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Electromagnetic transition rates of 12C and 16O in rotational-vibrational models
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We develop a formalism to calculate electromagnetic (EM) transition rates for rotational-vibrational models
of nuclei. The formalism is applied to recently proposed models of 12C and 16O which are inspired by nuclear
dynamics in the Skyrme model. We compare the results to experimental data as well as other nuclear models.
The results for 12C are in good agreement with the data across all models, making it difficult to differentiate
the models. More experimental data is needed to do this, and we suggest which transitions would be most
interesting to measure. The models of 16O are less successful in describing the data, and we suggest some
possible improvements to our approximations which may help.
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I. INTRODUCTION

Understanding the intrinsic structure of nuclei is one of the
central problems in nuclear physics. There is still much debate
about the nature of light nuclei, even for stable abundant
nuclei such as 12C and 16O. These are often described using
α-particle models [1]. Here, nucleons cluster into groups of
four (α particles) and the nuclei have the symmetry of a
simple geometric shape, with the α particles lying on the
shape’s vertices. 12C and 16O are described as a triangle and
tetrahedron respectively. The triangular model includes a low
lying rotational band with spins 0+, 2+, 3−, 4±, . . . for 12C
while the tetrahedral model has one with spins 0+, 3−, 4+, . . .

for 16O. Both are seen experimentally, confirmed after the
recent clarification of a 4− state at 11.83 MeV [2] and a 5−
state at 22.4 MeV [3] for 12C. There is much debate about the
higher energy states. For example, 12C has an approximate
higher energy rotational band with spins 0+, 2+, 4+, . . . . Dif-
ferent authors model this band as a chain of α particles [4], a
“breathing” excitation of the triangle [5], or an admixture of
several shapes [6]. All these models can reproduce the energy
spectrum rather well.

Rotational bands are not the only indicator of collective,
geometric behavior. Electromagnetic (EM) transition rates
measure γ -decay between two nuclear states. Here, the higher
energy state emits a photon which carries away spin and
energy. These decays are only seen below (or nearby) the
strong decay threshold as they are electromagnetic in nature.
Above this threshold, strong interactions dominate the decay
paths. Theoretically the EM rates depend on the overlap
of wave functions and the charge density multipole tensor.
Generically, a large transition rate indicates collective behav-
ior. In fact, the large E3 transition rate between the low lying
3− and 0+ states of 16O is a motivation for the continuing
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interest in α-particle models [7]. Its size is unexplained in the
basic shell model, where the decay strength should be close
to a single Weisskopf unit, and in basic collective models,
where the nucleus is described as a vibrating bag of nuclear
matter [8].

Just as the EM transitions can help differentiate collective
behavior from single-particle behavior, in this paper we will
try and use them to differentiate between particular α-particle
models. Since the transition rates depend on the structure
of the wave functions, physically different models should
provide different results. To see these differences, we calculate
the EM rates for recently proposed models of 12C [6] and
16O [9], which were inspired by nuclear dynamics in the
Skyrme model. In these, sets of configurations are constructed
which include several low lying shapes: the triangle and chain
for 12C and the tetrahedron and square for 16O. The wave
functions take values across the entire set of shapes, and
can be interpreted physically as mixtures of the different
geometric shapes.

The wave functions are rotational-vibrational states. The
rotational symmetry of space manifests itself through rigid
body wave functions, and these are combined with vibrational
wave functions, which account for deformations. We develop
a formalism to calculate the transition rates for wave functions
of this kind. The formalism applies to any model with an
underlying “shape” degree of freedom. The rigid body case, a
common simplifying assumption in the Skyrme model [10,11]
and α-particle models [12], is a limiting case in our calcu-
lation. After developing this formalism in Sec. II, we apply
it to models of 12C and 16O in Secs. III and IV respectively.
These applications show the general nature of our work. The
models are based on very different shape spaces: one is a
one-dimensional graph made up of three edges joined at a
single vertex while the other is a two-dimensional manifold.
We compare our results to experimental data, as well as
other nuclear models. Overall, each model gives very different
results with different successes and failures when compared
to data. We hope this theoretical work may motivate new
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experimental progress, as the latest data were taken in the
early 1980s [13,14]. We conclude with some further work and
ideas in Sec. V.

II. GENERAL FORMALISM

We wish to describe nuclear dynamics by considering a
large set of nuclear configurations with many possible shapes
(the shape can be thought of as the nucleon distribution).
We then choose a low energy subset of these configurations
which we parametrize by a set of shape coordinates s. We
also consider all possible orientations of these configurations
in physical space. Define coordinates as follows: for each
shape, choose a certain standard orientation of that shape in
space (equivalently, a body-fixed frame). Then parametrize all
rotated versions of that shape by Euler angles θi which specify
the rotation that relates the body-fixed frame to a space-fixed
frame. In this fashion we can define coordinates (s, θi ).

Rotational symmetry of space means that quantum states
can be classified by a total angular momentum J to-
gether with a space-fixed angular momentum projection J3 ∈
{−J, . . . ,+J}. States |�〉 within a given (J, J3) sector take
the form

|�〉 =
+J∑

L3=−J

χL3 (s)|JJ3L3〉, (2.1)

where we have expanded in a basis {|JJ3L3〉} of rigid-body
wave functions which involve the body-fixed angular mo-
mentum projection L3 ∈ {−J, . . . ,+J}. These capture the θi

dependence of the state. The coefficient wave functions χL3 (s)
satisfy a Schrödinger equation defined on the space of shapes.
We will see examples of this in the specific models for 12C
and 16O considered in Secs. II and III.

A. Electromagnetic transition rates

In the long wavelength limit, the reduced transition proba-
bility for electric multipole radiation between an initial state
|i〉 of spin J and a final state | f 〉 of spin J̃ is given by [15]

B(El, i → f )

= 1

2J + 1

∑
J3,J̃3,m

∣∣∣∣
∫

d3r〈 f |ρ(s, r, θi )r
lY ∗

lm(�)|i〉
∣∣∣∣
2

(2.2)

where r are space-fixed coordinates (with � the angular
coordinates in r-space) and where ρ(s, r, θi ) is the charge
density of the configuration with shape s in orientation θi.
Note that the above expression involves a sum over space-
fixed spin projections J̃3 for the final state and an average over
space-fixed spin projections J3 for the initial state.

We wish to calculate transition probabilities using (2.2)
for states of the form (2.1). The rigid-body wave functions
|JJ3L3〉 depend on Euler angles θi and so it will help if we first
simplify the θi dependence of the charge density ρ. Expand ρ,
evaluated at θi = 0, in terms of spherical harmonics:

ρ(s, r, 0) =
∞∑

l ′=0

l ′∑
m′=−l ′

cl ′m′ (r)Yl ′m′ (�), (2.3)

where

cl ′m′ (r) =
∫

d�Y ∗
l ′m′ (�)ρ(s, r, 0). (2.4)

The spherical harmonics transform in a simple way under
rotations, giving the expression

ρ(s, r, θi ) =
∑

l ′

∑
m′

∑
m′′

cl ′m′ (r)Yl ′m′′ (�)Dl ′
m′′m′ (θi ) (2.5)

for the charge density in an arbitrary orientation θi. Substitut-
ing this into our original expression for B(El, i → f ) gives

B(El, i → f ) = 1

2J + 1

∑
J3,J̃3,m

∣∣∣∣∣〈 f |
∑

m′
Dl

mm′ (θi )Qlm′ (s)|i〉
∣∣∣∣∣
2

,

(2.6)
where

Qlm(s) =
∫

d3rρ(s, r, 0)rlY ∗
lm(�) (2.7)

is the multipole tensor of the charge density. This means that,
for the initial state

|i〉 =
+J∑

L3=−J

χL3 (s)|JJ3L3〉 (2.8)

and final state

| f 〉 =
+J̃∑

L̃3=−J̃

χ̃L̃3
(s)|J̃ J̃3L̃3〉, (2.9)

we have that

B(El, i → f ) = 1

2J + 1

∑
J3,J̃3,m

∣∣∣∣∣
∑

m′
〈 f |Dl

mm′ (θi )Qlm′ (s)|i〉
∣∣∣∣∣
2

= 1

2J + 1

∑
J3,J̃3,m

∣∣∣∣∣∣
∫

ds
∑

m′,L3,L̃3

χ̃∗
L̃3

(s)χL3 (s)Qlm′ (s)〈J̃ J̃3L̃3|Dl
mm′ (θi )|JJ3L3〉

∣∣∣∣∣∣
2

= 2J̃ + 1

(2J + 1)2

∑
J3,J̃3,m

∣∣∣∣∣∣
∫

ds
∑

m′,L3,L̃3

χ̃∗
L̃3

(s)χL3 (s)Qlm′ (s)〈J̃ J̃3lm|JJ3〉〈J̃ L̃3lm′|JL3〉
∣∣∣∣∣∣
2
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= 2J̃ + 1

2J + 1

∣∣∣∣∣∣
∫

ds
∑

m′,L3,L̃3

χ̃∗
L̃3

(s)χL3 (s)Qlm′ (s)〈J̃ L̃3lm′|JL3〉
∣∣∣∣∣∣
2

, (2.10)

where 〈J̃ J̃3lm|JJ3〉 are Clebsch-Gordan coefficients and in the
final equality we used∑

J3,J̃3,m

|〈J̃ J̃3lm|JJ3〉|2 = 2J + 1 (2.11)

whenever J = J̃ + l, . . . , |J̃ − l|. For values of J outside of
this range, the Clebsch-Gordan coefficients all vanish and
the transition rate is zero. We have now written the original
expression in terms of an overlap between vibrational wave
functions, weighted by the charge density multipole tensor
and some Clebsch-Gordan coefficients. All these are relatively
straightforward to calculate, even if the expression is rather
complicated. Note that for J̃ = 0 the expression (2.10) sim-
plifies (using 〈00lm′|JL3〉 = δJlδL3m′ ) to give

B(El, i → f ) = δJl

2J + 1

∣∣∣∣∣
∫

ds χ̃∗
0 (s)

∑
L3

χL3 (s)QlL3 (s)

∣∣∣∣∣
2

,

(2.12)
which mimics the structure of the initial wave function (2.8).

We also note here that

B(El, f → i)

= 2J + 1

2J̃ + 1

∣∣∣∣∣∣
∫

ds
∑

m′,L3,L̃3

χ̃∗
L3

(s)χL̃3
(s)Qlm′ (s)〈JL3lm′|J̃ L̃3〉

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣
∫

ds
∑

m′,L3,L̃3

χ̃∗
L3

(s)χL̃3
(s)Qlm′ (s)(−1)m′ 〈J̃ L̃3l (−m′)|JL3〉

∣∣∣∣∣∣
2

= 2J + 1

2J̃ + 1
B(El, i → f ), (2.13)

where we have used symmetry properties of the Clebsch-
Gordan coefficients together with the identity Y ∗

lm(�) =
(−1)mYl (−m)(�).

B. Estimating Q for point α-particle models

The nuclear models we will consider in Secs. III and IV
are based on configurations of α particles. For the purposes
of calculating electromagnetic transition rates, we will treat
these α particles as point charges. For α particles at posi-
tions R1(s), . . . , RN (s), we therefore approximate the charge
density by

ρ(s, r, 0) =
N∑

i=1

2δ(3)[Ri(s) − r]. (2.14)

Substituting this into (2.7) leads to the multipole tensor

Qlm(s) =
N∑

i=1

2Ri(s)lY ∗
lm(R̂i(s)). (2.15)

III. QUANTUM GRAPH MODEL FOR 12C

A. Introduction

Theoretical studies of the 12C nucleus have a long and
interesting history. Most famously, in the 1950s Fred Hoyle
predicted that 12C should have a positive-parity resonance
just above the threshold for breakup into 8Be and 4He. He
argued that such a state would lead to resonant enhancement
of 12C production during stellar nuclear synthesis, explaining
the abundance of 12C in our universe. His prediction was
confirmed experimentally with the discovery of the 7.7 MeV
0+ excitation, now known as the Hoyle state.

It is widely agreed that 12C can be usefully thought of
in terms of alpha clusters. There is a band in the observed
energy spectrum containing states with the characteristic spin
and parity combinations 0+, 2+, 3−, 4±, . . . often referred to
as the ground state band. These are exactly the states which
arise from a rotating equilateral triangle of α particles, and are
physically interpreted as such. There has been less agreement
on the physical interpretation of the Hoyle state (and the
other observed low-lying excited states outside of the ground
state band) with many interpretations offered including a rigid
linear chain [4], a bent arm [16], a breathing vibration of an
equilateral triangle [5], and even a diffuse gas of α particles
[17]. All can give a reasonable fit to the observed energy
spectrum of 12C and so electromagnetic transition strengths
are our best hope for distinguishing these models.

The quantum graph model (QGM) for 12C, introduced in
[6], is based on the quantized dynamics of three point α par-
ticles. The QGM allows for isosceles triangles of α particles
which interpolate between the equilateral triangle and linear
chain clusters and so includes both of these highly symmetric
configurations along with the intermediate bent-arm (obtuse
triangle) configurations. There are three ways in which an
equilateral triangle cluster of α particles can be deformed into
a chain, because any one of the three α particles can become
the middle α particle in the chain. Thus the space of allowed
shapes corresponds to a three-edged graph as shown in Fig. 1.

In more detail, the space of shapes is defined as follows:
we restrict configurations of three point α particles to those
isosceles triangles which interpolate between an equilateral
triangle and a linear chain. The equilateral triangle corre-
sponds to the vertex of the graph. The equilateral triangle
can deform in three ways, corresponding to the three edges
leaving the vertex. Focusing on a particular edge (labeled C1

in Fig. 1), we define a shape coordinate s on this edge such
that the positions Ri(s) of the three α particles are

R1 = f (s)(0, s, 0), (3.1)

R2 = f (s)

(
−1

2

√
2 − 3s2,−1

2
s, 0

)
, (3.2)

R3 = f (s)

(
1

2

√
2 − 3s2,−1

2
s, 0

)
. (3.3)
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FIG. 1. The graph of configurations for the QGM of 12C. The
central configuration is an equilateral triangle. This interpolates into
three different chain configurations along the three graph edges.

The Ri determine the standard orientation at the point s on
the graph. Here f (s) ≈ 1.1 − 0.2s is a linear function of s
which fixes the overall scale of the triangle relative to the
linear chain, as discussed in [6]. The range we consider is
s ∈ [0, smax] where smax = 1√

3
. Note that s = 0 gives a linear

chain cluster and as we increase s we approach an equilateral
triangle cluster at s = smax. By acting on these configurations
with rotations, we can generate all possible orientations of
these shapes. We use coordinates (s, θi ) with Euler angles θi

describing the rotation relating a given configuration to these
standard configurations. A similar construction is carried out
on the other two edges, and the union of all three of these gives
the total configuration space C. The three α particles should
be indistinguishable: this is imposed at the quantum level by
demanding that states lie in the trivial representation of the
group S3 which acts on C by permuting the three particles.
Quantization requires ideas from quantum graph theory, as
explained in [6]. Briefly, the wave function on edge C1 can

FIG. 2. Shape probability densities. The colous red and yellow
correspond to regions of high and low probability density. Each
density is rescaled so that the maximum of the wave function is red.
Hence, for example, the 0+

2 state is highly concentrated while the 1−
1

state is more evenly spread.

be expanded in terms of rigid body states as

|�〉 =
+J∑

L3=−J

χL3 (s)|JJ3L3〉, (3.4)

where the χL3 satisfy a Schrödinger equation, and quantum
graph theory boundary conditions are imposed at the vertex.

Permutation symmetry restricts the form of the wave func-
tions on the edge C1. The allowed states, relevant for our
calculation, are listed in Table I. For each state we calculate
a shape probability density, defined as

P� (s) =
J∑

L3=−J

∣∣χL3 (s)
∣∣2

. (3.5)

We plot the shape probability density function for each of
the wave functions in Fig. 2. The physical interpretation of
states can be seen by looking at which shapes these are
concentrated at. For example, the 0+

1 state is interpreted as an
equilateral triangular state while the 0+

2 state is concentrated
at the linear chain. The 1−

1 state is forbidden at both of these
shapes and is instead concentrated at an intermediate bent-arm
configuration.

B. Calculating B(El ) transition rates

As an example, suppose we are interested in calculating
B(E3, 3−

1 → 0+
1 ), where 3−

1 denotes the lowest energy JP =
3− state and 0+

1 denotes the lowest JP = 0+ state. The initial

TABLE I. The wave functions, in terms of vibrational wave functions and spin states, for each of the states considered in this paper. Each
model state is identified with an experimental state, whose energy is also tabulated. We suppress the J3 label for ease of reading.

JP Wave function Eexp (MeV)

0+
1 χ

(01 )
0 (s)|0, 0〉 0

0+
2 χ

(02 )
0 (s)|0, 0〉 7.7

1−
1 χ

(11 )
1 (s)(|1, 1〉 + |1, −1〉) 10.8

2+
1 χ

(21 )
2 (s)(|2, 2〉 + |2, −2〉) + χ

(21 )
0 (s)|2, 0〉 4.4

2+
2 χ

(22 )
2 (s)(|2, 2〉 + |2, −2〉) + χ

(22 )
0 (s)|2, 0〉 9.9

2+
3 χ

(23 )
2 (s)(|2, 2〉 + |2, −2〉) + χ

(23 )
0 (s)|2, 0〉 16.1

3−
1 χ

(31 )
3 (s)(|3, 3〉 + |3, −3〉) + χ

(31 )
1 (s)(|3, 1〉 + |3, −1〉) 9.6

4+
1 χ

(41 )
4 (s)(|4, 4〉 + |4, −4〉) + χ

(41 )
2 (s)(|4, 2〉 + |4, −2〉) + χ

(41 )
0 (s)|4, 0〉 13.3

4+
2 χ

(42 )
4 (s)(|4, 4〉 + |4,−4〉) + χ

(42 )
2 (s)(|4, 2〉 + |4, −2〉) + χ

(42 )
0 (s)|4, 0〉 14.1
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TABLE II. EM transition rates B(El, i → f ) for 12C. We tabulate the results for the model described in this section, the ab initio calculation,
and the algebraic cluster model, as well as the available experimental data. All values are in units of e2fm2l .

QGM Ab Experiment
B(El, i → f ) (κ = √

10) initio [18] ACM [5] (e2fm2l ) [13]

B(E2, 2+
1 → 0+

1 ) 11.7 5 8.4 7.6 ± 0.42

B(E3, 3−
1 → 0+

1 ) 62.4 44 103 ± 13.7

B(E4, 4+
1 → 0+

1 ) 170 73

B(E2, 2+
2 → 0+

1 ) 1.16 2

B(E4, 4+
2 → 0+

1 ) 11.6

B(E2, 2+
3 → 0+

1 ) 0.408 0.67 ± 0.13

B(E2, 2+
1 → 0+

2 ) 1.10 1.5 0.26 2.7 ± 0.28

B(E2, 2+
2 → 0+

2 ) 24.7 6

B(E1, 2+
3 → 1−

1 ) 0 (3.1 ± 0.78) × 10−3

B(E1, 2+
3 → 3−

1 ) 0 (1.1 ± 0.20) × 10−3

B(E1, 2+
1 → 3−

1 ) 0

and final state wave functions are

|3−
1 〉 = χ

(31 )
3 (s)(|3J33〉 + |3J3 − 1〉)

+ χ
(31 )
1 (s)(|3J31〉 + |3J3 − 1〉) (3.6)

and

|0+
1 〉 = χ

(01 )
0 (s)|000〉. (3.7)

The expression (2.10) from Sec. II gives

B(E3, 3−
1 → 0+

1 )

= 1

7

∣∣∣∣
∫

ds χ
(01 )
0

∗
(s)χ (31 )

3 (s)[Q33(s) + Q3−3(s)]

+ χ
(01 )
0

∗
(s)χ (31 )

1 (s)[Q31(s) + Q3−1(s)]

∣∣∣∣
2

.

In order to evaluate this integral we use the analytic
expression for

Qlm(s) =
3∑

i=1

2Ri(s)lY ∗
lm(R̂i(s)),

treating the α-particles as point particles as described in
Sec. II. The integration against the numerically generated
wave functions χL3 (s) can be done over a single edge of the
graph due to the symmetry of the system.

C. Results

The electromagnetic transition rates for the QGM are dis-
played in Table II. We pick the conversion factor between fm
and the length units in our model to be κ = √

10. Our results
are displayed alongside results from an ab initio calculation
[18] and the algebraic cluster model (ACM) [5], along with a
comparison to available experimental data. The ACM makes
use of a bosonic quantization approach to the many-body
problem. It is based on an equilibrium configuration of α

particles at the vertices of an equilateral triangle, although
allowing for large rotation-vibration effects. The ab initio

results are from Monte Carlo lattice calculations based on
chiral effective field theory. The authors only consider four
states: 0+

1 , 2+
1 , 0+

2 and 2+
2 . The 0+

1 and 2+
1 states have a

large overlap with a compact triangular arrangement of α

particles, so are interpreted physically as triangular states. In
particular, the 2+

1 is interpreted as a rotational excitation of
the 0+

1 state. The 0+
2 and 2+

2 states have a large overlap with a
bent-arm configuration (an obtuse triangle) of α particles and
are interpreted as the first two states on a rotational band of
this shape. This is consistent with the results of the QGM.

The structure of the transition rate formula (2.10) shows
that the strength of the transition rate depends on the overlap
between wave functions, as well as the multipole moments
and structure of the wave functions. However, the final result
of the calculation is difficult to predict before doing it in full.
For instance, the 0+

1 and 4+
1 states appear to have little overlap,

as we can see in Fig. 2. Due to this we might expect that
the E4 transition, which links these states, would be small.
However, the vibrational wave functions χL3 for both states
have no nodes and so their product has the same sign at
all points in configuration space. Hence the integrand does
not change sign anywhere and this constructive interference
between wave functions leads to a large integral. In contrast,
the 0+

1 and 4+
2 states appear to have a large overlap. However,

the 4+
2 vibrational wave functions change sign. This leads

to an integrand with both positive and negative parts which
interference destructively, giving the small result.

Along the ground state band (0+
1 , 2+

1 , 3−
1 , . . . ) there is no

major discrepancy between the various models. The agree-
ment is expected as all the models have a similar interpretation
of the ground state band as arising from a rotating equilateral
triangle. The results along the ground state band are also in
broad agreement with experimental data, although all models
slightly underestimate the E3 transition.

The B(E1, 2+ → 3−) and B(E1, 2+ → 1−) transition
strengths come out as zero in our model due to the symmetries
of the wave functions. This is also true for the ACM and sim-
ple geometric models, as shown in [19]. The authors study the
representation theory underlying transition rate calculations,
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FIG. 3. A numerically generated scattering path which links
asymptotic configurations to the tetrahedron, the flat square and
the dual tetrahedron. The dynamics are generated from the Skyrme
model and we plot contours of the energy density. Time evolution is
read left to right.

giving selection rules and in particular rules out E1 transitions
for 12C. This is consistent with the very small observed values
≈10−3 e2fm2. For the states that have been experimentally
measured, there is little to distinguish the models. Because
of this, we must instead look at transitions for states that
have not yet been measured. The B(E2; 2+

2 → 0+
2 ) transition

is four times larger for us compared to the ab initio prediction.
We expect the transition will also be smaller in the ACM.
This transition is therefore a key data point which would
distinguish the various models.

The most significant difference between experiment and
theory is seen for B(E2, 2+

1 → 0+
2 ), the transition between

the Hoyle state and the ground state band. Here the ACM
value is too small by a factor of 10. Our model and the
ab initio calculation do better than the ACM here, although
we still underestimate the value slightly. Recall that the ab
initio approach finds a large overlap of the Hoyle state with
an obtuse triangular configuration. Our work supports this
interpretation, with the 0+

2 wave function peaking at the linear
chain but allowing a superposition of shapes near to the
chain. The picture in the ACM is different, with the Hoyle
state interpreted as a breathing excitation of the equilateral
triangle. More data are needed, both experimental and from
competing models, in order to make further comparisons, and
we hope that our calculations will stimulate further work in
this direction.

IV. E-MANIFOLD MODEL FOR 16O

Since Wheeler’s pioneering work, 16O has often been mod-
eled as a tetrahedron of α particles [1]. Later, sophisticated α

models found that other low energy geometric configurations
exist, including the 4α chain, the flat square, and the bent
square [20]. In fact, the final two are closely related to the
tetrahedron. All these are joined by a dynamical mode, shown
in Fig. 3. We will now review a model, first constructed in
[9], which accounts for the configurations which appear in
this Figure. In fact, this path is part of a two-dimensional
manifold which we will call the E-manifold. The manifold can
be visualized as a sphere with six punctures, and we model it
as the six-punctured sphere with negative constant curvature.
The position on the punctured sphere (x, y, z) corresponds to
the position of one of the α particles. The other three then
lie at (x,−y,−z), (−x, y,−z), and (−x,−y, z). This fixes the
standard orientation of the configurations. For instance, the
point (x, y, z) = (1, 1, 1) corresponds to a tetrahedron, while
the point (x, y, z) = (1, 1, 0) represents a flat square.

Since knowing one particle’s position automatically fixes
the other three, we can focus on one quarter of the sphere.

∼=

FIG. 4. The relation between a quarter of the six-punctured
sphere (left) and a portion of the complex plane (right). Tetrahedral
configurations are at the points where three colored regions meet
while the square configurations are at points where four colored
regions meet. The scattering mode from Fig. 3 is represented by the
thick black lines.

Using hyperbolic geometry we can then project this quarter
sphere onto a portion of the complex plane. This mapping
is displayed in Fig. 4, where the positions of the geometric
shapes, as well as the dynamical path from Fig. 3, are also
plotted. We will use ζ = η + iε as the coordinates on the
complex plane.

The EM transition rates depend on the wave function and
the multipole moments of the charge density, Qlm. Hence we
must write these in terms of η and ε. As explained in Sec. II B,
we can write Qlm in terms of the positions of the particles, so
we must find the mapping between the particle positions and
the complex variables. We do this now. Given a point ζ on the
complex plane, the position on a unit sphere is given by

(X,Y, Z )

= 1

1 + |H (ζ )|2 (2 Re[H (ζ )], 2 Im[H (ζ )], 1 − |H (ζ )|2),

(4.1)

where

H (ζ ) =
(

�3(π/4, exp(iπζ ))
exp [π i(1 + ζ )/4]�3(π (1 + 2ζ )/4, exp(iπζ ))

)2

,

(4.2)
and �3 is a Jacobi theta function [21]. Having found the
positions on a unit sphere, these should now be projected
onto a sphere with punctures. We have some choice in this
map but are constrained physically. We know the moments
of inertia of the tetrahedron and square within the Skyrme
model [22]. Additionally, once the configuration breaks into
two clusters (as in the far left and far right of Fig. 3) one of
the moments must become constant and the other two grow
quadratically with distance. The following projection satisfies
all the aforementioned conditions:

R1 = κ√
1 − [max(X,Y, Z )]2

(X,Y, Z ). (4.3)

The constant κ gives the scale of the configuration. As
an example, to calculate the positions of the α-particles at
ζ = 0 + i, we first calculate H (i) = 1 + √

2, giving a unit
sphere coordinate (2−1/2, 0,−2−1/2). We then map this to
the position R1 = κ (1, 0,−1). This is the position of one
of the particles; the other three lie at R2 = κ (1, 0, 1), R3 =
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TABLE III. The wave functions, in terms of vibrational wave functions and spin states, for each of the states considered in this paper. Each
model state is identified with an experimental state, whose energy is also tabulated. We suppress the J3 label for ease of reading.

JP Wave function Eexp (MeV)

0+
1 ψ+

T 0|0, 0〉 0

0+
2 ψ+

T 2|0, 0〉 6.0

2+
1

1√
8
(u+

1 − v+
1 )(|2, 2〉 + |2, −2〉) −

√
3

2 (u+
1 + v+

1 )|2, 0〉 6.9

3−
1 ψ−

S0
1√
2
(|3, 2〉 − |3, −2〉) 6.1

4+
1

√
5

24 ψ+
T 0(|4, 4〉 +

√
14
5 |4, 0〉 + |4,−4〉) 10.4

4+
2

√
7

32 (u+
1 + v+

1 )(|4, 4〉 + |4, −4〉) − 1√
8
(u+

1 − v+
1 )(|4, 2〉 + |4, −2〉) 11.1

−
√

5
4 (u+

1 + v+
1 )|4, 0〉

κ (−1, 0,−1), and R4 = κ (−1, 0, 1). Hence the point ζ = i
corresponds to a flat square, lying in the x-z plane. We use
these values of Ri to calculate Qlm(ζ ) using Eq. (2.15). The
scale parameter κ is later fixed, to match the B(E3; 3−

1 → 0+
1 )

transition rate.
To find quantum states we must first calculate vibra-

tional wave functions on the complex plane. These satisfy
a Schrödinger equation which in turn depends on a metric
and potential on the E-manifold of configurations. These were
fixed in [9], and the Schrödinger equation takes the form

− h̄2

2
ε2

(
∂2

∂η2
+ ∂2

∂ε2

)
ψ + ε2

(
1

2
ω2

(
η − 1

2

)2

+ μ2

)
ψ

= Evibψ, (4.4)

where ω and μ are phenomenological parameters. The poten-
tial was chosen so that the tetrahedra have minimal energy,
the squares have higher energy (by around 6 MeV), and
the asymptotic configurations have even higher energy. The
expression (4.4) is only valid in the red region of the complex
plane (for the coloring, see Fig. 4). The wavefunctions were
calculated in [9] and classified further in [23]. Four of them
will be relevant for our calculation, labeled ψ+

T 0, ψ+
T 1, ψ−

S0, and
(u+

1 , v+
1 ). These are combined with rigid-body wave functions

to create physical states. The allowed states, relevant for
our calculation, are listed in Table III. We plot the shape
probability density function on the complex plane for each

of the wave functions in Fig. 5. We sometimes say that a
state is “tetrahedral” or “squarelike.” This means that the
corresponding probability density is concentrated at those
configurations. The states 0+

1 , 3−
1 , 4+

1 are all tetrahedral and
form an approximate rotational band. The states 2+

1 and 4+
1

are both strongly concentrated at the squares and should be
thought of as rotational excitations of a square configuration.
The 0+

2 state is concentrated at squares and tetrahedra, and is
interpreted as an admixture of both these geometries.

To help analyze and compare results, it is helpful to intro-
duce the idealized rigid body as a benchmark model. Here,
the nucleus is described as four α particles that form a rigid
geometric shape which is allowed to rotate as a whole. The
rotational motion is quantized and leads to rotational bands.
Different shapes can lead to different rotational bands. For
16O, the 0+

1 , 3−
1 , 4+

1 states are understood as the rotational
band of a tetrahedron while the 0+

2 , 2+
1 , 4+

2 states arise as the
rotational band of a square (or possibly a chain [20], though
this idea was recently dismissed experimentally [24]). The
most important parameter in this model is the ratio of the
separation between the particles which form the tetrahedron
rt and the separation between the particles which form the
square rs. We take

rs

rt
= 1.5, (4.5)

FIG. 5. Shape probability densities for each wavefunction, plotted on a region of the complex ζ -plane. Blue regions correspond to large
densities while pale regions have small densities.
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TABLE IV. EM transition rates B(El, i → f ) for 16O. We tabulate the results for the model described in this section, the ab initio calculation
and the algebraic cluster model, as well as the available experimental data. All values are in units of e2fm2l .

Rigid body “Rescaled” Experiment
B(El, i → f ) Our model model ab initio [16] ACM [12] (e2fm2l ) [14]

B(E3, 3−
1 → 0+

1 ) 205 205 215 205 ± 11

B(E4, 4+
1 → 0+

1 ) 320 633 425 378 ± 133

B(E6, 6+
1 → 0+

1 ) 11263 23764 9626

B(E1, 2+
1 → 3−

1 ) 0 0 <1.6 × 10−5

B(E1, 4+
1 → 3−

1 ) 0 0 <1.2 × 10−5

B(E1, 4+
2 → 3−

1 ) 0 0 (2.4 ± 1) × 10−5

B(E2, 2+
1 → 0+

1 ) 16 0 6.2 ± 1.6 26 4.7 ± 0.2

B(E2, 2+
1 → 0+

2 ) 22 70 46 ± 8 6 65 ± 7

B(E2, 2−
1 → 3−

1 ) 0 10 13.4 ± 3.8

B(E2, 4+
1 → 2+

1 ) 13 0 0 146 ± 17

B(E2, 4+
2 → 2+

1 ) 7 100 36 2.4 ± 0.7

B(E4, 4+
1 → 0+

2 ) 24 0

B(E4, 4+
2 → 0+

1 ) 592 0

B(E4, 4+
2 → 0+

2 ) 1632 8801

and then fix rt to match the B(E3; 3−
1 → 0+

1 ) transition. This
is probably not a realistic model, but displays some important
features that highlight the physics at play.

A. Results

The electromagnetic transition rates for our model, the
rigid body model, the ab initio calculation [16], and the ACM
[25] are displayed in Table IV. They should be compared to
the experimental data, which are also tabulated.

The transition rates along the lowest lying band are in
good agreement with experimental data in our model. These
states are constructed from ψ+

T 0, which is concentrated at the
tetrahedron. Hence, this result supports the idea that these
states are tetrahedral in nature. The value for the E6 transition
is close to the value from the ACM. This is to be expected, as
the states have similar descriptions in both models.

The rigid body model highlights some important physics,
though is an extreme approximation as can be seen from the
enormous E6 transition. Since the square is more spread out
than the tetrahedron, the squarelike states (such as 0+

2 , 2+
1 ,

and 4+
2 ) have large transition rates between them. Similarly,

the states in our vibrational model which contain signifi-
cant square contributions lead to larger transition rates. For
instance B(E2; 2+

1 → 0+
2 ) > B(E2; 2+

1 → 0+
1 ), since 0+

2 is
physically a mixture of the two shapes while 0+

1 contains
little square contribution. This ordering is seen experimentally
but the magnitudes of the transition rates are wrong in our
model. For instance, the B(E2, 2+

1 → 0+
2 ) is too small. This

may be due to the approximations made in constructing the
wave functions. We neglect the effect that a changing shape
has on the structure of the wave function. This is because we
take a constant moment of inertia tensor over the space of
configurations. Hence, the 2+

1 wave function does not account
for the fact that the square is much flatter than the tetrahedron.

If we did account for this, the wave function would be more
concentrated at the square and the transition rate would be
enhanced. Note that the 12C calculation does account for
this effect. To do the same calculation for the 16O case, it
would be necessary to solve the full Schrödinger equation
on the two-dimensional, six-punctured sphere or develop a
quantum graph model. This partially explains the discrepancy
between the vibrational and rigid body models. The problem
is even more pronounced in the B(E2; 4+

2 → 2+
1 ) transition

rate. Naively, one would expect this to be large: physically,
both states are squarelike. As we can see from the rigid body
model, this should lead to a large transition rate. But the
transition rate is significantly diminished in our model, due
to our approximations.

Although the rigid body model can generate large transi-
tion rates (which are seen in nature), it also predicts many
erroneous zero results. This is easily understood: states can
only decay along rotational bands. This is not seen in the
experimental data, and suggests the model is too constrained.
Similarly, the ACM predicts many small or zero results which
are not in agreement with data. The vibrational model allows
for greater overlap between wave functions and hence there
are no zero results for any transitions, except the E1 transi-
tions. Unfortunately, the true amount of mixing is underesti-
mated in all models.

There is one major discrepancy between all models and
data. The B(E2; 4+

1 → 2+
1 ) transition has a value of (146 ±

17) e2fm4, while the rigid body, ACM, and vibrational models
give predictions of 0, 0, and 13 respectively: at best an order of
10 too small. Such a large transition rate is very rare, so to find
any possible explanation is worthwhile. One idea is that the 4+

1
state has been historically mischaracterized as a tetrahedral
state. Suppose instead that the low lying 0+

2 , 2+
1 , 4+

1 band is a
rotational band, of either the square or chain configurations.
Then there is the following relationship for transition rates
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between states on the band:

B(E2; 4+
1 → 2+

1 )

B(E2; 2+
1 → 0+

2 )
= 10

7
≈ 1.43. (4.6)

In reality, the experimental ratio is

146 ± 17

65 ± 7
= 2.25 ± 0.5. (4.7)

This large ratio highlights the difficulty in describing the
B(E2; 4+

1 → 2+
1 ) transition. The rigid body model, which

should exaggerate this type of transition, still underestimates
it. If one were to recharacterize the 4+

1 state as a rotational
excitation of the square, the 4+

2 would then be interpreted as
a tetrahedral state. The energy difference between the 4+

1 and
4+

2 states is only 0.74 MeV, so their relabeling is reasonable
on energetic grounds. As can be seen in Table III, the 4+

2
state can still have a large E4 transition in the vibrational
model, so this new interpretation may not spoil the positive
results along the ground state band. To investigate further, one
should improve the vibrational model to allow for a changing
moment of inertia tensor, as described above. This should
give more accurate results and will avoid underestimation.
Second, it may be worthwhile to redo the transition rate
experiments. These were last undertaken in the 1970s and
early 1980s. Modern techniques would allow us to fill out
Table III more fully. We are suggesting the spin 4 states may
be mischaracterized, so having more information about the
decay from the spin 4 states would be particularly useful.

V. SUMMARY AND FURTHER WORK

Electromagnetic transition rates offer a wealth of infor-
mation about the intrinsic structure of atomic nuclei. EM
transitions help us to differentiate between the vast number
of nuclear models on offer: shell model approaches, col-

lective models, and the ACM to name a few. In this pa-
per we developed a general formalism for computing EM
transition rates within the framework of rotational-vibrational
nuclear models.

Within this formalism we calculated EM transition rates
for two recently proposed models of 12C and 16O, which
were inspired by nuclear dynamics in the Skyrme model. We
found reasonable agreement with existing experimental data
and highlighted important differences between our model’s
predictions and those of other models.

For 12C both our model and other models reproduce the
existing data well. To differentiate the models more data are
needed. We hope that this study provides fresh motivation to
measure more EM transition rates for 12C. The results for 16O
are less promising, for all models. We suggested that some
discrepancies between experimental data and our model could
be traced to our approximations. These may be improved by
including a varying moment of inertia in our Schrödinger
equation, or by developing a quantum graph model for the
nucleus. No model comes close to full agreement with ex-
perimental data so there is still work to be done, even for
these abundant nuclei. Further experimental data will help us
to uncover their detailed structure.

We have focused on E transitions but M transitions are also
seen experimentally. While E transitions depend on the charge
density of the nucleus, the M transitions depend on the current
density. These have been studied for 3He and 3H within the
Skyrme model [26] but are not well understood in general.
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