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Benchmark neutrinoless double-β decay matrix elements in a light nucleus
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We compute nuclear matrix elements of neutrinoless double-β decay mediated by light Majorana-neutrino
exchange in the A = 6 system. The goal is to benchmark two many-body approaches, the no-core shell model
and the multireference in-medium similarity renormalization group (SRG). We use a SRG-evolved next-to-
next-to-next-to-leading chiral order two-body potential for the nuclear interaction, and make the approximation
that the isospin is conserved. We compare the results of the two approaches as a function of the cutoff on the
many-body basis space. Although differences are seen in the predicted nuclear radii, the ground-state energies
and neutrinoless double-β decay matrix elements produced by the two approaches show significant agreement.
We discuss the implications for calculations in heavier nuclei.
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I. INTRODUCTION

Since the discovery of the lepton flavor violation in neu-
trino oscillations [1–3], identifying whether the neutrino is
a Majorana fermion (i.e., its own antiparticle) has become
a priority in nuclear and particle physics. However, because
neutrinos are charge neutral and nearly massless, they are
notoriously difficult to detect, and their properties remain
only partly understood. Major theoretical and experimental
collaborative efforts are already under way to study neu-
trino properties [4–19]. Determining whether neutrinos are
indeed Majorana particles would not only shed light on the
mechanism behind neutrino mass generation but would also
provide insight on leptogenesis and the universe’s apparent
matter-antimatter asymmetry.

Neutrinoless double-β (0νββ) decay is a hypothetical
lepton-number-violating (LNV) nuclear transition where two
neutrons decay to two protons and two electrons but no
antineutrinos (or the reverse with leptons exchanged with
their antiparticles). Observing 0νββ decay would confirm
the existence of a LNV process and is commonly viewed as
the best means of learning whether neutrinos are Majorana
particles. Experiments designed to detect 0νββ decay in ton-
scale amounts of 76Ge, 136Xe, and other materials have already
put impressive limits on the 0νββ-decay half-life [6,7,9], and
these limits will only become more accurate as additional data
are collected. For a more complete description of current and
past efforts as well as some of the underlying theory, see Refs.
[20–24] and references therein.

While of enormous significance in itself, the experimental
detection or nondetection of 0νββ decay will be insufficient
to pin down or put limits on extra-standard-model parameters
such as the average neutrino mass. Because the decay rate
depends on the 0νββ-decay nuclear matrix elements (NMEs),

interpreting the experimental results requires the accurate
calculation of those NMEs. However, at present the calculated
NMEs in the heavy nuclei of interest differ by a factor of
2 to 3 [22]. In addition, calculated NMEs for β decay are
usually smaller than experimental values, and the reasons
for these differences are only now being understood in a
quantitative way [25]. To shed light on these differences, it
is helpful to examine weak processes in light nuclei, where
calculations are better controlled than in the heavy nuclei
we must eventually grapple with. Thus, while not viable for
0νββ-decay experiments, light nuclei are a practical option
for benchmarking.

The purpose of this study is to calculate the NMEs (for
0νββ decay mediated by light Majorana-neutrino exchange)
in the A = 6 system. Benchmarking different many-body
methods and identifying important features that affect the
NMEs in these light nuclei will both test the approaches that
we will apply in heavy nuclei and help us anticipate issues that
may arise there. Assessing the convergence behavior of the
decay NMEs with increasing model-space size is of particular
importance, as it will help quantify uncertainties in heavier
nuclei where more severe basis truncation is computationally
required. Thus, we consider the ground-state-to-ground-state
0νββ decay of 6He → 6Be, which, while kinematically dis-
allowed, involves the same decay operator that determines the
allowed decay rates in heavy nuclei.

We employ two ab initio many-body approaches: the no-
core shell model (NCSM) and the multireference in-medium
similarity renormalization group (MR-IMSRG). The NCSM
is a large-scale diagonalization method that yields exact re-
sults in the limit of an infinitely large configuration space.
On the other hand, the MR-IMSRG (a variation of the IM-
SRG in which the method’s reference state contains explic-
itly built-in correlations) yields approximate solutions to the
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many-body Schrödinger equation within a systematically im-
provable truncation scheme. That is, where the NCSM in-
cludes all many-body correlations up to the given basis cutoff
by construction, the MR-IMSRG only includes many-body
correlations up to a cutoff in the many-body expansion. In
exchange, the computational effort of the MR-IMSRG scales
much more favorably with particle number and configuration
space size, which makes it capable of modeling both light and
heavy nuclei. While both methods treat all nucleons as active,
they can also be used to generate effective interactions and
operators for traditional shell-model calculations in heavier
nuclei [26–32].

For both the MR-IMSRG and NCSM calculations per-
formed in this work, we assume good isospin symmetry to
facilitate the comparison of their results, though it should
be noted that we could drop this assumption at the cost of
introducing more complex methods [33,34]. For both ap-
proaches, we adopt the next-to-next-to-next-to-leading chiral
order (N3LO) Entem-Machleidt two-body potential with reg-
ulator cutoff � = 500 MeV (referred to as “N3LO-EM500”)
[35,36], to model the nucleon-nucleon (NN) interaction. The
potential is expressed in the harmonic oscillator (HO) basis
with energy scale h̄� = 20 MeV, and softened by similarity
renormalization group (SRG) evolution to the scale of λ = 2.0
fm−1 (with the relative kinetic energy, Trel, as the genera-
tor [37]) prior to many-body calculations.

Our examination of the A = 6 system with the NCSM is
similar to the studies in Refs. [38,39], but differs from both in
the NN interaction used, the extrapolations employed, our fo-
cus on 0νββ decay, and our comparison with the MR-IMSRG
approach. Our study also offers a point of comparison to the
computation of 0νββ-decay NMEs arising from an array of
LNV mechanisms in light nuclei by using ab initio variational
Monte Carlo (VMC) techniques [40], though our study is
distinguished by our use of a different NN interaction and
our focus solely on 0νββ decay mediated by light Majorana-
neutrino exchange.

The rest of this paper is structured as follows: Section II
briefly outlines the derivation of the 0νββ-decay operator
as defined in Refs. [22,41,42]. We provide a brief review of
the NCSM in Sec. III A and the MR-IMSRG in Sec. III B.
Section IV compares the ground-state energy and square
radius (in Sec. IV A) and analyzes the contributions to the total
0νββ-decay NME (in Sec. IV B). Finally, Section V reviews
our findings and concludes the discussion. Additional details
regarding our extrapolation methods and tables of calculated
values are provided in the Appendix.

II. 0νββ DECAY WITH LIGHT MAJORANA NEUTRINOS

We consider 0νββ decay caused by the exchange of the
three light Majorana neutrinos and the standard-model weak
interaction as depicted in Fig. 1; all contributions from other
LNV processes are neglected.

Drawing on Refs. [22,41] and the approximations em-
ployed there, we write the 0νββ-decay rate as

[
T 0ν

1/2

]−1 = G0ν (Q, Z )|M0ν |2
∣∣∣∣∣∑

k

mkU
2
ek

∣∣∣∣∣
2

, (1)

FIG. 1. Feynman diagram (modified from Ref. [22]) for 0νββ

decay mediated by light-neutrino exchange. Two neutrons (n) decay
into two protons (p), emitting two electrons (e−). No neutrinos are
emitted, implying that they are Majorana particles (νM).

where Q is the difference between initial (i) and final ( f ) state
energies (i.e., Q ≡ Ei − E f ), Z is the proton number of the
final nucleus, mk is the Majorana mass eigenvalue, and Uek is
the element of the neutrino mixing matrix that connects the
electron neutrino with mass eigenstate k. G0ν (Q, Z ) comes
from the phase-space integral, which has been evaluated with
improved precision in Refs. [43,44].

In this study, we focus on the 6He → 6Be ground-state-to-
ground-state NME, M0ν [42,45,46], obtained from the 0νββ-
decay many-body operator, O0ν , as

M0ν = 〈6Be |O0ν | 6He〉. (2)

Our notation follows that of Ref. [47] unless specified other-
wise.

A. The 0νββ-decay matrix elements

The many-body operator O0ν is conventionally divided into
three contributions, labeled Fermi, Gamow-Teller (GT), and
tensor. We use the symbol O to generically denote any one of
these contributions’ corresponding two-body operator, which
may always be written in second-quantized form as

O = 1

4

∑
αβγ δ

〈αβ|O|γ δ〉a†
αa†

βaδaγ , (3)

where a† and a create and annihilate nucleons, respectively,
in single-particle states. A given single-particle state α is
defined by the quantum numbers nα , lα , sα , jα , tα , mjα ,
and mtα , which correspond to the radial, angular momentum,
spin, total angular momentum, isospin, angular momentum
projection, and isospin projection, respectively. Greek indices
α, β, γ , δ are used to denote single-particle states, while the
corresponding Roman indices a, b, c, d refer to the reduced
set of quantum numbers, such that a†

α ≡ a†
a,mjα,mtα

. We define
spherical tensor/isotensor versions of the annihilation opera-
tors as

âδ ≡ (−1) jδ+mjδ+ 1
2 +mtδ ad,−mjδ ,−mtδ , (4)

such that

aδaγ = (−1) jγ + jδ+mjγ +mjδ+1âc,−mjγ ,−mtγ âd,−mjδ ,−mtδ . (5)
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For the ground-state-to-ground-state portion of the 6He →
6Be transition, we may narrow our scope to components of
the two-body operators that contribute to 0+ → 0+ NMEs.
Expanding Eq. (3) into doubly reduced tensorial components
in the JT -coupled two-body isospin representation yields for
this transition

O0,2
0,−2 = − 1

4
√

3

∑
abcd

∑
J

[Nab(J, 1)Ncd (J, 1)]−1

× (ab; J 1|||O0,2|||cd; J 1)

× [[a†
aa†

b]J,1[âcâd ]J,1]0,2
0,−2 , (6)

where brackets denote tensor products with tensor, isotensor
couplings in superscripts and their corresponding projections
in subscripts, Ni j (J, T ) ≡ √

1 − δi j (−1)J+T /(1 + δi j ) is an
antisymmetrization factor, and the triple lines “|||” denote dou-
bly reduced two-body matrix elements (TBMEs). In Eq. (6),
we implicitly include only two-body states that satisfy the
Pauli exclusion principle in the sum over nucleon states [or,
effectively, we only consider values of i, j, J , and T such that
Ni j (J, T ) �= 0].

We express the total NME (M0ν) as the sum of the Fermi
(MF

0ν), GT (MGT
0ν ), and tensor (MT

0ν) contributions

M0ν = MF
0ν + MGT

0ν + MT
0ν . (7)

These three NME contributions are developed for the many-
body initial and final nuclear states from the doubly reduced
TBMEs of the three corresponding two-body operators. We
evaluate the NMEs by summing the two-body contribution
from each unique pair of the system’s nucleons. We calculate
the TBMEs with the two-body operators

OF
0ν (r) = 4R

πg2
A

∫ ∞

0
|q|d|q| j0(|q|r)hF (|q|)

|q| + Ē − (Ei + E f )/2
τ+

1 τ+
2 ,

OGT
0ν (r) = 4R

πg2
A

∫ ∞

0
|q|d|q| j0(|q|r)hGT (|q|)σ1 · σ2

|q| + Ē − (Ei + E f )/2
τ+

1 τ+
2 ,

OT
0ν (r) = 4R

πg2
A

∫ ∞

0
|q|d|q| j2(|q|r)hT (|q|)S12

|q| + Ē − (Ei + E f )/2
τ+

1 τ+
2 ,

(8)

where q is the momentum transfer, r = |r1 − r2| is the mag-
nitude of the internucleon position vector, and r̂ is the cor-
responding unit vector. Additionally, r1\2, σ1\2, and τ+

1\2 re-
spectively denote the labeled nucleon’s position operator, spin
operator, and isospin-raising operator (transforming neutrons
to protons), while S12 = 3σ1 · r̂σ2 · r̂ − σ1 · σ2 is the tensor
operator. The NMEs contain r dependence through the spher-
ical Bessel functions j0 and j2 in Eq. (8), and, for several
heavy parent nuclei, have been shown to vanish at small
distances r, fall off like 1/r at large distance, and have a typical
range of a few femtometers (fm) [48]. Hence, we expect good
convergence with the basis space for these operators in our
calculations.

The neutrino potentials, h, are defined in momentum space
as

hF (|q|) ≡ −g2
V (q2) ,

hGT (|q|) ≡ g2
A(q2) − gA(q2)gP(q2)q2

3mN

+ g2
P(q2)q4

12m2
N

+ g2
M (q2)q2

6m2
N

,

hT (|q|) ≡ gA(q2)gP(q2)q2

3mN
− g2

P(q2)q4

12m2
N

+ g2
M (q2)q2

12m2
N

, (9)

where gM (q2) = (1 + κ1)gV (q2) 	 4.706gV (q2) (with
the anomalous nucleon isovector magnetic moment
κ1 = 3.706), and the Goldberger–Treiman relation
gP(q2) = 2mN gA(q2)/(q2 + m2

π ) (with nucleon mass
mN and pion mass mπ ) connects the pseudoscalar and
axial terms [22,49]. The conservation of the vector
current implies that gV ≡ gV (q2)|0 = 1, while the value
gA ≡ gA(q2)|0 	 1.27 may be extracted from neutron β-decay
measurements. Their momentum transfer dependence is
gV (q2) = gV (1 + q2/�2

V )−2 and gA(q2) = gA(1 + q2/�2
A)−2,

where �V = 850 MeV and �A = 1040 MeV are the
vector and axial masses, respectively. The nuclear radius
R = 1.2A

1
3 ≈ 2.2 fm is inserted by convention to make

the matrix elements dimensionless, with a compensating
factor absorbed into G0ν in Eq. (1). Finally, Ē is an
estimate of the average intermediate-state energy, the
choice of which has been shown to have only a mild
influence on the decay amplitude [41]. We employ the value
Ē − (Ei + E f )/2 ≡ 5 MeV throughout this work.

In other prescriptions, the operators defined by Eq. (8)
are sometimes multiplied by an additional radial function,
f (r), designed to take into account short-range correlations
that are omitted by Hilbert-space truncations performed in
the many-body calculations [50–54]. In this work, we assume
all relevant nucleon-nucleon correlations are embedded in
the many-body wave functions generated in our NCSM and
MR-IMSRG model spaces and employ no additional radial
function. We numerically integrate the inner products of the
operators in Eq. (8) using relative HO states to obtain re-
duced matrix elements in the relative basis. These elements
are then converted to M-scheme TBMEs via a Moshinsky
transformation [55,56] before being employed in many-body
calculations.

B. 0νββ decay in 6He with isospin symmetry

When considering isovector operators, a common chal-
lenge shared by many ab init io nuclear approaches (particu-
larly those relying on finite matrix methods) arises when the
initial and final nuclei are not the same, as the many-body
spaces for the two will generally differ. In NCSM calculations,
this problem usually requires the many-body eigenstate wave
functions of the two systems to be calculated independently.
In the MR-IMSRG, two different unitary transformation oper-
ators must be constructed, one for the initial nucleus and one
for the final nucleus.
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While solutions to this problem have been developed for
the NCSM and have been implemented for the MR-IMSRG
[34], a careful choice of transition can circumvent the issue
when isospin conservation is a good approximation. Thus, we
assume that isospin symmetry is obeyed in the mirror nuclei
6He and 6Be.

The ground states of 6Be and 6He are characterized by
total angular momentum J = 0 and isospin T = 1, with
projections Tz = −1,+1, respectively. If isospin symmetry is
obeyed, the two-body density of Eq. (6) may be rewritten in
terms of the 6He two-body density alone as

〈6Be |[[a†
aa†

b]J,1[âcâd ]J,1]0,2
0,−2| 6He〉

=
√

6〈6He |[[a†
aa†

b]J,1[âcâd ]J,1]0,2
0,0| 6He〉. (10)

III. BENCHMARKED METHODS

Both the NCSM and MR-IMSRG can provide accurate
results when applied in light nuclei. The MR-IMSRG has
the advantage that, with suitable approximations, it can be
applied in heavier systems [26,29,30]. For the NCSM, one
may envision applications in heavier systems by merging it
with renormalization approaches or by introducing an inert
core and deriving effective interactions for valence-space
shell model calculations (see, e.g., Refs. [27,28,31,32]). The
approximations involved in these envisioned approaches to
heavier nuclei will also require benchmarking.

Both methods consider the A-body nuclear Hamiltonian,
H , consisting of a relative kinetic-energy term and interaction
terms, i.e.,

H = 1

2AmN

A∑
i< j

(pi − p j )
2 + VNN + VNNN + · · · , (11)

where mN is the average nucleon mass, VNN is the NN
interaction, and pi denotes the momentum of nucleon i. We
follow the convention for two-body operators where summa-
tions over nucleon pairs are performed under the ordering
given by i < j to avoid counting the same pair twice. The
term VNNN denotes three-body interactions, also called three-
nucleon forces (3NFs), which may be supplemented by higher
body interactions. Although studies have demonstrated that
3NFs can have a significant impact on calculated nuclear ob-
servables [56], their inclusion would greatly increase compu-
tational cost and is thus deferred to future efforts. We therefore
consider here only the NN interactions from N3LO-EM500
[35,36], which is charge dependent.

A. No-Core Shell Model

The NCSM [56] is a configuration-interaction (CI) ap-
proach in which the many-body basis states, |
〉, are ex-
pressed as Slater determinants of single-particle states occu-
pied by the system’s nucleons, or

|
〉 = A
[∏

i

|φαi〉
]

, (12)

where |φαi〉 denotes a single-particle state with quantum num-
bers αi occupied by nucleon i, and A is an antisymmetrization

operator that carries both the sign permutations of the determi-
nant and an overall normalization factor. Our NCSM approach
features separate Slater determinants for the neutrons and
protons, and the resulting many-body basis is specific to the
nucleus under consideration. For a given application, we form
total Slater determinants of fixed parity and fixed total angular
momentum projection MJ .

The infinite HO basis (with energy scale fixed by the usual
parameter h̄�) is the conventional choice of single-particle
basis and is used in this work. Additional details on the HO
basis functions may be found in Ref. [56].

The nuclear many-body wave functions, �(r1, . . . , rA),
satisfy the A-body Schrödinger equation and are obtained by
solving the Hamiltonian matrix eigenvalue problem

H |�〉 = E |�〉, (13)

where E is the eigenenergy of nuclear state |�〉. Beginning
with the kinetic-energy and interaction TBMEs in the HO
basis, one constructs the A-body Hamiltonian matrix elements
in the many-body basis as 〈
μ|HA|
ν〉, where the indices
μ and ν label the many-body basis states. The many-body
eigenstates are then linear combinations of many-body basis
states:

|�〉 =
∞∑
μ

cμ|
μ〉, (14)

where cμ are the normalized coefficients of the many-body
basis states |
μ〉. For practical calculations, the infinite many-
body basis requires truncation, which one controls by using a
basis cutoff parameter. For NCSM calculations performed in
this study, we employ the cutoff parameter Nmax, which de-
notes the maximum number of HO excitation quanta allowed
in the many-body basis above the minimum number required
by the Pauli principle [56].

Solving Eq. (13) with the resulting finite many-body
Hamiltonian then becomes a large (but generally sparse)
matrix eigenvalue problem. We obtain the solution with the
hybrid OpenMP/MPI CI code Many Fermion Dynamics for
nucleons (MFDn). The code is optimized for solving the
large sparse matrix eigenvalue problem by using a Lanczos-
like algorithm to determine the desired lowest-lying energy
eigenvalues and corresponding eigenvectors. The eigenvectors
are then used with other operator matrix elements to calculate
that operator’s expectation values during postprocessing. For
more details on MFDn, see Refs. [57–59].

By solving the system in a sequence of increasingly large
bases, one can extrapolate to the result when using the
complete basis (i.e., when the matrix dimension of H goes
to infinity and the calculation becomes exact). Any other
observable can also, in principle, be extrapolated to this limit,
and such extrapolations are a distinguishing feature of no-core
full-configuration (NCFC) studies [60].

B. Multireference in-medium similarity renormalization group

Here we provide a brief overview of the MR-IMSRG; a
more complete description may be found in Refs. [61–63].
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For an initial Hamiltonian H , the flow equation

dH (s)

ds
= [η(s), H (s)] , (15)

determines a unitary transformation of the Hamiltonian. Here
η is called the generator of scale transformations and s is
the flow parameter, defined such that H (s) |s=0 is just H .
The ground-state energy is simply given by the expectation
value of the evolved Hamiltonian H (s) in the reference state.
Instead of solving the set of differential equations for H (s) in
Eq. (7), one can solve a similar flow equation for the unitary
transformation operator U (s),

dU (s)

ds
= η (s)U (s),

whose solution can formally be written in terms of the S-
ordered exponential

U (s) = S exp
∫ s

0
ds′η(s′) , (16)

which is short-hand for the Dyson series expansion of U (s).
As shown first by Magnus, it is possible to rewrite the unitary
transformation operator as U (s) ≡ e�(s), a step that transforms
the equation for U (s) into one for � [64]:

d�(s)

ds
=

∞∑
n=0

Bn

n!
[�(s), η(s)](n) . (17)

The nested commutators in this equation are given by

[�(s), η(s)](0) = η(s) , (18a)

[�(s), η(s)](n) = [�(s), [�(s), η(s)](n−1)] , (18b)

and Bn=0,1,2,... are the Bernoulli numbers {1,−1/2, 1/6, . . . }.
The expectation value of any operator O is then given by

〈
|O(s)|
〉 = 〈
|e�(s)O−�(s)|
〉, and can be evaluated with
the Baker-Campbell-Hausdorff formula:

e�(s)Oe−�(s) =
∞∑

n=0

1

n!
[�(s), O](n). (19)

In the MR-IMSRG calculations performed here, we ex-
press all operators in normal-ordered form with respect to
a reference state |
〉 in order to control the proliferation
of induced terms. We keep up to normal-ordered two-body
operators throughout the calculation, in accordance with the
MR-IMSRG(2) truncation described in Ref. [63]. We use
particle-number-projected HFB quasiparticle vacua as refer-
ence states, and adopt the Brillouin generator [62]. We numer-
ically solve the flow equation for values of s large enough so
that the solutions are very close to their asymptotic limits. The
underlying Hamiltonian that defines both the projected HFB
reference state and the starting point for the flow equation is
determined by using the same TBMEs in the single-particle
HO basis that are used in our NCSM calculations. However,
unlike the NCSM, the MR-IMSRG is formulated in the nat-
ural orbital basis of the reference state. Since the reference
state results from a projected HFB calculation in a HO basis,
the MR-IMSRG effectively explores a configuration space
controlled by the cutoff parameter emax, which denotes the

maximum number of energy quanta that the HO components
of any natural orbital can have. In effect, for a given cutoff
emax, the MR-IMSRG many-body basis will include single-
particle excitations up to emax (i.e., one-particle-one-hole, or
1p1h), two-particle excitations (i.e., 1p1h + 1p1h or 2p2h)
up to 2emax, uncorrelated three-body excitations (i.e., 1p1h +
1p1h + 1p1h or 1p1h + 2p2h) up to 3emax, and so on.

IV. RESULTS AND DISCUSSION

Here we discuss the results of the NCSM and MR-IMSRG
calculations. We provide graphical representations of the re-
sults, as functions of the basis cutoff parameters, to analyze
the convergence of the operators at the chosen basis scale of
h̄� = 20 MeV. Throughout, we use solid dots to represent
NCSM results and open boxes to represent MR-IMSRG re-
sults. Similarly, we use solid lines to denote extrapolations of
the NCSM results and dashed lines to denote extrapolations
of the MR-IMSRG results.

In order to compare the convergence behavior of results
from the NCSM and MR-IMSRG, we must consider the
differences in their truncation schemes. We recall that the
NCSM’s cutoff parameter Nmax denotes the total number of
allowed excitat ion quanta in the system, and emax denotes
the maximum number of allowed energy quanta possessed by
any single nucleon. Since in 6He at a given Nmax, the highest
number of quanta possessed by any single-particle state will
be Nmax + 1, we equate the two cutoffs with the assignment
emax ≡ Nmax + 1 for our comparison. While this assignment
is not exact, it ensures that for a given pair of matched cutoffs,
we use identical single-particle bases under both truncation
schemes. Moreover, our use of this assignment to compare
the results does not preclude their examination from other
perspectives. Instead, we merely offer this assignment as a
reasonable vehicle to present our results graphically.

We extrapolate our results to obtain predictions of ob-
servables at the continuum limit and to better examine their
convergence behavior; the functional forms and other details
of these extrapolations are provided in the Appendix. We
extrapolate our NCSM and MR-IMSRG results for energy
and square radii with formulas [Eqs. (A1) and (A2), respec-
tively] inspired by those provided in Refs. [60,65]. Although
these extrapolations were originally designed with the Nmax

truncation scheme in mind, there is good reason from a
theoretical perspective to expect that the same extrapolation
forms effective for the NCSM will be effective for the re-
sults of IMSRG calculations [61]. Meanwhile, as is the case
for many nonscalar operator observables (with the excep-
tion of those in significant investigations on extrapolating
E2 observables [66]), precision extrapolation approaches for
0νββ-decay observables remain largely unexplored. Guided
by the similarities of the observable’s r dependence seen in
Ref. [48] to that of nuclear interactions, we employ the same
simple exponential form applied for the energy to extrapolate
the 0νββ-decay contributions. While we acknowledge that
a thorough investigation of extrapolating 0νββ-decay NMEs
is warranted for refined predictions and accurate uncertainty
estimates, we find that this form provides an adequate fit and
proves sufficient for this comparative study.
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(a) (b)

FIG. 2. Ground-state energy (a) and neutron (light blue), proton (light red), and matter (gray) square radii (r2
n , r2

p, and r2
m respectively) (b) of

6He with varying basis cutoff parameters from NCSM (solid circle) and MR-IMSRG(2) (open square) ab initio calculations. Solid and dashed
lines denote the NCSM and MR-IMSRG extrapolations, respectively. The realistic N3LO-EM500 potential with energy scale h̄� = 20 MeV
and SRG evolution scale λ = 2.0 fm−1 is used in all cases. The asymptotic fit parameters, 〈r2〉∞, of the NCSM square radius extrapolations are
listed in panel (b) [see Eq. (A2) for extrapolation definition]. Fit parameters and plotted values are listed in Table I for energy and in Table II
for the square radii.

To facilitate our discussion of convergence, we refer to
the speed (with respect to the cutoff parameter) at which
an eigenvalue result approaches its asymptotic value as the
result’s “convergence rate.” We gauge the convergence rate
with the value of Nmax (emax) at which the extrapolation is
within 5% of its value at the continuum limit and denote
this generally noninteger value Ñ5% (̃e5%). Though this metric
relies heavily on the validity of the extrapolation, it provides a
functional estimate for both the relative convergence speeds
between results and the cutoffs required for reaching well-
converged values.

Finally, in the interest of understanding what the differ-
ences between the extrapolated results of the two ab init io
calculations signify, we briefly consider the general A-body
system. For such a system, the untruncated MR-IMSRG cal-
culation would include all many-body correlations and would
therefore provide identical results (within numerical noise) as
the NCSM at the continuum limit. By performing only the
MR-IMSRG(2) calculation, we expect the two approaches’
results to converge to different values that depend on how
significant the neglected three-body (up to A-body) corre-
lations are to the observable in question. Thus, beyond the
mild uncertainty introduced by the extrapolation, differences
between the extrapolated results estimate the significance
of many-body correlations neglected by the MR-IMSRG(2)
calculation.

A. Ground-state energy and nuclear square radius

The initial system is the 6He nucleus in its ground state.
The calculated ground-state energy and neutron, proton, and
matter square radii (r2

n , r2
p, and r2

m respectively) varying with
basis truncation are shown in Figs. 2(a) and 2(b), respectively.

The NCSM ground-state energy extrapolation has con-
verged to within 5% of its asymptotic value of −29.132
MeV by Ñ5% ≈ 7.9. The MR-IMSRG(2) extrapolated energy
converges somewhat faster by comparison, with ẽ5% ≈ 4.9

and the asymptotic value of −28.472 MeV (around 2.3%
higher than the NCSM result). Both extrapolated ground-state
energies are underbound compared to the experimental result
of −29.272 MeV [67], as well as the extrapolated results
of −30.0(1) and −29.87 MeV from two similar (but inde-
pendent) NCFC calculations of the 6He ground state [65,68]
that used only the charge-independent parts of our strong-
interaction Hamiltonian.

Performing the same calculations for 4He yields extrap-
olated binding energies of 28.305 and 28.316 MeV for the
NCSM and MR-IMSRG(2), respectively. Subtracted from our
6He binding energy results, this corresponds to 2n-separation
energies of 0.827 and 0.156 MeV. The experimental 2n-
separation energy of 6He, by comparison, is approximately
0.975 MeV [69].

The difference between these results is most likely a con-
sequence of the truncations inherent to the MR-IMSRG(2).
While the method probes a larger space of 2p2h excitations
than the NCSM for a given pair of matched Nmax and emax

single-particle bases, the MR-IMSRG(2) misses correlation
energy from 3p3h and higher excitations that are included
in the NCSM. We expect such correlations to play a more
important role in a nucleus with a complex structure, like 6He,
than in a compact nucleus like 4He. We will analyze this issue
in more detail using improved MR-IMSRG truncations [63]
in the future.

Comparing the convergence rates of the square radii results
between approaches, we see the MR-IMSRG(2) (NCSM)
square radii consistently converge more quickly (slowly), with
ẽ5% ≈ 14, 3.5, 12 (Ñ5% ≈ 72, 30, 63) for neutron, proton,
and matter square radii, respectively. This large difference in
convergence speed primarily results from the use of natural
orbitals in the MR-IMSRG. However, we observe the MR-
IMSRG(2) results converge to a roughly 34%, 21%, and 31%
smaller value than the NCSM results for the corresponding
square radii. All radii share the slower convergence rate rel-
ative to the ground-state energy that is commonly associated
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(a) (b)

(c) (d)

FIG. 3. Ground-state-to-ground-state 0νββ-decay NME (a) for 6He → 6Be, decomposed into its Fermi (b), GT (c), and tensor (d) contri-
butions, as a function of the basis cutoff for NCSM (solid circle) and MR-IMSRG(2) (open square) ab initio calculations. Solid lines denote
NCSM extrapolations. Each vertical axis is expanded for visibility. The three contributions add to the total as specified by Eq. (7). Insets
provide the percent difference in magnitude (open triangles) between the MR-IMSRG results and the NCSM extrapolation as described in the
text. Plotted values and fit parameters are listed in Table I.

with the r2 operator; a consequence of coming from an effec-
tive operator with sensitivity to correlations outside the char-
acteristic length scale of the chosen HO basis [38,56,70–72].
In the NCSM (and to a lesser degree MR-IMSRG), the slow
convergence reflects the basis regularization of the infrared
(IR) momentum region from the HO basis truncation. In
effect, because the basis’s length scale is chosen to favor
convergence in energy, the basis requires higher cutoffs to
fully capture the longer-range correlations of the r2 opera-
tor. The significantly faster convergence speed of the proton
square radius (compared to those of the neutron and matter
square radii) is a consequence of this effect, as the protons
predominantly remain in the core of the 6He ground-state
halo structure [73]. That is, since the protons are only found
in the four-nucleon core, the proton square radius operator
correlations primarily exist at the shorter distances pertinent
to the core and are thus better encompassed by the scales of
the chosen basis.

The benefit of the MR-IMSRG’s renormalization can be
seen in the improved convergence observed in its results.
In essence, the renormalization decouples the NN correla-
tions existing outside the scales encompassed by the basis
and distributes those correlations inside those scales. The
drawback is that some induced many-body forces must be

neglected in the process, an approximation that would explain
the notable differences seen in the extrapolated square radii. In
the case of a light nucleus such as 6He where a convergence
trend can be established, we expect the NCSM extrapolated
radii to be more accurate than those of the MR-IMSRG(2)
for the given potential. Consequently, we conjecture that the
smaller MR-IMSRG(2) square radii reflect meaningful in-
duced many-body correlations that are being lost through the
MR-IMSRG(2) many-body truncation. Specifically, the fast
convergence of the MR-IMSRG(2) results suggests that the
1p1h and 2p2h correlations relevant to r2 are well accounted
for by emax = 12 and 24, respectively, and that the remaining
differences with the NCSM results are from higher many-
body correlations omitted by the MR-IMSRG(2) approach.

B. 0νββ-decay matrix element

We turn finally to the ground-state-to-ground-state 6He →
6Be 0νββ-decay NME. As already mentioned, we assume
isospin symmetry so that the initial and final states are
described by the same wave function (except for an inter-
change of protons and neutrons). We present our results in
Fig. 3, where we recall that discrete points represent results of
many-body calculations while lines represent fits specified by
Eq. (A1). We decompose the total NME in Fig. 3(a) into its
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Fermi, GT, and tensor contributions from Eq. (7) in Figs. 3(b),
3(c) and 3(d), respectively. Insets provide estimates for the
percent difference, �%, between results of the two methods
within our mapping of their basis truncation schemes (we
omit such estimates for the numerically less significant tensor
contribution). For a given emax, we calculate these values as

(�%)emax
= 200

∣∣∣∣∣
(
MIMSRG

0ν

)
emax

− f ([Nmax]emax )(
MIMSRG

0ν

)
emax

+ f ([Nmax]emax )

∣∣∣∣∣ , (20)

where (MIMSRG
0ν )emax

is the NME result of the MR-IMSRG(2)
calculation with cutoff emax, and f (Nmax) is the NCSM fit
described by Eq. (A1) evaluated at the mapped cutoff value
[Nmax]emax

= emax − 1 (visualized in the figure by the inter-
section of a vertical line between each open square and the
NCSM extrapolation). While, much like the mapping between
cutoffs, these estimates require some level of arbitration,
we nevertheless find them a reasonable and useful tool for
gauging the differences between methods.

The 0νββ-decay NMEs from the NCSM and MR-IMSRG
approaches agree remarkably well. Although the results of the
MR-IMSRG(2) calculations reflect significantly larger fluctu-
ations with each step in the basis cutoff, those fluctuations
consistently remain less than a few percent of the converged
value, and the overall trends remain quite similar to those of
the NCSM. More importantly, the contributions, especially
the larger Fermi and GT contributions, show excellent agree-
ment between approaches.

The relative magnitudes of the contributions agree between
approaches. The GT contribution is around four times greater
than the Fermi contribution, while the tensor contribution is
roughly two orders of magnitude smaller and of opposite
sign. The Fermi, GT, tensor, and total NME results have
Ñ5% ≈ 12.6, 10.8, 10.3, 11.7, respectively, which suggests
only slightly slower convergence than that of the energy but
still significantly faster convergence than that of the NCSM
square radii.

The MR-IMSRG 0νββ-decay results resemble a sawtooth
pattern for results beyond emax = 4 that gradually decreases in
magnitude as emax increases. The maximum deviation of this
pattern occurs in the GT contribution and reaches the order of
a few percent. The deviations of the tensor contribution appear
less systematic, though this may be a consequence of the
contribution’s relatively small magnitude. The deviations in
the Fermi and GT results of the MR-IMSRG share a sign and
are most visible at emax = 8, where they consistently deviate
in the negative direction.

A mildly similar (though less pronounced) sawtooth pat-
tern is observed in the tensor contribution of the NCSM results
at the lowest Nmax cutoffs. Within NCSM calculations, such
patterns (sometimes called “odd-even effects”) are generally
the consequence of alternating signs in the asymptotic tails
of the HO basis wave functions that are introduced with each
increment in Nmax [74]. In such cases, as the tail region of
the calculated wave function shifts with each increment, the
tail begins to overlap a region of phase space in which the
effective operator is particularly active (i.e., has dominant
correlations). If the span of that active region is long enough to
require multiple steps in Nmax for the tail to pass through, the

result is a visible contribution to the observable that alternates
in sign. Naturally, the pattern disappears as Nmax increases
enough so that the effective operator’s range is completely
encompassed by that of the basis.

One might wonder if the pattern observed in the MR-
IMSRG 0νββ-decay results reflect a similar effect. However,
considering our MR-IMSRG(2) calculations employ natural
orbitals and not HO wave functions, the pattern’s similarity
may be entirely circumstantial. Determining the origin of
these deviations in the MR-IMSRG results will require further
study.

Despite these fluctuations making it somewhat challenging
to make more than qualitative observations, the trends of
the NCSM and MR-IMSRG results are remarkably similar.
Indeed, the differences in the asymptotic limits of the square
radii in Fig. 2 do not appear indicative of similar differences
in the 0νββ-decay NME results. Similarly however, the more
rapid convergence observed in the MR-IMSRG(2) ground-
state energy and square radii compared to that of the NCSM
does not appear to translate into a more rapid convergence
of the 0νββ-decay NMEs in Fig. 3. The differences between
the two approaches’ 0νββ-decay results appear to be of
similar magnitudes as the sawtooth deviations present in the
MR-IMSRG(2) results and remain less than 5% of the total
0νββ-decay NME at the maximum basis cutoff employed for
each method.

Comparing our extrapolated 0νββ-decay NMEs to those
calculated in the VMC approach with 3N correlations in-
cluded [40], we see that the magnitudes of both the GT and
Fermi contributions agree to within about 15%, while those
of the tensor contribution agree to within about 10%. For
all three contributions, the VMC results are larger. These
differences may suggest a modest correction from 3N correla-
tions, though other differences between our study and that of
Ref. [40] may play significant roles as well.

V. CONCLUSION

We find significant agreement between the NCSM and
MR-IMSRG results in our investigation of 0νββ decay in the
A = 6 system. The difference in the calculated ground-state
energy is only about ≈2.3%. We see measurable differences in
the square-radius results that offer an estimate for the effects
of correlations that are omitted by the MR-IMSRG(2) trun-
cation at the normal-ordered two-body level. It is interesting
that these differences do not extend to the 0νββ-decay NMEs,
which are remarkably similar in the two approaches, differing
by only ≈4.3% in the total NME at the largest basis cutoffs
considered. The convergence rate of the 0νββ-decay NMEs
appears to be comparable to that of the energies.

The GT contribution dominates the 0νββ-decay NME,
comprising ≈80% of its total. The Fermi contribution makes
up most of the remainder, and the tensor contribution is
roughly two orders of magnitude smaller and of opposite sign.

Our estimates of the differences in the total 0νββ-decay
NME between the two approaches do not exceed 9% for
any of the basis cutoffs considered. Fluctuations in the MR-
IMSRG results could pose a minor obstacle for extrap-
olation, though their consistent sawtooth appearance may
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suggest these fluctuations are systematically correctable. Be-
yond these fluctuations, the two approaches result in qualita-
tively similar convergence for the 0νββ-decay NME.

The agreement between the two approaches for 0νββ-
decay NMEs is encouraging, and warrants additional bench-
marking. Unlike the transition studied in this work, the phys-
ically realistic 0νββ-decay transition contributions do not
possess a uniform sign as a function of the pair separation
[75]. That is, the (0+, T ) → (0+, T − 2) transitions of exper-
imental interest [6,7,9] have a node in the transition density,
making them much more sensitive to both short- and long-
range correlations in the wave functions. This sensitivity has
been recently explored in another benchmark study comparing
VMC and shell-model calculations of 0νββ decay in A = 10
and A = 12 systems and has been seen to generate differences
ranging anywhere from 30% to 400% between approaches
[75]. A similar comparison between the MR-IMSRG and
NCSM approaches, including full isospin dependence, would
provide a more stringent test of the many-body methods, and
greater insight into problems that may appear when modeling
the decay in heavier nuclei. The results observed here warrant
such an investigation and lend support to the application of
MR-IMSRG to 0νββ decay in heavier nuclei [76], where
it is computationally more feasible than the NCSM. The
good agreement between the two approaches for 0νββ-decay
NMEs is a promising development.
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APPENDIX: EXTRAPOLATION METHODS

In this work, we perform all extrapolations by using a
nonlinear least-squares fit to a form that is specific to each
observable and varies with cutoff parameter. The fitting pro-
cess is iterated until all fit parameters have converged to
at least 10 digits of precision. We apply forms identically
for both NCSM and MR-IMSRG extrapolations, treating the
former as functions of Nmax and the latter as functions of
emax. We use Xmax to denote either cutoff parameter when
defining the extrapolations provided below. Following a com-
mon NCFC practice, we do not include the Nmax = 0 result
when performing fits to any of the NCSM data sets. The
extrapolation for each data set is performed without regard
to any other data sets or their extrapolations. The formulas for
ground-state energy and square radius are applied identically
to both NCSM and MR-IMSRG results. Extrapolations for
0νββ-decay NMEs are only performed for the NCSM results
because of fluctuations in the MR-IMSRG results.

It should be noted that the extrapolations described here
were originally designed with the Nmax truncation scheme
in mind, and their effectiveness for extrapolating results in
the emax truncation scheme has not yet been fully explored.
Nevertheless, the significant similarities of the two schemes
and their quantification of the same underlying variable (i.e.,
the content of the many-body basis) suggests the same ex-
trapolation forms may be effective; an expectation that is
supported by the results of this work.

Motivated by the extrapolations proposed in Ref. [60], we
extrapolate the ground-state energy to the form

f (Xmax) = a + be−cXmax , (A1)

TABLE I. MR-IMSRG(2) and NCSM calculated observables and extrapolation parameters [see Eq. (A1)]. The ground-state energy (E )
results correspond to the 6He ground state, and are plotted in Fig. 2. The 0νββ-decay NME (M0ν) results and their decomposition into Fermi
(F), Gamow-Teller (GT), and tensor (T) contributions correspond to the 6He → 6Be ground-state-to-ground-state transition, and are plotted
in Fig. 3. In all calculations of M0ν and its contributions, isospin symmetry has been assumed. Extrapolations for the 0νββ-decay NME were
only performed using the NCSM results.

Nmax(emax) Fit parameters

Observable Method 0(2) 2(4) 4(6) 6(8) 8(10) 10(12) 12 a b c

E (MeV) NCSM −12.546 −19.406 −23.961 −26.438 −27.699 −28.374 −28.720 −29.132 18.414 0.3188
MR-IMSRG −20.810 −26.037 −27.752 −28.240 −28.385 −28.435 −28.472 24.375 0.5784

MF
0ν

NCSM −1.0165 −0.9669 −0.9287 −0.8984 −0.8773 −0.8604 −0.8458 −0.8032 −0.2135 0.1331
MR-IMSRG −1.0430 −0.9811 −0.9335 −0.9452 −0.8880 −0.9110

MGT
0ν

NCSM −4.0553 −3.7751 −3.6398 −3.5256 −3.4546 −3.3960 −3.3471 −3.2144 -0.7472 0.1429
MR-IMSRG −3.9576 −3.7688 −3.5812 −3.7742 −3.4503 −3.5326

MT
0ν

NCSM 0.0435 0.0479 0.0325 0.0313 0.0279 0.0265 0.0252 0.0247 0.0441 0.3472
MR-IMSRG 0.0661 0.0484 0.0441 0.0268 0.0294 0.0301

M0ν
NCSM −5.0283 −4.6941 −4.5361 −4.3926 −4.3041 −4.2299 −4.1677 −3.9777 −0.9355 0.1322
MR-IMSRG −4.9346 −4.7016 −4.4706 −4.6927 −4.3089 −4.4134
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TABLE II. MR-IMSRG(2) and NCSM neutron, proton, and matter square radii (r2
n , r2

p, and r2
m, respectively) and corresponding square

radius extrapolation parameters [see Eq. (A2)] for the 6He ground state. The extrapolated fits are plotted alongside their respective results in
Fig. 2.

Nmax(emax) Fit parameters

Observable Method 0(2) 2(4) 4(6) 6(8) 8(10) 10(12) 12 〈r2〉∞ c0 c1 k∞

r2
n (fm2) NCSM 3.6286 4.0096 4.3347 4.6604 4.9169 5.1656 5.4014 8.0927 10.9067 0.9965 0.1238

MR-IMSRG 3.8389 4.3023 4.5616 4.7524 4.8929 4.9903 5.3226 10.601 0.2827 0.2235

r2
p (fm2) NCSM 2.5918 2.5622 2.6955 2.8056 2.8791 2.9532 3.0217 3.4732 3.0146 0.1924 0.1505

MR-IMSRG 2.5125 2.6540 2.6870 2.7149 2.7394 2.7543 2.7598 8.9888 0.0807 0.3546

r2
m (fm2) NCSM 3.2830 3.5273 3.7885 4.0421 4.2378 4.4285 4.6083 6.5005 8.1034 0.7285 0.1282

MR-IMSRG 3.3970 3.7527 3.9367 4.0733 4.1751 4.2448 4.4563 8.4272 0.2028 0.2326

where a, b, and c are fit parameters. We employ the same
form for our extrapolations of the NCSM 0νββ-decay results.
Values of fit parameters calculated in this study for energy and
0νββ-decay NMEs may be found in the rightmost columns of
Table I alongside their corresponding data set.

The simple exponential form depicted in Eq. (A1) gener-
ally provides a poor prediction for the convergence behavior
of square-radius operator observables. Thus, inspired by the
methods discussed in Ref. [65], we extrapolate square radii
by fitting to the form

〈r2〉 = 〈r2〉∞ − (c0β + c1β
3)e−β, (A2)

where

β ≡ 2k∞
h̄

m�
[
√

2Xmax + 5 + 0.54437(2Xmax + 5)1/6] .

Here m = 938.92 MeV is the average mass of a neutron and
a proton, and 〈r2〉∞, c0, and c1 are fit parameters. Unlike the
authors of Ref. [65], who determine k∞ while extrapolating
the ground-state energy with their theoretically founded “IR
formula,” we treat k∞ as an additional fit parameter when
extrapolating each square radius. We provide our calculated
values of the fit parameters for each square radius extrapola-
tion alongside its corresponding data set in Table II.
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