten-
tials, derived in chiral effective field theory, such as N3LO-
EM [51] and NNLOopt [52]. To facilitate the comparison,
the SA-NCSM calculations consider NN forces only. As the
N3LO-EM is known not to be as soft as the JISP16, it is
interesting to study its convergence properties and to perform
one last benchmark with the HH method for the ground-state
energy of 4He and for m0 (Fig. 4). Indeed, compared to the
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TABLE II. Nonenergy weighted (m0), energy weighted (m1),
and inverse energy weighted (m−1) sum rules for monopole, dipole,
and quadrupole transitions in 4He. HH, NCSM, and SA-NCSM
calculations are performed for the JISP16 interaction. NCSM and
SA-NCSM results are the extrapolated values and include estimated
uncertainties σ based on small variations in h̄�; uncertainties for HH
are obtained by examining the Kmax convergence.

JISP16

HH NCSM SA-NCSM

monopole L = 0
m0 (fm4) 22.68(1) 22.74(1) 22.57(8)
m1/m0 (MeV) 6.623(5) 6.63(1) 6.67(3)
m−1/m0 (MeV−1) 0.01103(1) 0.01110(1) 0.0106(2)

dipole L = 1
m0 (e2fm2) 0.8583(1) 0.8581(1) 0.8566(7)
m1/m0 (MeV) 48.179(9) 48.147(6) 48.24(4)
m−1/m0 (MeV−1) 0.02655(1) 0.026574(9) 0.02644(8)

quadrupole L = 2
m0 (e2fm4) 14.731(3) 14.78(1) 14.62(6)
m1/m0 (MeV) 48.98(1) 48.92(4) 48.5(2)
m−1/m0 (MeV−1) 0.02543(1) 0.02546(3) 0.0249(3)

JISP16, the convergence for the N3LO-EM is slower for the
present approaches, with the HH method showing a faster
convergence rate. For the SA-NCSM and NCSM results, the
ground-state energy nears convergence and achieves good
agreement with the one calculated in the HH around Nmax =
16 [Fig. 4(a)]. We note that the small deviation observed at
Nmax = 16 between SA-NCSM and NCSM is a result from the
smallest possible SA selection adopted here to illustrate the
limits of the SA-NCSM validity. Nevertheless, as for JISP16,
the extrapolated values for N3LO-EM agree remarkably well
with the results of the HH within the estimated uncertainties.

Further, it is interesting to point out that for the quadruple
m0 calculated with the N3LO-EM interaction [Fig. 4(b)],
the convergence patterns are different between HH and SA-
NCSM/NCSM, namely, the first approaching convergence
from below and the other from above, whereas convergence
rates are comparable. Here again, the extrapolated results
show a very good agreement among the models within the
respective uncertainties.

For comparison purposes, we tabulate m0, m1, and m−1 for
the monopole, dipole, and quadrupole operators, as calculated
in the SA-NCSM using two chiral potentials, N3LO-EM and
NNLOopt (Table III). We observe that results do depend on the
NN interaction employed, with the N3LO-EM providing gen-
erally larger values for the sum rules than the NNLOopt (the
latter yields smaller values by about 1–20% relative to the sum
rules for the N3LO-EM NN). At the same time, the results
for the NNLOopt consistently agree with their counterparts
calculated with the JISP16 interaction (cf. m0, m1/m0, and
m−1/m0 in Table II), except a slight increase (decrease) for
the monopole m1 (quadrupole m−1) sum rule. These findings
suggest that the complementary 3N forces, omitted in the
calculations, have a non-negligible effect on the sum rules
for the N3LO-EM. This corroborates earlier findings, namely,

FIG. 3. Energy weighted sum rules for (a) monopole and
(b) dipole transitions as a function of excitation energy for 4He. HH,
NCSM, and SA-NCSM calculations are performed for the JISP16
interaction; HH results are shown for Kmax = 20 whereas NCSM and
SA-NCSM results are shown for Nmax = 16 and 〈6〉16, respectively,
with h̄� = 25 MeV.

the 3N forces for N3LO-EM have been shown to give non-
negligible contributions to binding energies and radii (e.g., see
Ref. [55]), whereas the NNLOopt is known to minimize such
3N contributions in 3H and 3,4He [52].

To gain further insight into the properties of the different
interactions, we compare the electric dipole polarizability to
experiment. While comparing to data is difficult for the sum
rules for the monopole and quadrupole transitions in 4He,
in the case of the dipole operator of Eq. (15), the inverse
energy weighted sum rule can be related to the electric dipole
polarizability αD as

αD = 2α

∫
dEx

R(Ex )

Ex
= 2α m−1, (18)

where α is the fine-structure constant. An experimental value
for αD can be extracted from the photoabsorption cross sec-
tion, σγ (Ex ) = 4π2αExR(Ex ), by integrating the data [56,57]
with the proper energy weight. We show this in Fig. 5, along
with αD as a function of Ex calculated in the SA-NCSM with
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FIG. 4. (a) Ground-state energy and (b) quadrupole m0 for 4He
using the N3LO-EM interaction (NN only) as a function of Kmax or
Nmax. NCSM and SA-NCSM results are shown for h̄� = 25 MeV,
while the extrapolated values are based on a range of Nmax (see
Table I) and a 10% variation in the h̄� parameter.

the N3LO-EM and NNLOopt NN interactions. Consistent with
the outcomes above, the N3LO-EM yields a larger αD value
as compared to the NNLOopt, while both results fall within the
experimental uncertainties. For further comparison, we also
include results from previous theoretical work that included
the complementary 3N forces in the N3LO-EM, which has
shown that the 3NFs reduce the value of αD by as much
as 15% [58]. A remarkable result is that the outcome for
the N3LO-EM (NN + 3N) closely agrees with that for the
NNLOopt using only NN forces, as evident in Fig. 5.

C. Treatment of spurious center-of-mass states

The proper handling of the center-of-mass (CM) excita-
tions is essential for methods that use laboratory-frame coor-
dinates. A well-established method to remove CM spuriosity
in the resulting energy spectrum in no-core shell-model cal-
culations is to use the Lawson procedure [60] that shifts states
containing CM excitations to higher energies. This results
in low-lying states in the energy region of interest that are
translationally invariant.

TABLE III. Nonenergy weighted (m0), energy weighted (m1),
and inverse energy weighted (m−1) sum rules for monopole, dipole,
and quadrupole transitions in 4He. NCSM and SA-NCSM calcula-
tions are performed for the N3LO-EM and NNLOopt interactions
(NN only); NCSM and SA-NCSM results are the extrapolated values
and include estimated uncertainties σ based on small variations
in h̄�.

N3LO-EM NNLOopt

NCSM SA-NCSM NCSM SA-NCSM

monopole L = 0
m0 (fm4) 29(2) 29(2) 23.29(7) 22.9(2)
m1 (fm4MeV) 310(50) 310(50) 177(2) 176(1)
m−1 (fm4/MeV) 0.30(3) 0.26(5) 0.27(5) 0.25(3)

dipole L = 1
m0 (e2fm2) 0.95(3) 0.94(2) 0.8394(3) 0.837(1)
m1 (e2fm2MeV) 47(1) 46.2(6) 39.88(1) 39.87(5)
m−1 (e2fm2/MeV) 0.029(1) 0.0268(9) 0.0236(1) 0.0236(2)

quadrupole L = 2
m0 (e2fm4) 19(1) 19(1) 15.45(6) 15.1(1)
m1 (e2fm4MeV) 850(130) 900(110) 706.3(2) 707.8(2)
m−1 (e2fm4/MeV) 0.52(5) 0.47(5) 0.23(3) 0.20(3)

A very important feature of the SA-NCSM is that any
SA-NCSM selected model space permits exact factorization
of the center-of-mass motion of the nuclear system [61].
This feature is present in the NCSM, however, it does not
hold for any selection of the NCSM model space. In the
SA-NCSM, it remains valid only as a result of the SU(3) sym-
metry used for the selection. Hence, a selected model space
yields eigenfunctions that exactly factorize into a product
of center-of-mass and intrinsic components, |�CM〉|ψintrinsic〉.
The Lawson procedure [60] uses a Lagrange multiplier term

FIG. 5. Electric dipole polarizability calculated in the SA-NCSM
using the N3LO-EM and NNLOopt interactions (NN only) for 〈7〉17
model spaces and h̄� = 25 MeV. The values calculated in the HH
[45] and the NCSM [59] with N3LO-EM (N3LO NN+N2LO 3N),
together with the experimentally deduced value [56,57], are shown
for comparison to the far right of the plot (unrelated to the Ex axis).
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that is added to a Hamiltonian expressed in laboratory-frame
coordinates, Ĥ + λN̂CM, where N̂CM is the operator that counts
the number of CM excitations and nCM is its eigenvalue. For
a typical value of λ ≈ 50 MeV, the nuclear states of interest
(with energy �30 MeV) have wave functions that are free
of center-of-mass excitations (nCM = 0), while CM-spurious
states (nCM > 0) lie much higher in energy. However, extra
care must be taken when calculating observables with these
eigenvectors. The reason is that the eigenfunctions are not the
intrinsic wave functions, but contain the center-of-mass com-
ponent with nCM = 0. Hence, calculations with operators that
are not translationally invariant can induce CM excitations
that affect the results.

A number of approaches can be used to address this issue.
We find two efficient ways: (i) using a CM-free pivot or
transitional state |φ0〉 (10), and (ii) working with a CM-
spurious pivot and shifting the CM contribution beyond an
energy cutoff, as detailed below. In both cases, to compute
the Lanczos coefficients for calculating sum rules and LIT,
a Lawson term is used, Ĥ + λN̂CM. Note that this step is in
addition to the one that uses the Lawson procedure in the
eigenvalue problem to compute the |ψ0〉 initial state and that
this state is always free of CM excitations. Below we describe
both methods in more detail.

(i) CM-free pivot. In general, a translationally invariant
transitional state (or pivot) |φ0〉 (10) can be obtained by
using a translationally invariant operator Ô, for which the
laboratory-frame coordinates ri, i = 1, 2, . . . , A, are replaced
by (ri − RCM) for a center-of-mass coordinate RCM = 1

A

∑
i ri.

This, however, means that one needs to handle many-body
operators instead of the original one-body electromagnetic
operators. In our work, we adopt an alternative procedure, that
is, we project out the CM-free component of the transitional
state with the projection operator

P̂ =
Nmax∏

nCM=1

(
1 − N̂CM

nCM

)
. (19)

This operator selects only the states with nCM = 0, thereby
removing the contribution of the CM excitations up to Nmax,
the model-space cutoff for the |ψi〉 wave function. The norm
can then be calculated, yielding a CM-free m0 moment, which
is, in turn, used to calculate the CM-free pivot via Eq. (10).
The resulting sum rules are CM spuriosity free (see Fig. 6,
curve labeled as “CM-free”).

(ii) CM-spurious pivot. An alternative approach is to use
an operator Ô that is not translationally invariant to obtain
a CM-spurious transitional state. The CM-spurious pivot is
then calculated using Eq. (10), where the CM-spurious norm
(or m0) is used. Then the normalized pivot vector is used to
initiate the Lanczos algorithm for a Hamiltonian that includes
a Lawson term, λN̂CM. This extra term only acts on CM-
spurious states and thus shifts all of them higher in the energy
spectrum, as specified by the value of λ (see Fig. 6, curves
labeled by λ). We can then use the Lanczos coefficients in
either the LSR or LIT methods. A very important step here
is that, for the LSR method, we need to select an energy
cutoff to avoid including the higher-lying CM-spurious states,
provided our choice of λ is large enough for a given moment

FIG. 6. Quadrupole m0 sum rule computed in the SA-NCSM
with the JISP16 in a 〈6〉16 model space for transitions in 4He as
a function of the excitation energy, calculated by using a CM-free
pivot, as well as a CM-spurious pivot for different values of the
Lawson coefficient λ. The corresponding HH result is also shown
for comparison.

mn to converge. In Eq. (9), this corresponds to terminating the
sum at most at kmax < NL − 1, such that Ex,kmax+1 is known
to correspond to a CM-spurious state. Similarly, for the LIT
method we can consider an energy range that is appropriate
for the response function, provided we have shifted the CM
contributions above that region.

To illustrate both procedures, we have calculated the
quadrupole m0 sum rule using both the CM-free pivot (i)
and the CM-spurious pivot (ii) (Fig. 6). The effect of the
Lawson term is clearly evident for the CM-spurious pivot:
we can resolve the contributions to the sum rules from the
CM-spurious states that are shifted above a certain energy
specified by the chosen λ values of 50, 200, and 500 MeV.
Given a large enough λ, the method can report a converged
value for the sum rule, provided the convergence is reached
at an energy less than λ. This feature can be found in both
NCSM and SA-NCSM calculations. Similar behaviors have
been found for other sum rules and interactions. Furthermore,
the sum rules calculated using this technique agree well with
those obtained in the HH, where calculations are performed in
the center-of-mass frame. They also reproduce the outcome of
the SA-NCSM calculations when a CM-free pivot is used.

Similar features are observed for the LIT transform, cal-
culated according to Eqs. (12) and (13), as shown in Fig. 7.
Here again, there is a clear evidence of the CM-spurious
states, as they shift to higher energies when we increase λ.
Since we must numerically invert the LIT to find the response
function, we can use this procedure to shift the CM-spurious
contribution above a given energy cutoff and invert the LIT
only in the energy region below this cutoff. Note that the LIT
for any electromagnetic operator depends on the value of the
translationally invariant m0, hence, it important to emphasize
that the procedure to generate a CM-free LIT transform from
a CM-spurious pivot requires two parts: calculate the CM-
free m0 (shown in Fig. 6), and then calculate the LIT curve
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FIG. 7. LIT with � = 10 MeV for quadrupole transitions in 4He
using the JISP16 potential. Calculations with the SA-NCSM are
performed in a 〈6〉16 model space for different values of the Lawson
coefficient λ, and are compared to the HH result.

using the CM-free m0 and a value of λ large enough to push
the CM-spurious states out of the energy range of interest
to calculate the response function. The comparison of the
SA-NCSM results for the largest λ used and those obtained
in the HH is very encouraging, and proves that this is a first
important step towards studying electromagnetic reactions.

IV. CONCLUSIONS

We have presented ab initio results from the SA-NCSM
for various sum rules describing electric monopole, dipole,
and quadrupole transitions in 4He, and compared them to
those obtained in the HH method. We have used the JISP16
and N3LO-EM NN interactions and showed that SA-NCSM
calculations reproduce within 2σ the corresponding HH out-
comes for the same interaction. In addition, the SA-NCSM
that uses selected model spaces has been shown to yield
results that reproduce the complete-space counterparts, or
equivalently, the NCSM results, albeit with a much smaller
model space. It is important to note that while the fine details
of the excitation spectrum calculated in a discretized basis
may be slightly different, both HH and SA-NCSM agree
and are able to compute converged sum rules with similar
accuracy, regardless of the basis used.

To gain further insight into the properties of various re-
alistic interactions, we have calculated the sum rules under
consideration in the SA-NCSM using JISP16, N3LO-EM, and
NNLOopt interactions (NN only). Interestingly, we have found
that the JISP16 and NNLOopt yield overall comparable results.
Furthermore, the αD electric dipole polarizability (related to

the inverse energy weighted sum rule) calculated with the
NNLOopt closely agrees with the HH and NCSM calculations
that use NN+3N (N3LO-EM), as well as to experiment. The
difference between the two chiral potentials suggests that the
complementary 3N forces of the N3LO-EM may bring for-
ward about 1–20% reduction in the sum rules, consistent with
earlier findings of 15% in the HH approach. The benchmark
results and comparison to data suggests that the SA-NCSM
can be reliably used to calculate sum rules in light nuclei [62].

We have further detailed the use of a new Lawson pro-
cedure in the NCSM and SA-NCSM methods to recover
translationally invariant sum rules, which may have applica-
tions in other many-body methods that use laboratory-frame
coordinates. We have found that one can use CM-spurious
pivot in the Lanczos procedure, by ensuring that a suitable
Lawson term is used, that is, a term that shifts the CM-
spurious states above an energy cutoff where the sum rules
have reached convergence. The sum rules are then reported at
this energy cutoff. Similarly, in the LIT method, which can
be used to produce response functions from these methods,
a suitable choice for the Lawson term can shift the CM-
spurious contribution to energies higher than the region used
to invert the LIT transform. The present outcome lays the
foundation that allows us to examine the underlying dynamics
of sum rules and response functions for open-shell light- and
medium-mass nuclei accessible by the SA-NCSM [63].
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