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The form factor of the electromagnetic excitation of 12C to its 2+
1 state was measured at extremely low

momentum transfers in an electron-scattering experiment at the Superconducting Darmstadt Electron Linear
Accelerator (S-DALINAC). A combined analysis with the world form-factor data results in a reduced transition
strength B(E2; 2+

1 → 0+
1 ) = 7.63(19) e2 fm4 with an accuracy improved to 2.5%. In-medium no-core shell-

model results with interactions derived from chiral effective field theory are able to reproduce the result. A
quadrupole moment Q(2+

1 ) = 5.97(30) e fm2 can be extracted from the strict correlation with the B(E2) strength
emerging in the calculations.

DOI: 10.1103/PhysRevC.102.011302

Introduction. Alpha clustering dominates the structure fea-
tures of many light nuclei, especially of so-called α-like nuclei
with mass numbers A = 4n, where n is an integer [1]. The
nucleus 12C is a prime example with the first excited 0+
state (the Hoyle state) showing pronounced cluster features
[2]. Accordingly, a variety of microscopically based cluster
models have been developed (see Ref. [1] and references
therein). There, the B(E2) transition strength to the 2+

1 state
plays a special role because it determines the degree of α

clustering in the ground-state (g.s.) wave function and many
properties of rotational and vibrational states built on it. A par-
ticular example are algebraic models exploiting geometrical
symmetries [3].

On the other hand, the nucleus 12C is a crucial testing
ground for ab initio calculations in modern theoretical nuclear
physics. The no-core shell model (NCSM), as well as the im-
portance truncated no-core shell model (IT-NCSM) and other
theoretical approaches like coupled cluster methods [4–21]
focus on describing and predicting ground-state properties,
excitation energies, and spectroscopic quantities in p- and
sd-shell nuclei. Since the model space increases strongly
with the number of nucleons, the NCSM can be used for
light nuclei only. To overcome this limitation, the in-medium
similarity renormalization group (IM-SRG) [22] has been
combined with the NCSM, forming the in-medium no-core
shell model (IM-NCSM) [19], which allows us to improve
significantly the convergence behavior. Observables that react
sensitively to long-range correlations of the wave function,
such as radii, the quadrupole moment, or the B(E2) strength,
converge more slowly than, for example, excitation energies.
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This makes them important for setting boundary conditions
for calculations.

A remarkable correlation between the B(E2; 2+
1 → 0+

1 )
strength and the quadrupole moment Q(2+

1 ) in 12C was ob-
served recently for a wider range of chiral effective field
theory (EFT) interactions [23]. Experimentally, the value of
the 2+

1 quadrupole moment of 6(3) efm2 [24] was poorly
known only. Therefore, a Coulomb-excitation reorientation-
effect measurement was recently carried out [25]. Based on
the then-available information for the B(E2) strength, the
oblate ground-state deformation expected from the cluster
models could be confirmed but the overall uncertainty was
only slightly improved to about 35%. The reorientation of
the magnetic substates of the 2+

1 state is a second-order
process and in order to extract Q(2+

1 ) from the experimental
data it is necessary to know the first-order process (i.e., the
B(E2) strength) as precisely as possible to further improve
the uncertainty.

Considering the impact on the above problem and the
general importance as a benchmark for the structure calcu-
lations, an improved value of the B(E2; 2+

1 → 0+
1 ) transition

strength in 12C is clearly of interest and various experimental
approaches are currently being pursued, including nuclear
resonance fluorescence self-absorption experiments [26] and
the (e, e′) experiment presented in this paper.

Electron-scattering experiment. The form-factor measure-
ments of the transition to the 2+

1 state of the 12C nucleus
were performed with the LINTOTT spectrometer [27] using
an electron beam of 42.5 MeV from the Superconducting
Darmstadt Electron Linear Accelerator [28] impinging on
a 100-mg/cm2 natural carbon target (98.9% abundance of
12C). The spectrometer was placed at angles of 69◦, 81◦, and
93◦ with respect to the incoming electron beam, allowing
measurements at extremely low momentum transfers of q �
0.25−0.32 fm−1. The low-q data permit an improved extrap-
olation of the form factor of the 2+

1 state to the photon point
(k = Ex/h̄c) as discussed below.
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FIG. 1. Elastic electron-scattering spectrum taken at a beam en-
ergy of 42.5 MeV and a scattering angle of 69◦. The inset shows the
excitation of the 2+

1 state. The light gray (red) lines display a fit using
Eq. (1) and the dark gray (blue) lines a linear background.

Since elastic-scattering cross sections in 12C are known
with high precision [29–33], the form factor of the excited 2+

1
state was determined in a relative measurement. At the low
beam energy, the momentum acceptance of the spectrometer
of 2% is not sufficient to observe the ground state and the
excited-state transition with the same magnetic field settings.
However, the fields can be set in such a way that the peaks
of the ground state and of the 2+

1 state appear in the same
channels of the silicon strip focal plane detector [27] mini-
mizing solid angle and efficiency uncertainties of the detector
system. An example of the elastic-scattering data is shown in
Fig. 1. The inset presents a corresponding measurement of the
excitation of the 2+

1 state.
In order to further reduce the systematic uncertainties, the

data taking for the inelastic transition was stopped in regular
intervals and intermittent measurements of the elastic line
were performed. Thus, variations due to possible changes in
beam position and/or beam energy were reduced by averaging
over the ratio of the peak areas normalized to the collected
charge. The elastic-scattering data were sliced into spectra
with 50 000 counts in total before the area-over-charge ratio
was determined. Typical fluctuations (blue circles) and the
uncertainty- weighted average (red bands) for the 69◦ data as
an example are presented in Fig. 2 for elastic (main figure) and
inelastic (inset) scattering. The weighted average values are
4.107(1) counts/nC for elastic scattering and 1.17(5) × 10−3

counts/nC for the inelastic-scattering data.
The peak areas were determined by a fit using the phe-

nomenological parametrization [34]

y(x)=y0

⎧⎪⎨
⎪⎩

exp
[− ln 2(x − x0)2/�x2

1

]
x < x0

exp
[− ln 2(x − x0)2/�x2

2

]
x0 < x � x0 + η�x2

A/(B + x − x0)γ x > x0 + η�x2

,

(1)

with x0 denoting the peak energy, y0 the count rate at x0,
and �x1,2 the half widths at half maximum for Ex < x0 and
Ex > x0, respectively. The parameters η, A, B, and γ describe
the radiative tail. A possible instrumental background was

FIG. 2. Area/charge ratios for slices of the elastic line measure-
ments at 69◦ (circles) and uncertainty-weighted average band. The
inset shows corresponding values for the excitation of the 2+

1 state.

allowed for, approximated by a linear function. The peak area
was determined by integration of the deduced line shape from
x0 − 2�x1 to x0 + 5�x2. Then the form factor of the inelastic
transition to the 2+

1 state can be determined from the relation

|F (q)|22+
1

= |F (q)|2g.s.

A2+
1

Ag.s.
, (2)

where Ag.s. and A2+
1

denote the areas under the peaks normal-
ized to the collected charge of the respective measurement.
The results are summarized in Table I.

Extensive form-factor data have been measured for this
transition over a wide range of momentum transfers [35–38]
but not below q = 0.405 fm−1. In Ref. [20] an analytic,
global, and model-independent analysis of transition form
factors of exited states was introduced.

F (q) = 1

Z
e− 1

2 (bq)2
nmax∑
n=1

cn(bq)2n, (3)

with Z being the charge of the probed nucleus, q the momen-
tum transfer of the electron, and b and cn fit parameters. As
illustrated in Ref. [20] for the example of the transition to the
0+

2 state (the Hoyle state), inclusion of low-q data is essential
for a minimization of uncertainties.

Since Eq. (3) holds in plane-wave Born approximation
only, the experimental data corresponding to distorted-wave
Born approximation (DWBA) form factors must be corrected
as outlined in Ref. [20]. The theoretical transition density

TABLE I. Experimental form factors for the transition to the 2+
1

state of 12C from the present experiment.

E0 �lab q |F (q)|2
(MeV) (deg) (fm−1) (10−4)

42.5 93◦ 0.322 6.34(9)
42.5 81◦ 0.290 4.18(7)
42.5 69◦ 0.252 2.50(11)
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FIG. 3. Experimental form factor of the transition to the 2+
1

state in 12C after the DWBA corrections described in the text. Data
from the present work are shown as (blue) squares and previous
measurements [35–38] as (green) circles. Most of the error bars are
smaller than the displayed data points. The (red) band shows a fit of
Eq. (3) with a 1σ uncertainty. The arrow indicates the photon point.
The inset shows the scattering of the residuals around the fit.

of the 2+
1 state needed as starting point of the iterative pro-

cedure stems from a NCSM calculation. Figure 3 presents
the corrected experimental form-factor data together with a
fit of Eq. (3) shown as a red band. The inset shows the
scattering of the experimental residuals around the fit. The

results of Ref. [29] at very high q with incident energies
of 600–800 MeV were not taken into account as it was not
possible to calculate a DWBA correction for these data and
their contribution to the extrapolation of the transition form
factor to the photon point is negligible.

The fit provides a value |F (q)|2 = 1.515(40) × 10−8 at the
photon point. The impact of the current experiment can be
seen from the corresponding result obtained without the low-
q data points |F (q)|2 = 1.443(161) × 10−8 with a four times
larger relative uncertainty. Using the relation [39]

B(E2; 2+
1 → 0+

1 ) = 45Z2

4πq4
lim
q→k

|F (q)|2, (4)

we derive a transition strength of 7.63(19) e2 fm4. This agrees
with the literature value 7.94(40) e2 fm4 [40] within error bars
but improves the uncertainty from currently 5.5% to 2.5%.

In-medium NCSM calculations. For the theoretical de-
scription of the spectroscopy of 12C we use the IM-NCSM
introduced in Ref. [19]. This novel ab initio method combines
NCSM [13,41] with an IM-SRG [42–44] decoupling of the
many-body Hamiltonian, which drastically accelerates the
model-space convergence of the NCSM. This is particularly
relevant for the description of electric quadrupole observables
for nuclei in the upper p-shell and above, as these observables
cannot be fully converged within the standard NCSM or the
IT-NCSM [8,10,23].

The IM-NCSM calculation is a four-step process: In a
first step, an optimized single-particle basis is constructed for
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FIG. 4. Excitation spectrum (a), B(E2) transition strength (b), and quadrupole moment (c) for excited states of 12C obtained in the IM-
NCSM for different reference-space truncations N ref

max (panels left to right) as function of Nmax. All calculations are performed with the chiral
two- plus three-body interaction at N3LO with cutoff 	 = 500 MeV/c. The error bars indicate the many-body uncertainties (see text).
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FIG. 5. Excitation spectrum (a), B(E2) transition strength (b), and quadrupole moment (c) for excited states of 12C obtained in the IM-
NCSM for different reference-space truncations N ref

max (panels left to right) with interactions from NLO to N3LO with cutoff 	 = 500 MeV/c.
The error bars represent many-body uncertainties and the shaded bars indicate the interaction uncertainties (see text).

the nucleus and interaction under consideration, using natural
orbitals for a perturbatively improved one-body density matrix
[16]. In the second step, the reference state for the IM-SRG
decoupling is obtained from a NCSM calculation in a small
N ref

max model space. The third step then uses a multireference
version of the IM-SRG using the White generator [45] to
decouple the reference space from all excitations. We employ
the Magnus formulation of the flow equations, which enables
a consistent and efficient transformation of the Hamiltonian
and all other operators, including the electric quadrupole
operator [46]. In the final step, the IM-SRG-transformed
operators are used in a NCSM calculation for moderate Nmax.
The two model-space truncation parameters, N ref

max and Nmax,
will be used later for the quantification of uncertainties in this
many-body approach.

All calculations build on a new family of chiral two- plus
three-nucleon interactions presented in Ref. [47]. Starting
from the accurate chiral two-nucleon interactions by En-
tem, Machleidt, and Nosyk [48] with nonlocal regulators
up to N3LO for three different cutoffs 	 = 450 MeV/c,
500 MeV/c, and 550 MeV/c, we supplement chiral three-
body forces at N2LO and N3LO with the same regulators and
cutoff values. The low-energy constants in the three-nucleon
sector are determined from the 3H and the 16O ground-state
energies. This leads to a family of interactions that provides a
good simultaneous description of ground-state energies and
charge radii up into the medium-mass regime and, at the
same time, a good description of excitation spectra of light

nuclei [47]. The Hamiltonian is evolved in a free-space SRG
evolution at the three-body level with a flow-parameter α =
0.04 fm4 [49,50]. We note that for the E2 operator, we have
not yet included the consistent two-body current contributions
from chiral effective field theory as well as the consistent
free-space SRG evolutions. Both are expected to have small
effects on the B(E2) value, smaller than our present theory
uncertainties but are eventually needed for a fully consistent
description.

To illustrate the superior convergence behavior and the
uncertainties of the IM-NCSM calculation, Fig. 4 depicts the
excitation spectrum, the B(E2, 2+

1 → 0+
1 ) strength, and the

electric quadrupole moment Q(2+
1 ) as a function of Nmax

for different values of N ref
max. Obviously, the results for all

observables are very stable with increasing Nmax, showing
that the final NCSM calculation is fully converged even for
these small model spaces. The dependence on the reference-
space size N ref

max, which indirectly probes the effect of omitted
normal-ordered three-body terms in the IM-SRG, is also
quite small. We estimate the uncertainties of the many-body
treatment based on the differences of the observables for
successive values of Nmax and N ref

max and we also include a
variation of the IM-SRG flow parameter by a factor of two.
The maximum of these three differences gives the many-body
uncertainty included in the error bars in Fig. 4. Note that
in all cases, the change of N ref

max determines this maximum
and, thus, the total many-body uncertainty. For the interaction
employed in Fig. 4, the chiral interaction at N3LO with
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FIG. 6. Correlation of the quadrupole observables B(E2, 2+
1 →

0+
1 ) and Q(2+

1 ) for 12C obtained with N2LO (open symbols)
and N3LO (full symbols) interactions for three different cutoffs
450 MeV/c (squares), 500 MeV/c (circles), and 550 MeV/c (di-
amonds). All IM-NCSM calculations are performed with Nmax =
N ref

max = 4. The error bars indicate the combined many-body and
interaction uncertainties. The lines show the prediction of a simple
rigid rotor (dashed) and a fitted (solid) rotor model, see text. The
horizontal and vertical shaded bands indicate the experimental B(E2)
value and the Q(2+

1 ) value derived from the intersection with the
model correlation. The light gray and dark gray (red) areas indicate
the experimental limits from literature values [25,40] and from the
present work, respectively.

	 = 500 MeV/c the agreement of the 2+
1 excitation energies,

the B(E2) strength, and the quadrupole moment with experi-
ment is remarkable. Moreover, the new family of chiral inter-
actions gives us the opportunity to study the robustness of the
results under variation of the chiral order. This is illustrated
in Fig. 5 for the interactions from NLO to N3LO with cutoff
	 = 500 MeV/c. Given the complete convergence with Nmax

we only show the results for Nmax = 4 with error bars indi-
cating the many-body uncertainties as described before. From
the order-by-order behavior of the individual observables we
can extract the uncertainties caused by the truncation of the
chiral expansion. We use a simple prescription described
in Ref. [47], which goes back to Refs. [51–53], using the
differences of subsequent orders weighted by powers of the
expansion parameter. These interaction uncertainties at N2LO
and N3LO are indicated by shaded bands in Fig. 5. We
observe that the results for the 2+

1 excitation energy and
the B(E2, 2+

1 → 0+
1 ) strength robustly agree with experiment

within uncertainties at N2LO and N3LO. Furthermore, we
obtain an accurate prediction for the quadrupole moment with
theory uncertainties that are almost an order of magnitude
smaller than the present experimental uncertainties [25].

Finally, we combine the results for B(E2, 2+
1 → 0+

1 ) and
Q(2+

1 ) in a correlation plot shown in Fig. 6. We include

TABLE II. Electric quadrupole obervables obtained with the
IM-NCSM for Nmax = N ref

max = 4 using the N3LO interactions with
three different cutoffs 	. The uncertainties include many-body and
interaction uncertainties.

	 Ex (2+
1 ) B(E2, 2+

1 → 0+
1 ) Q(2+

1 )
(MeV/c) (MeV) (e2 fm4) (e fm2)

450 3.96(20) 7.14(53) 5.86(15)
500 4.41(30) 8.68(79) 6.28(29)
550 4.45(27) 8.18(108) 6.12(41)

the N2LO and N3LO interactions for all three values of the
cutoff with error bars reflecting the combined many-body and
interaction uncertainties. Here we only show the IM-NCSM
calculations for the largest model space with Nmax = N ref

max =
4. The results for all six interactions fall onto a single line, as
was already observed in Ref. [23] for various first-generation
chiral interactions. While N2LO interactions show a larger
cutoff dependence, the N3LO results bracket the experimental
B(E2) value and show a reduced cutoff dependence, as sum-
marized in Table II. The various microscopic results can be
fit by a simple rotor-model correlation. The two lines show
the correlation predicted by a rigid rotor (dashed) and the
fitted rotor model with a ratio of the intrinsic quadrupole
moments Q0,t/Q0,s = 0.967 (solid). Details can be found in
Ref. [23], where almost the same ratio of the transition and
static intrinsic quadrupole moments was found based on a
completely different set of interactions.

We can combine this correlation with the new experi-
mental B(E2, 2+

1 → 0+
1 ) value (horizontal band) to obtain

an accurate value for the quadrupole moment Q(2+
1 ) =

5.97(30) e fm2 (vertical band), where the uncertainties in-
clude the average many-body and interaction uncertainties of
the N3LO calculations for the quadrupole moment and the
experimental uncertainties of the transition strength propa-
gated via the correlation. This value is compatible within
uncertainties with the Q(2+

1 ) computed directly in the IM-
NCSM with the N3LO interactions for all three cutoffs, as
seen in Table II. The (dark gray) red area in Fig. 6 indicates
the new experimental value of the B(E2) and the quadrupole
moment of the 2+

1 state in 12C extracted from the correlation
analysis, both with their uncertainties, in comparison to the
literature values [25,40] (light gray area).

Summary. The present work reports a new measurement
of the electron-scattering form factor of the transition to the
2+

1 state in 12C at very low momentum transfers. Combined
with the world data this permits an extraction of the B(E2)
strength based on the model-independent analysis introduced
in Ref. [20] with a much improved relative uncertainty of
2.5%. This highly precise value is used to benchmark a new
family of chiral two- plus three-nucleon interactions [47] and
test the convergence properties of calculations with the novel
ab initio IM-NCSM method [19]. Very good agreement is
obtained. The correlation between the B(E2) and Q(2+

1 ) val-
ues in the model results, which can be described by a simple
rotor model, permits an extraction of the hard-to-measure
quadrupole moment [25] with a precision improved by almost
an order of magnitude.
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