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α-particle condensation: A nuclear quantum phase transition
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When the density of a nuclear system is decreased, homogeneous states undergo the so-called Mott transition
towards clusterized states, e.g., α clustering, both in nuclei and in nuclear matter. Here we investigate such
a quantum phase transition (QPT) by using microscopic energy density functional calculations with with the
relativistic and the Gogny approaches on the diluted 16O nucleus. The evolution of the corresponding single-
particle spectrum under dilution is studied, and a Mott-like transition is predicted at about 1/3 of the saturation
density. A complementary study of quartet condensation and the corresponding macroscopic QPT is undertaken
in infinite matter.
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I. INTRODUCTION

Fermi systems are the host of various phenomena yet to be
fully explored. One of the most recent exciting features which
has been revealed is the exotic arrangements stabilized by
the existence of internal degrees of freedom in N-component
Fermi systems with N > 2 [1–4]. Molecular configurations
made of bound states of N fermions enrich the celebrated
crossover [5] between a Bardeen-Cooper-Schrieffer (BCS)
superfluid phase to the Bose-Einstein condensation (BEC)
of bosonic bound states of two fermions that characterizes
two-component Fermi gases with an attractive s-wave inter-
action. Nucleons being assigned to spin and isospin SU(2)
doublet, atomic nuclei fall in the category of four-component
self-bound Fermi systems. Attractive s-wave interactions in
the singlet-even (S = 0, T = 1) and the triplet-even (S = 1,
T = 0) channels—S and T stand respectively for the total
spin and isospin momenta of the two-nucleon system—with
almost similar strengths give rise to various types of superfluid
behavior. Indeed, even though the nucleon-nucleon interac-
tion strength is fixed, the effective strength of the pairing
interaction scales as the inverse s-wave scattering length as

normalized by the Fermi momentum kF [≈(kF as)−1], such
that the coupling regime can be tuned by varying the nucleon
density ρ ∝ k3

F . In the weak coupling regime (near and be-
yond the saturation density ρ0 ≈ 0.16 fm−3), the dominant
superfluid instability takes the form of a BCS quasi-long-
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range order and involves proton-proton, neutron-neutron, or
proton-neutron (depending on the matching of neutron and
proton Fermi levels) Cooper pairs [6,7]. Moving towards
the strong coupling regime (at subsaturation density), cal-
culations in infinite symmetric nuclear matter [8] suggest
that the dominant superfluid order is not a BEC phase of
bosonic dimers (deuterons), but rather a condensation phase of
quartets—four-fermion molecular objects with zero total spin
and isospin. For decreasing densities, infinite nuclear matter
hence undergoes a phase transition to α-particle condensation
[8–10]. That is, nuclear matter lowers its energy by taking
advantage of the nuclear cohesion, i.e., by forming localized
clusters that recover saturation density, rather than remaining
in a dilute homogeneous phase. Because this happens at zero
temperature, it can be dubbed a quantum phase transition
(QPT), with the density being the control parameter.

How such features translate in finite nuclei triggered sev-
eral research works (see, e.g., Refs. [11–16]). Unlike homo-
geneous systems, finite nuclei naturally display large fluctu-
ations of their mass density around the equilibrium value ρ0,
in both their ground state and their excited states. There, a
combination of energetics consideration and Pauli principle is
expected to trigger a QPT from a dilute homogeneous con-
figuration to a clusterized configuration, endowing the spec-
troscopy of relatively light nuclei with clusterized structures
[17–20]. For instance, the famous Hoyle state, important for
12C production in the universe, could be interpreted as a three-
α gas state where the α’s occupy with their center-of-mass
(c.m.) motion up to 70–80% of the lowest 0S wave function
while all other states have an occupation probability more than
a factor of 10 down (see, e.g., Ref. [21]). In that sense, the
Hoyle state can be qualified as a finite-size α-particle conden-
sate. However EDF and geometrical approaches end up with
α clusters in a much more robust configuration [22–24] (see
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FIG. 1. Binding energy of 16O as a function of a deformation
parameter (axial quadrupole, axial octupole, and tetrahedral ones),
calculated within the CEDF at the SR level with the DD-ME2
parametrization [44]. The inserts display the three-dimensional nu-
cleonic density in the intrinsic frame of the nucleus for various values
of the deformation parameter.

also Ref. [25] for a recent experimental investigation of this
issue and Ref. [26] for a discussion of α-cluster structures as
a manifestation of supersolidity). It should be noted that the
action of the Pauli principle is quite similar in both cases (gas
or molecular states) so converging results will be reached from
both approaches. Beyond these interpretations, the size of the
Hoyle state is extended to 3–4 times the volume of the 12C
ground state [27,28], showing that Hoyle and ground states
live in two completely different phases, one dilute, the other
dense.

In this work, we want to further substantiate the QPT sce-
nario of α clustering for the case of 16O through complemen-
tary perspectives. A microscopic analysis based on the EDF
approach is given in Sec. II, where both covariant and Gogny
functionals are used. Constrained Hartree-Fock-Bogoliubov
(HFB) calculations for 16O are performed, the constraint being
on the radius of 16O while the system is imposed to stay
globally spherical. That is, 16O can break up into clusters
while the system still stays spherical on average. Section III
provides an analysis of the occurrence of α condensation in
nuclear matter through the explicit treatment of four-nucleon
correlations.

II. EDF APPROACH TO QUANTUM PHASE TRANSITION
IN FINITE NUCLEI

A. Clustering in the language of nuclear EDFs

The description of cluster configurations in finite nuclei
based on nuclear EDFs or the mean-field approach has a long
history [14,15,19,20,22,29–43]. To account for the properties
of α-correlated states, these approaches do not introduce
explicit four-body correlations. Rather, they involve an order
parameter associated with α clustering, i.e., a collective field
whose fluctuations cause nucleons to gather into α subunits.
The multipolar mass moments Qλμ provide an example of
such order parameters (see Fig. 1). Indeed, a nonzero value
for Qλμ is a necessary (yet not sufficient) condition for the

emergence of localized substructures in nuclei, while the
extreme scenario of all nucleons aggregating into α degrees of
freedom can be described in terms of a spontaneous breaking
of the rotational symmetry O(3) displayed by the nuclear
Hamiltonian down to a discrete point group that dictates the
geometrical configuration of the α particles.

The link between deformation and cluster formation is well
understood and has already been investigated in the simple
case where the nuclear confining potential is approximated by
a harmonic oscillator (HO) one [45–49]. In essence, the de-
generacies of the energy levels of an N-dimensional isotropic
(spherical configuration) HO are in one-to-one correspon-
dence with the irreducible totally symmetric representations
of SU(N ). Similarly, the quantum states of an N-dimensional
anisotropic oscillator (deformed configuration) with commen-
surate frequencies (i.e., rationally related frequencies ωi such
that kiωi = ω and ki are relatively prime integers) enjoy de-
generacy spaces that also correspond to the representations of
SU(N ), with the important difference that unlike the isotropic
oscillator, a given representation occurs not singly but with a
multiplicity

∏
i ki. As a consequence, the symmetries of the

corresponding many-particle wave function can be described
by independent copies of SU(3) irreducible representations
(irreps), suggesting that the shell structure of the anisotropic
HO with commensurate frequencies is that of smaller over-
lapping spherical HOs. In other words, the corresponding
many-body system has a susceptibility to distribute its total
mass among multiple spherical fragments, that is to say, to
clusterize.

This simple picture survives in a more realistic descrip-
tion where the confining nuclear potential is determined
self-consistently, as illustrated in Fig. 1: 16O total binding
energy, computed at the single-reference (SR) level of the
covariant energy density functional (CEDF) approach (also
referred to as the mean-field level), is displayed against dif-
ferent constrained deformation parameters, namely, the ax-
ial quadrupole (λ,μ) = (2, 0), the axial octupole (λ,μ) =
(3, 0), and the triaxial octupole (λ,μ) = (3, 2) modes. 16O
intrinsic densities are also displayed for values of interest
of the deformation parameters. The global minimal energy
is found at the spherical point, owing to the p-shell closure
in 16O. Small values of the deformation parameters (<1)
correspond to deformed shapes where nucleons are roughly
homogeneously distributed: prolate cigarlike shape along β20,
pearlike configuration along β30, and tetrahedral distribution
along β32. The energy is rather stiff in the β20 direction,
contrary to the octupole directions, especially the triaxial one:
for β32 ≈ 0.3 where the tetrahedral shape is already well
developed, the energy loss with respect to the spherical config-
uration is only 3 MeV. Projection on both angular momentum
and parity as well as mixing within the generator coordinate
method (GCM) may therefore induce tetrahedral correlations
in the ground state of 16O and yield several rotation-vibration
excited states that can be classified according to the irreps of
the discrete tetrahedral group T d , along the lines of Ref. [24].
For large deformation parameters, Fig. 1 involves binary
cluster structures, e.g., α+12C at β30 ≈ 1, followed by ternary
cluster structures (8Be + 2α at β20 ≈ 1.7). For extreme values
of the deformation parameters where the nuclear radius is
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large, hence the average density is low enough for Pauli
blocking effects to be suppressed, 16O displays a fully cluster-
ized structure with four α’s in linear (β20 ≈ 5) or tetrahedral
(β32 ≈ 6) configurations.

B. Density-induced quantum phase transition

In this subsection, we want to establish the transformation
from a delocalized configuration to a clusterized one as a
QPT. For that purpose, we do not explore the manifold of
constrained mean-field solutions parametrized by some mul-
tipolar mass moments Qλμ acting as collective coordinates,
like the one-dimensional potential energy surface displayed
in Fig. 1. Such an approach, complemented by a post-mean-
field treatment, e.g., the GCM, would yield the spectroscopy
of the system with states possibly displaying delocalized or
clusterized structures or a coexistence of both [19,20]. Rather,
we want to start from a homogeneous configuration where all
the multipolar mass moments are zero (Qλμ = 0 ∀λ,μ) and
continuously diluting the system by, e.g., constraining its rms
radius while imposing a zero global quadrupole mass moment
Q20 [14,15] (see Fig. 2). The transition between two distinct
quantum phases, namely, a homogeneous configuration and a
clusterized one, visible in the density profile of the system,
is accompanied by the onset of some Qλμ with λ > 2 (we
remind the reader that the quadrupole moment is constrained
to zero). Such a transition is expected beyond a critical rms
radius, or equivalently below a critical mean density called
the Mott density.

We investigate the transition from the homogeneous to
the clusterized configurations by describing the isotropic in-
flation of 16O within both the CEDF and Gogny EDF ap-
proaches. The corresponding constrained mean-field equa-
tions are solved in a HO basis with 11 major shells. A careful
analysis of the convergence and nonartificial nature of the
solution with respect to the HO basis parameters must be
undertaken, especially when addressing exotic dilute (with
a large constrained rms radius) configurations. Indeed, some
values of the parameter h̄ω may lead to unphysical lower-
energy configurations where some of the nucleons remain
tightly packed at the center of the nucleus while the remaining
nucleons are sparsely distributed around this dense core. We
retain values of h̄ω that minimize the energy of the system
and at the same time lead to a regular decrease of the density.
These features are illustrated in Fig. 2. Figure 2(a) displays
the radial density of 16O for several constrained radii in the
relativistic case. The parameter of the HO basis yielding the
lowest energy constrained configurations and at the same time
allowing a regular decrease of the density is found to be h̄ω =
13 MeV. Figure 2(b) shows the density profile obtained in
the nonrelativistic case, where the colors distinguish between
several values of h̄ω. For h̄ω < 19 MeV, the constraint on
the radius, taken between 2.4 and 3.8 fm, does not lead to a
regular decrease of the density at the center of the nucleus. As
a matter of fact, the nucleus increases its radius by expanding
a low-density nucleon cloud surrounding a quasi-constant-
density nucleon core (red dashed and green dotted curves).
These features are not appropriate. A regular decrease of the
central density is only obtained for h̄ω ≈ 19 MeV (blue solid

FIG. 2. 16O nucleon radial density for rms radii constrained
(a) from 2.4 to 5.3 fm within symmetry-restricted RMF calculations
with the DD-ME2 parametrization and (b) from 2.5 to 3.8 fm
within HFB calculations with the Gogny D1S parametrization [50].
Relativistic calculations (a) are performed in a HO basis with 11
shells and h̄ω = 13 MeV. Nonrelativistic calculations (b) are also
performed in a HO basis with 11 shells but with h̄ω = 15 MeV (red
dashed line), 17 MeV (green dotted line), and 19 MeV (blue solid
line).

curves) within Gogny D1S calculations, which we adopt here-
after in the nonrelativistic case as far as spherical shapes are
concerned. In the case of clusterized configurations, the value
of optimal h̄ω with respect to the HFB binding energy is 11
and 8 MeV for the relativistic and nonrelativistic calculations,
respectively. Note that there is no specific reason for the h̄ω

parameter to be the same in the covariant and nonrelativistic
calculations.

Setting the HO basis parameters to their relevant values,
the 16O binding energy is computed as a function of the
constrained rms radius within both the CEDF and the Gogny
EDF approaches and is displayed in Fig. 3. Both types of
calculations remarkably agree on the transition between a
dilute spherical configuration (red curves with circle markers)
and a four-α phase where the α clusters are distributed at the
vertices of a tetrahedron past a critical rms radius. To analyze
in more detail how 16O rearranges itself during the QPT,
several types of calculations are performed in the covariant
case [Fig. 3(a)]. The conclusions drawn here can be trans-
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FIG. 3. Self-consistent binding energy of 16O computed at the
SR level of (a) the CEDF with the DD-ME2 parametrization and
(b) the EDF with the Gogny D1S parametrization vs the constrained
rms radius. In panel (a) curves with red circle symbols correspond
to spherical configurations obtained in a HO basis with 11 shells
and h̄ω = 13 MeV, while the blue square symbol curves corre-
spond to a tetrahedral arrangement obtained in a HO basis with
11 shells and h̄ω = 11 MeV. The green dashed line displays the
pairing energy associated with superfluid spherical configurations
(red open circle symbols). Likewise, in panel (b) red (circle symbols)
and blue (square symbols) correspond to spherical and tetrahedral
configurations, respectively, and were obtained in a HO basis with 11
shells and h̄ω = 19 and 8 MeV, respectively. In both cases, the blue
open square symbol curve corrects the mean-field energy with the
zero-point energy contribution, and the inserts display 16O intrinsic
density at the corresponding constrained radii. See text for detailed
explanations.

posed to the nonrelativistic case. For the sake of conciseness,
we hence restrict the detailed analysis to the CEDF approach.
In Fig. 3(a), the curve with red solid circle markers corre-
sponds to a SR-CEDF calculation where we enforce spherical
symmetry [i.e., no spatial spontaneous symmetry breaking
(SSB) can occur] as well as the global U(1) invariance (i.e.,
no pairing correlations can develop). We refer to this case
as spatial-symmetry-restricted relativistic mean field (SSR-
RMF). Relaxing the enforcement of U(1) symmetry, i.e., still
restricting the spatial symmetry to the spherical one, but
letting the system free to break the U(1) invariance signaling
the development of pairing correlations, yields the curve

FIG. 4. 16O neutron single-particle levels associated with SSR-
RMF calculations with the DD-ME2 parametrization constrained at
R = 2.6, 3.4, and 6.0 fm.

with red open circle markers: this is the spatial-symmetry-
restricted relativistic Hartree Bogoliubov (SSR-RHB) case.
For this type of calculation, the green dashed line displays
the corresponding pairing energy of the system. Finally, re-
laxing all the symmetry restrictions, both spatial and internal
(with, however, the constraint β20 = 0 ensuring an isotropic
inflation of the nucleus), yields the curves with blue square
markers (solid and open markers). This case is referred to as
spatial-symmetry-unrestricted relativistic Hartree Bogoliubov
(SSU-RHB). In the curve with the square open symbols, the
zero-point energy, computed as in Ref. [14], is subtracted from
the SSU-RHB energy.

Let us first analyze the SSR-RMF case, by looking at the
neutron single-particle (sp) orbitals for three different con-
strained radii (see Fig. 4): R = 2.6 fm (equilibrium configu-
ration), R = 3.4 fm [just before the separation of the different
curves in Fig. 3(a)], and R = 6.0 fm. Diluting 16O causes a
drastic reduction of the valence neutron gap from 10.71 MeV
at R = 2.60 fm to 4.63 MeV at R = 3.40 fm and 2.36 MeV at
R = 6.0 fm. The sp spectrum gets shrunk and all spin-orbit
partners eventually become degenerate. These features can
be understood by looking at the radial dependence of two
combinations of the scalar and timelike nucleon self-energies
S and V (Fig. 5). The combination V + S defines the mean
potential where independent nucleons evolve in the mean-field
picture. From a typical depth of −75 MeV at the equilibrium
configuration, the confining potential becomes shallower as
the constrained radius increases until reaching −10 MeV at
R = 6.0 fm. Likewise, the other combination V − S, whose
derivative (with a prefactor of 1/M2 and M being the nucleon
mass) governs the spin-orbit splitting, gets weaker as the
radius increases, restoring the spin SU(2) symmetry of the
Dirac Hamiltonian and therefore causing spin-orbit partners
to be degenerate.

Such a reduction of the Fermi gap opens room for the
development of nondynamical correlations. Indeed, 16O be-
comes a near-degenerate system; i.e., excited particle-hole (p-
h) configurations have energies close to the fundamental one,
such that the system will rearrange itself in a nonperturbative
way to lift the (near) degeneracies.
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FIG. 5. Radial evolution of combinations [(a) V + S, (b) V − S]
of the scalar (S) and timelike (V ) nucleon self-energies in 16O for
radii constrained at R = 2.6, 3.4, and 6.0 fm.

A possible strategy consists in developing pairing corre-
lations. At the SR level, the onset of pairing correlations is
signaled by the spontaneous breaking of the global U(1) group
associated with the conservation of the nucleon number. From
the corresponding SSR-RHB calculations displayed Fig. 3(a),
the normal to superfluid QPT occurs at R = 3.8 fm, even
if a sensible effect on the binding energy has to wait for
radii greater than R = 5.5 fm. Such a QPT translates into
the opening of a gap in the quasiparticle (qp) spectrum of
16O. At R = 6.0 fm, the gap in the neutron qp spectrum
jumps from 2.2 MeV in the SSR-RMF case to 4.1 MeV
in the SSR-RHB one, with a pairing energy ≈−8 MeV. As
one can see from the small impact on 16O binding energy
[Fig. 3(a)], lifting p-h near degeneracies by developing pairing
correlations seems rather ineffective. This is due to the large-
energy splitting between the d and f orbitals that hinders the
scattering of Cooper pairs, as shown by the occupation num-
bers of the canonical neutron sp levels in Fig. 6 (SSR-RHB
case).

A more effective strategy to lift the degeneracies is to de-
velop angular correlations. From the SSU-RHB calculations, a
Mott-like QPT is observed at a critical radius of Rc = 3.7 fm,
that is, a mean density of ρMott/ρ0 = (Req/Rc)3 ≈ 0.35, or
ρMott ≈ ρ0/3. At such a low density, the Pauli principle does

FIG. 6. 16O neutron canonical single-particle levels computed at
R = 6.0 fm with the DD-ME2 parametrization in the SSR-RMF,
SSR-RHB, and SSU-RHB cases.

not prevent anymore the formation of α bound states, which
is energetically preferred, because it takes advantage of the
strong nuclear cohesion (the clusters recover a density closed
to the saturation one). The transition hence occurs between
a phase where nucleons are delocalized in a dilute spherical
volume (the maximal value of the nucleon density is 0.046
fm−3 at R = 3.40 fm), for which the multipolar moments are
zero, and a phase where nucleons are localized in four-α-like
degrees of freedom at saturation density and arranged accord-
ing to a tetrahedral configuration (the first nonzero multipole
moment is Q32). For such a tetrahedral configuration, no
pairing correlations develop; i.e., the global U(1) symmetry
remains unbroken.

As mentioned above, the nonrelativistic Gogny EDF cal-
culations [Fig. 3(b)] show remarkable similarities with the
relativistic case [Fig. 3(a)]. The same transition between a
spherical homogeneous configuration and localized tetrahe-
dral configurations occurs, however, slightly later at Rc = 3.9
fm, or equivalently a mean density of ρMott/ρ0 = (Req/Rc)3 ≈
0.33, i.e., again ρMott ≈ ρ0/3. In the nonrelativistic calcula-
tions, a break is observed between the curve related to the
spherical configurations (in red circles) and those for the tetra-
hedral configurations (in blue squares). The discontinuity oc-
curs at the radius beyond which the spherical density evolves
into a four-α-like configuration and stems from different
values for the optimal h̄ω in the spherical configuration case
(h̄ω = 19 MeV) and in the tetrahedral one (h̄ω = 12 MeV).
For the latter, the nucleus increases its radius by placing the
α’s further apart, as illustrated in the inserts.

The many-faceted nature of the 16O spectrum, and the
presence of tetrahedral configurations in particular, has long
been discussed [24,51–58]. We insist however on the fact that
we do not seek a description of 16O spectroscopy, but rather to
characterize the density-induced QPT from a homogeneous to
a clusterized configuration, that is, in the case of 16O, from a
spherical distribution of delocalized nucleons to a clusterized
state of four α’s arranged according to a tetrahedron. The
corresponding SSB of the rotational group O(3) down to the
(double) point group Td yields a bandlike structure for the 16O
sp spectrum (see the SSU-RHB case of Fig. 6): the neutron
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FIG. 7. Probability to find n-particle–n-hole states belonging to
the O(3) irreps in the tetrahedral SD state as a function of the
nonaxial octupole deformation parameter β32.

and proton sp orbitals assemble into two bunches of four
near-degenerate orbitals separated by a huge gap of 17.4 MeV.

C. Analysis of nonaxial octupolar correlations

These features can be understood based on the properties
of the group Td [51,59–62]. In a tetrahedrally symmetric
confining potential, the nucleon orbitals can be classified
along the irreps of the group Td (the so-called �6, �7, and
�8 irreps [59]). The correlations grasped by going through a
tetrahedral deformation can be translated in the language of p-
h excitations on top of a symmetry-preserving reference state
by computing the overlaps 〈�sphe

i |�tetra
0 (β32)〉 between the

tetrahedrally deformed Slater determinant (SD) |�tetra
0 (β32)〉

(the tetrahedral closed-shell configuration involving the �6,
�7, and �8 states) and spherical SDs |�sphe

i 〉 [both ground-
state (i = 0) and p-h excitations (i > 0) in a valence space
spanning the 1s1/2 to the 1 f 5/2 states] for various values of
the order parameter β32 (Fig. 7).

The contribution of the spherical closed-shell configuration
(0p-0h state) drops rapidly as the tetrahedral deformation in-
creases. Collective excitations, in particular 2p-2h and 6p-6h
ones, quickly become dominant, meaning that the amplitude
excitations from the p shell to sd shells do not describe the
total correlated wave function in a satisfactory manner, but
one eventually needs to account for p f shell states as well as
holes in the s state. It should be noted that the probabilities
displayed in Fig. 7 do not add up to 1 because of the too small
valence space.

The role played by the orbitals beyond the p and sd
shells can be further understood by comparing the shape
of the spherical canonical orbitals with the tetrahedral ones
(Fig. 8). The four near-degenerate tetrahedral orbitals �6, �7,
and �8 (doubly degenerate) share the same partial density
that resembles four α’s arranged in a tetrahedral config-
uration. To illustrate how spherically symmetric nucleonic
shells combine in such tetrahedrally deformed orbitals, let
us focus on the �6 level. From the decompositions of the
irreps of the full rotation group into irreps of the group Td

FIG. 8. 16O neutron single-particle levels in the SSR-RMF case
with R = 3.4 fm and in the SSU-RHB case with R = 6.0 fm com-
puted with the DD-ME2 parametrization. The inserts display the
partial densities associated with the 1s1/2, 1p3/2, 1p1/2, 2s1/2, and
1 f 7/2 orbitals from bottom to top in the SSR-RMF case and for the
�6, �7, and �8 orbitals that share the same shape.

[59], the irreps compatible with �6 are D+
1
2

, D+
7
2

, etc., for

the positive parity case and D−
5
2

, D−
7
2

, etc., for the negative

parity one. The corresponding lowest energy levels at R = 3.4
fm can be read from Fig. 8: the occupied 1s1/2 orbital and
unoccupied 2s1/2, 1 f 7/2, and 1 f 5/2 orbitals (the p and d
shells are not compatible with �6). Superpositions of these
(at least) four spherically symmetric orbitals are needed to
yield a tetrahedrally shaped �6 orbital. The latter having a
zero contribution at the center of the nucleus, one first needs a
mixture between the 1s1/2 and 2s1/2 orbitals, which belong
to the �6 subspace, to cancel the density at the origin. The
resulting density is still isotropically distributed in space. To
localize the nucleons occupying the �6 orbital into α’s in a
tetrahedral configuration, superposition with f states is also
needed (because the p and d shells only involve the �7 and
�8 irreps). Figure 9 illustrates this statement by splitting the

FIG. 9. 1 f 7/2 partial density (a) and its decomposition on m =
1/2, 3/2, 5/2, and 7/2 (b).
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1 f 7/2 partial density into its magnetic m = 1/2, 3/2, 5/2, and
7/2 degenerate components.

Finally, the structure of the tetrahedrally deformed sp
spectrum (the SSU-RHB case of Fig. 6) can be interpreted
by employing the language of quantum chemistry. The four
tetrahedrally symmetric orbitals (�6, �7, and the doubly de-
generate �8) can be expressed as a linear combination of
localized Gaussian-type “atomic” orbitals φi (i = 1, 2, 3,
4) [63]; here 1s orbitals are associated with the α-particle
ground state. The coefficient of the linear combination can be
determined, e.g., within the Hückel approximation, yielding

�6 = 1
2 (φ1 + φ2 + φ3 + φ4),

�7 = 1
2 (φ1 − φ2 − φ3 + φ4),

�8(1) = 1
2 (φ1 + φ2 − φ3 − φ4),

�8(2) = 1
2 (−φ1 + φ2 − φ3 + φ4),

(1)

with the eigenenergies

E6 = ε − 3μ,

E7 = ε + μ,

E8(1) = E7,

E8(2) = E8(1) = E7,

(2)

where ε and −μ respectively denote the energy
kernels Hii and Hi j (where the ith and jth atomic
sites are adjacent) between the atomic orbitals located
on the vertices of a tetrahedron. At R = 6.0 fm the
energies of the �i (i = 6, 7, and 8), E6 = −18.090
MeV and E7 = E8(1) = E8(2) = −18.004 MeV
(see Fig. 8), lead to identifying the energy of the 1s α

state, ε = −18.004 MeV, as well as the nondiagonal energy
kernel μ = 0.086 MeV. Taking into account the ≈10 MeV
correction coming from the zero-point energy contribution
(blue open square curve in Fig. 3), the energy of the 1s α state
drops to ≈−28 MeV, in agreement with the binding energy of
4He. On the other hand the energy gap of 17.4 MeV between
occupied and unoccupied states of the tetrahedrally deformed
sp spectrum is of the order of the lowest excitation energy of
the α particle (20.2 MeV), suggesting an exclusion property
that acts among the nucleons sharing the same intrinsic state
when embedded in an α cluster.

III. QUARTET QUANTUM PHASE TRANSITION
IN INFINITE MATTER

So far, we have considered a QPT in 16O as a function of
the density where the nucleus changes from a homogeneous
mean-field density spontaneously into a tetrahedral configura-
tion of four α particles. However, those crystalline structures,
imposed by the mean-field, become too high in energy. It is,
for example, known that it is difficult to describe in detail the
famous Hoyle state in 12C at 7.65 MeV in this way. However
effects of the Pauli principle and the density are already well
described in mean-field theory as we demonstrate now. For
dominant physical features in nuclei it is always very useful to
consider the complimentary situation in infinite matter as has
long been done, e.g., for nuclear pairing. Thus, we here want

to study quartet condensation and the corresponding QPT in
infinite matter and make a link with the preceding mean-field
study of 16O concerning the typical densities at which the QPT
occurs in nuclear systems. Quartet condensation is described
following very closely the usual procedure of pairing with the
BCS approach. For the latter the BCS equations can be written
in the following way:

(
ep1 + ep2

)
κp1 p2 + (

1 − np1 − np2

)∑
p′

1 p′
2

vp1 p2 p′
1 p′

2
κp′

1 p′
2

= 2μκp1 p2 , (3)

with the occupation numbers given by

nk = 1

2

⎡
⎣1 − ek − μ√

(ek − μ)2 + δ2
k

⎤
⎦, (4)

with the gap

k = gκkk̄,

where k̄ is the time-reversed state of k and we used as pairing
force a δ interaction, gδ(r1 − r2). Finite-range forces can be
treated accordingly.

In the above equations ek are the kinetic energies, even-
tually with inclusion of a Hartree-Fock shift, and μi is the
chemical potential. The indices p include momenta and spin,
κp1 p2 = 〈cp1 cp2〉 is the pairing tensor, and vp1 p2 p3 p4 is the
matrix element of the pairing force. Equations (3) and (4)
are the BCS equations in their general form. Usually one
considers the Cooper pairs at rest, which makes the momenta
of the two particles be opposite, and one considers spin singlet
pairing.

For quartetting, one proceeds in a completely analogous
way: one writes the in-medium four-body equation [64]

(e1 + e2 + e3 + e4)κ1234 +
∑

1′2′3′4′
V1234;1′2′3′4′κ1′2′3′4′

= 4μκ1234, (5)

with

V1234;1′2′3′4′ = (1 − n1 − n2)v121′2′δ33′δ44′

+(1 − n1 − n3)v131′3′ + permutations, (6)

where we used an obvious shorthand notation. In the case
of quartetting the expressions for the occupation numbers nk

are quite a bit more complicated with respect to the pairing
case and we refer the reader to the literature [64]. To ease the
numerical solution of the quartet equation, in Ref. [64], the
four-nucleon order parameter was approximated by a mean-
field ansatz projected to good total center of mass momentum
K = 0 in the following way:
〈
c+

k1
c+

k2
c+

k3
c+

k4

〉 = δ(k1 + k2 + k3 + k4)ϕ(k1)ϕ(k2)ϕ(k3)ϕ(k4),
(7)

where c+
k creates a nucleon with momentum k (obvious spin-

isospin indices are suppressed as well as the total scalar
spin-isospin part of the wave function) and ϕ(k) is a 0S
single-particle wave function in momentum space. The self-
consistent equation for the order parameter then boils down
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FIG. 10. Single-nucleon occupation numbers nk for different val-
ues of μ. The highest value before the calculation of the α-order
parameter breaks down is μ ≈ 0.55 MeV.

to a nonlinear equation for ϕ(k) and it turns out that this
approximation reproduces very well a full solution of the
in-medium four-body equation [65]. The point now is that this
order parameter only exists below a critical density of ≈ρ0/5
[66], which is a value similar to the one found in the preceding
study for 16O. In infinite matter, this can then be qualified as
a macroscopic QPT for quartets (α particles) with the density
as a control parameter.

This breakdown was studied with the calculation of the
single-nucleon occupation number nk in the α condensate as
a function of the chemical potential μ. We see in Fig. 10 that
as μ increases, nk naturally also increases. However, beyond
μ ≈ 0.55 MeV where nk=0 ≈ 0.35, the solution ceases to
exist; that is, the α order parameter has disappeared and the
system has turned over into a standard nuclear superfluid
very analogous to what we have seen happening in 16O. It
should be pointed out that this behavior is in strong contrast to
pairing, for instance, deuteron pairing, where the density can
be increased without breakdown of superfluidity, the decrease
of the gap being only commended by the finite range of the
pairing force. The corresponding nk values steadily increase
from negative to positive values of μ without interruption. Of
course the Pauli principle forbids that nk overshoots the value
of 1 (disregarding spin and isospin degeneracies), reaching the
typical BCS-like behavior at nuclear saturation densities. This
behavior is shown in Fig. 11 in a qualitative way. We see the
strong difference with the behavior of nk in the quartet case. It
should be noted that the distributions below and around μ 	 0
should be compared with the ones of the quartet case.

The reason for this breakdown has a simple physical in-
terpretation. It seems clear that in a four-body problem the
in-medium four-body level density plays a dominant role. It is
defined by [67]

g4(ω) =
∑

k1,k2,k3,k4

[ f̄1 f̄2 f̄3 f̄4 − f1 f2 f3 f4]

× δ(ω − e1 − e2 − e3 − e4), (8)

where f̄ = 1 − f and fi = f (ei ) is the Fermi-Dirac function
equal to �(μ − ei ) at zero temperature. The ei’s are the
kinetic energies p2

i /(2m). One can easily verify that for pos-
itive chemical potential μ, this four-body level density goes

n k

0

0.5

1

k (fm-1)
0 0.5 1 1.5 2 2.5

μ=-6 MeV
μ=-4 MeV
μ=-2 MeV
μ= 0 MeV
μ=+2 MeV
μ=+4 MeV
μ=+8 MeV
μ=+20 MeV
μ=+35 MeV

FIG. 11. Schematic (non-self-consistent) view of BCS occupa-
tion numbers as the chemical potential varies from positive to nega-
tive (binding) values.

through zero at ω = 4μ. Where there is no level density at
the Fermi surface no correlations can develop and, thus, the
order parameter goes to zero very soon after μ has turned from
negative values (binding) to positive ones (scattering).

The critical density coincides with the Mott density at
zero temperature [66]. Actually the critical density is just the
one where the α’s start to overlap with their tails to some
appreciable extent (see, e.g., the two α’s in 8Be [68]) and, thus,
the Pauli principle becomes active. For the pairing case, for
two particles at rest with their c.m., one verifies that the two-
body level density is finite at ω = 2μ, this being the reason
why pairing also exists for positive μ or at high densities. For
example, the two-body level density for two particles below 2
times the chemical potential is given by

g(ω)2p =
∑
k1k2

�
(
μ − ek1

)
�

(
μ − ek2

)
δ
(
ω − ek1 − ek2

)
.

(9)
For the particle pair at rest, k1 = k2, one easily verifies that
for ω = 2μ the level density is finite. On the contrary, if
the two nucleons are moving with a finite center-of-mass
momentum, also a hole develops at the Fermi level similar
to what we have seen for the three-particle case. The width of
this hole increases with increasing center-of-mass momentum
until the gap disappears. This signals the critical center-of-
mass momentum. The finiteness of the level density at the
Fermi level for two particles at rest is unique for the case of
many-body level densities. This is the reason why pairing is
such a unique phenomenon.

In conclusion, we have seen in this section that the density
dependence of α condensation in infinite matter is somewhat
lower but still in line with the mean-field studies in the finite
nuclei presented above. This means in particular that the
action of the Pauli principle on the existence of α clusters
is similar in infinite matter and finite nuclei. As mentioned
above the density of the Hoyle state is ρ0/3–ρ0/4, very close
to the mean-field values in this study. In Ref. [69], for the
hypothetical four-α condensate state in 16O at 15.1 MeV the
calculation yields quite a bit a lower density close to ρ0/6.
However, the four-α calculation is more involved and the den-
sity of the condensate may not be calculated with the the same
precision as in the case of three α’s; that is, the value ρ0/6 may
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be somewhat uncertain. Also the four-α calculation may be
more sensitive to small perturbations like the increased (with
respect to the 12C case) Coulomb repulsion.

IV. CONCLUSIONS

In conclusion, we have studied in nuclear systems the tran-
sition from a Fermi gas to α clustering as a function of density
at zero temperature. In a first study we made constrained
HFB calculations, both with RMF and Gogny EDFs, where
the radius of 16O is increased under the constraint that on
average the system stays spherical, that is, that the mean value
of the quadrupole operator remains zero. The system shows
a critical radius, i.e., low density where the homogeneously
inflated 16O nucleus abruptly goes over into a tetrahedral
configuration of four α’s. This happens consistently with the
relativistic and nonrelativistic approaches at practically the
same critical density ≈ρ0/3, slightly higher than in the infinite
matter calculation where the phase transition from the Fermi
gas to α-particle condensation happens at ρMott = 0.03 fm3 ≈

ρ0/5 [64,66]. This shows that the Pauli principle that triggers
this QPT transition acts rather similarly, independently of
whether the system goes over into a condensate or a lattice
configuration as this happens with the constrained mean-field
calculation for 16O. We further investigated the transition to
four α’s in 16O. We expressed the nondynamical correlations
grasped through the SSB of the O(3) rotation group down to
the point group T d in terms of p-h excitations on top of a
symmetry-preserving SD, and we discussed the crucial role
played by orbitals beyond the p and sd shells to localize
nucleons into α’s at the corners of a tetrahedron. All in all,
16O provides a rather spectacular example of a quantum phase
transition in nuclear physics.
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