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The asymmetry in the neutrino mean free path for the absorption reaction ν + n → e− + p is evaluated within
hot neutron matter under a strong magnetic field. We consider densities in the range 0.05 � ρ � 0.4 fm−3,
several temperatures up to 30 MeV, and magnetic field strengths from B = 0 up to B = 1018 G. Polarized
neutron matter is described within the nonrelativistic Hartree-Fock model using the LNS Skyrme interaction. The
neutrino mean free path has a weak dependence on the temperature and, in the strong magnetic field region, it
decreases for growing values of it. This contrasts with the scattering reaction ν + n → ν ′ + n′, where the average
mean free path is almost independent of the magnetic field and has a strong dependence on the temperature. We
have evaluated the asymmetry from both the absorption and scattering reactions. Our results shows that the total
asymmetry depends on the magnetic field intensity, the density, and the temperature. For a density of 0.16 fm−3

and for a magnetic field strength of B = 1017 G, the asymmetries in the mean free path are found to be ≈9% and
≈3.4% for temperatures of T = 15 and 30 MeV, respectively. The same set of asymmetries for B = 1018 G is
≈58% and ≈48%.
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I. INTRODUCTION

Neutrinos play an important role in the evolution of stellar
objects. The physics of neutrinos is relevant at all stages of
stellar evolution, starting from supernova explosions [1–3].
After such an event, the remaining matter forms a compact
object where the neutrinos are one of the key elements for
understanding this process [4,5]. There are many mechanisms
which produce neutrinos in a neutron star. The possible reac-
tions depend on the neutron star region under consideration.
In the neutron star crust one has electron-positron annihi-
lation, plasmon decay, and electron-nucleus bremsstrahlung,
among other phenomena. In the neutron star core, we mention
just a few of all the possible reactions: baryon direct Urca,
baryon modified Urca, baryon bremsstrahlung, and Coulomb
bremsstrahlung. All this mechanisms, together with complete
review on this subject, are discussed in detail in [6] (and
references therein).

Certainly, the emission of neutrinos is considered the main
mechanism for neutron star cooling in its early stages [7,8].
In the analysis of this emission, the neutrino mean free path
λ is of central importance. Depending on the conditions of
density and temperature, the neutrino mean free path ranges
from small values, compared with the neutron star radius,
up to very large values. In the absence of magnetic field
this has been extensively discussed in the literature (see for
instance [9–22]). The neutrino mean free path tells us about
the neutrino emissivity from the neutron star and therefore the
degree of cooling of the compact object.

The addition of a strong magnetic field modifies these pro-
cesses. Observational data on the magnetic field strength in the

neutron star surface indicates that this magnitude varies within
the range B = 108−1015 G. A comprehensive and detailed
review of the magnetic field in neutron stars can be found
in [23] and references therein. The magnetic field strength
in the surface of a neutron star such as a young radiopulsar
(τ ≈ 103 107 yr) has values in the range B = 1011−1013 G.
For an old radiopulsar (τ ≈ 108–1010 yr) this value decrease
to B = 108−109 G, while in the surface of a magnetar this
value rises up to B ≈ 1015 G and it can grow by several orders
of magnitude in its dense interior [24]. The stability condi-
tion requiring that the total neutron star energy be negative
leads to an upper bound on the magnetic field strength of
B � 1018 G [25].

According to some authors, the magnetic field establishes
an asymmetry in the emission of neutrinos [26–38]. This
asymmetry has astrophysical implications, and perhaps the
most important one is as a possible mechanism for the ex-
planation of the “pulsar kick problem”: the observation that a
pulsar does not move with the velocity of its progenitor star,
but rather with a substantially greater speed. Even though this
model has been objected to as the only source to explain the
problem of pulsar kick (see for instance [39]), an asymmetry
of ≈1% would be enough to understand this behavior [27].
There are two main mechanisms responsible for this asymme-
try. One is the effect of the magnetic field on the oscillation
of the neutrinos [26]. The second source of asymmetry is the
parity violation reactions which take place inside the neutron
star [27–38]. This last approach is the one that we adopt in
this work.

In this work we analyze the asymmetry in the neutrino
mean free path for the absorption reaction ν + n → e− + p, in
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hot dense neutron matter. In a previous paper we discussed the
scattering process ν + n → ν ′ + n′ [38]. By considering both
reactions, the asymmetry in the neutrino emission can origi-
nate from the differential cross section and from the neutrino
mean free path (which is the inverse of the total cross section
per unit volume). These two mechanism are independent and
should be considered simultaneously to account for the actual
asymmetric neutrino emission. While the first one is restricted
to the scattering reaction and it gives us information on the
way in which the weak interaction scatters the neutrinos, for
the mean free path both reactions are present and it tells
us about how often a neutrino interacts with a neutron. We
consider that the mean free path is the relevant variable in
this problem: if the mean free path is much larger than the
size of the compact object itself, then the asymmetry in the
differential cross section would not act, since it would be
unlikely to have a collision.

As we have already mentioned, we analyze the absorption
reaction which takes place in hot dense neutron matter under
a strong magnetic field, which we consider as locally con-
stant. In free space, the total neutrino cross section shows a
dependence on the angle of the incoming neutrino with respect
to the magnetic field [34]. In addition, for a dense medium
the magnetic field induces some degree of polarization of the
neutron matter, which also contributes to the asymmetry in the
neutrino cross section (or equivalently to the neutrino mean
free path). Neutron matter is described using the equation
of state (EoS) developed in [40,41]. In this approach, the
EoS is developed based on the Hartree—Fock approximation
using the nuclear interaction given by the non–relativistic
Skyrme potential model. In this sense we present a self-
consistent treatment of the problem: we evaluate the neutron
single-particle energy, its chemical potential, and the spin
polarization of the neutron matter from the EoS, and these
values are employed in the evaluation of the neutrino mean
free path. This model for the EoS is particularly suitable for
our problem. This is because we obtain an explicit expression
for the neutron single-particle energy, which simplifies the
evaluation of the neutrino mean free path. More details on this
point are given in the following sections.

This work is organized as follows. In Sec. II we present the
formalism for the neutrino mean free path. This is done in two
subsections where we discuss the EoS in first place and then
we give some details on the derivation of the cross section
per unite volume. In the next step, we discuss our results
in Sec. III, where we also include the scattering mean free
path previously evaluated. Finally, in Sec. IV we give some
conclusions.

II. THE NEUTRINO ABSORPTION CROSS SECTION

In this section we present an expression for the neutrino
absorption cross section in hot neutron matter under a strong
constant magnetic field. Much of the information in this
section has been published in other works, and we have done
a summary of them for the convenience of the reader. But also
we add some specific information which should be given in
the context of our problem.

pν pn

pe− pp
q

ν n

e− p

FIG. 1. The lowest order Feynman diagram for the absorption re-
action ν + n → e− + p. The quantities pi and q denote, respectively,
the four-momentum of the involved particles and the corresponding
four-momentum transfer by the interaction.

The reaction under consideration is the absorption of a
neutrino by a neutron, having an electron and a proton as the
final state,

ν + n → e− + p, (1)

where the Feynman diagram for this reaction is drawn in
Fig. 1. This reaction can take place either in free space or
within a dense medium. We are considering pure hot non-
relativistic neutron matter, and to evaluate the cross section
we need two basic elements: first, a model for the neutron
matter. This means that we have to develop an equation of
state (EoS) for the dense medium under the influence of a
strong magnetic field, from which we obtain the physical state
of the system, characterized by the polarization, the single-
particle energies, and the chemical potential for equilibrium.
The second element is the evaluation of the diagram in Fig. 1
itself, using the standard rules for the evaluation of diagrams.
For the interaction which mediates this reaction, we employ
an effective Hamiltonian which is the low-momentum limit of
the weak vertex from the standard model. In the following two
subsections we address these points.

A. The EoS model using a Skyrme interaction

The EoS is evaluated using Hartree-Fock approximation
with the Skyrme interaction [40,41]. We assume a system of
neutrons within a strong magnetic field at finite temperature.
The neutrons interact through the strong interaction among
each other and with the external magnetic field. From the
EoS, we obtain the degree of polarization of the system, the
single-particle energies of the neutrons, and their chemical
potential. This is done by giving the density of the system, its
temperature, and the intensity of the magnetic field, which we
consider as a constant field in the ẑ direction. This hypothesis
on the magnetic field is not an important restriction as it
should be employed locally (as should the density and the
temperature). For the whole neutron star one can implement a
realistic model for the magnetic field. The curvature of such a

065806-2



ASYMMETRY OF THE NEUTRINO MEAN FREE PATH IN … PHYSICAL REVIEW C 101, 065806 (2020)

field would allow us to consider it as locally uniform due to
the scale of the neutrino-neutron absorption reaction.

Now we briefly describe how we obtain the different
outcomes from the EoS. For a more detailed analysis we refer
the reader to [38,40,41]. The starting point is to define the
adequate thermodynamical potential for our problem. For a
system within a magnetic field �B, we employ

U = F − �M · �B, (2)

where F and �M are, respectively, the Helmhotz free energy
density and the magnetization per unit volume of the system.
The expression for the density of the system is given by

ρ =
∑

sn=±1

1

(2π )3

∫
d3 pn fsn (En, μn, T ). (3)

Here En, μn, and T stand for the neutron single-particle en-
ergy, its chemical potential, and the temperature, respectively.
The function fsn (En, μn, T ) in thermal equilibrium is given by
the Fermi-Dirac particle distribution function,

fsi (Ei, μi, T ) = 1

1 + exp[{Ei − μi(T )}/T ]
. (4)

It is straightforward to define the spin up and down partial
densities as ρ+ and ρ−, respectively, where for the total
density we have ρ = ρ+ + ρ−. The spin asymmetry is

A = 1

ρ

∑
sn=±1

sn

(2π )3

∫
d3 pn fsn (En, μn, T ), (5)

or, equivalently, A = (ρ+ − ρ+)/(ρ+ + ρ+). At this point it
is convenient to give the expression for the neutron single-
particle energy, En. Using the Hartree-Fock model with the
Skyrme interaction, we have [40,41]

En = mn + p2
n

2m∗
sn

− snμBnB + vsn

8
, (6)

where μBn = −1.913μN is the anomalous magnetic moment
of the neutron in units of the nuclear magneton μN . The
potential term, vsn depends on the density, the temperature,
and the magnetic field, but not on the momentum, and it is
given by

vsn = a0(1 − snA)ρ + 2(b0 + snb1)Ksn=1, (7)

where

Ksn = 1

(2π )3

∫
d3 p p2 fsn (En, μn, T ). (8)

The constants a0 = 4t0(1 − x0) + 2t3ρσ (1 − x3)/3,
b0 = t1(1 − x1) + 3t2(1 + x2), and b1 = −t1(1 − x1) +
t2(1 + x2/2) are written in terms of the standard parameters
of the Skyrme model, t0, t1, t2, x0, x1, x2, and σ . In Eq. (6), for
the effective mass we have

1

m∗
s

= 1

mn
+ 1

4
ρ (b0 + s b1 A). (9)

The chemical potential corresponding to the physical state
does not depend on the spin projection of the neutron due to

the minimization process. To see this point we write

μsn = ∂U
∂ρsn

. (10)

This expression can be rewritten in terms of the spin asymme-
try A as

μsn = ∂U
∂ρ

+ sn

(
1 − snA

ρ

)
∂U
∂A

. (11)

The difference between the two chemical potentials is then

μ+ − μ− = 2

ρ

∂U
∂A

, (12)

which shows that the minimization of U with respect to A
implies the existence of a unique chemical potential in the
physical state. We should emphasized that this minimization is
performed with the constrain of a fixed density. This is a self-
consistent process: we need μn to evaluate ρ+ and ρ−, which
defines the spin asymmetry A, needed in the single-particle
energy, etc. Summarizing, given the density, temperature, and
the magnetic field of the system, from the EoS we obtain the
actual physical state, characterized by the chemical potential,
the single-particle energies of the neutrons, and the spin
asymmetry which is a global property of the system.

B. The absorption neutrino cross section for a polarized system

In this subsection we show an expression for the absorption
neutrino cross section per unit volume for a polarized system.
The formalism of this subsection is taken from the work
by Arras and Lai [42]. We summarized the formalism for
convenience and we also add some particular expressions not
given in [42], that we need in our work.

The aim of this subsection is to write the expression for the
mean free path for the absorption reaction ν + n → e− + p,
depicted in Fig. 1. The total absorption cross section per unit
volume can be written as

σabs

V
=

∫
d	p d	e d	n Wabs

fi

[
1 − fsp (Ep, μp, T )

]
× [

1 − fse (Ee, μe, T )
]

fsn (En, μn, T ). (13)

The expressions for
∫

d	 j are given in Appendix A. The
function Wabs

fi is the transition rate, where the indexes i and f
are the initial and final states respectively. Our initial state has
a neutrino and a neutron, and the final state has an electron
and a proton. To evaluate the transition rate we first give
the expression for the scattering operator Ŝ. This operator is
expressed in terms of the time-evolution operator Û (t2, t1),
as Ŝ = Û (−∞,∞) [43]. Following this reference and by
keeping only the leading term, we have

Ŝ = i
∫

d4x Ĥint, (14)

where Ĥint is the Hamiltonian density. We employ an effective
Hamiltonian which is the low-momentum limit of the weak
vertex from the standard model (see for instance [16]),

Ĥint = GF√
2


̄pγμ(gV − gAγ5)
n 
̄eγ
μ(1 − γ5)
ν + H.c.

(15)
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Here GF is the Fermi weak coupling constant [GF /(h̄c)3 =
1.16637(1) × 10−5 GeV−2]. For the vector and axial-vector
couplings we have gV = 0.973 and gA = 1.197, respectively.

The scattering matrix Sfi, is Ŝ-operator evaluated between
the initial and final states. The square of Sfi, divided by time is
the transition rate:

Wabs
fi = | Sfi | 2

T , (16)

where T is the time interval where the transition takes place
[44].

The wave functions for all particles are given in the
Appendix A. Wave functions are expressed in cylindrical
coordinates (ρ, φ, z) and in this Appendix we also define
some functions and constants employed in the present section.
Using these wave functions together with the interaction in
Eq. (15), the Sfi matrix is given by

Sfi = −i
GF√

2
L−1V −1(2π )2δ(Ee + Ep − |pν | − En)

× δ(pe,z + pp,z − p ν,z − pn,z )

×
(

eB

2π

) ∫ ∞

0
dρ ρ

∫ 2π

0
dφ ei�ω⊥·�x⊥

× ei(Ne−Re )φ e−i(Np−Rp)φŪpγμ(gV − gAγ5)Un

× Ūeγ
μ(1 − γ5)Uν, (17)

where �ω⊥ = (pn,x + pν,x ) î + (pn,y + pν,y) ĵ and
�x⊥ = x î + y ĵ. Here V = LA is the wave function
normalization volume, where L is the length along
the z axis and A is the area in the perpendicular
plane. The spinors Uj are defined in Appendix A,
together with more details on the normalization volume.
To square the modulus of this expression we employ the
property

δ2(Ee + Ep − |pν | − En)

= δ(Ee + Ep − |pν | − En)
T
2π

,

δ2(pe,z + pp,z − p ν,z − pn,z )

= δ(pe,z + pp,z − p ν,z − pn,z )
L

2π
. (18)

The transition rate is written as

Wabs
fi = L−1V −2(2π )2δ(Ee + Ep − |pν | − En)

× δ(pe,z + pp,z − p ν,z − pn,z ) | M |2, (19)

where we have defined

| M | 2 = G2
F

2

(
eB

2π

)2 ∣∣∣∣ ∫ ∞

0
dρ ρ

×
∫ 2π

0
dφ ei�ω⊥·�x⊥ ei(Ne−Re )φ e−i(Np−Rp)φ

× Ūpγμ(gV − gAγ5)UnŪeγ
μ(1 − γ5)Uν

∣∣∣∣2

. (20)

The integration over the cylindrical coordinates ρ and φ

can be done using the relations (4.6) and (4.7) in [45],

Chap. 2:∫ 2π

0

dφ

2π
ei�ω⊥·�x⊥ ei(Ne−Re )φ e−i(Rp−Np)φ = JNe−Re−(Np−Rp)(ω⊥ρ),

(21)

where Jn(x) is the nth Bessel function and∫ ∞

0
dρ ρ INe,Re (ξ )IRp,N p(ξ )JNe−Re−(Np−Rp)(ω⊥ρ)

= (−1)Np−Rp

eB
INe,Np

(
ω2

⊥
2eB

)
IRe,Rp

(
ω2

⊥
2eB

)
. (22)

Using these integrals, Eq. (20) is given by

| M | 2= G2
F

2
I2
Re,Rp

(
ω2

⊥
2eB

)
× |Ũ pγμ(gV − gAγ5)UnŨ eγ

μ(1 − γ5)Uν |2, (23)

where

Ũp =

⎛⎜⎜⎜⎝
δsp,+1

δsp,−1

0

0

⎞⎟⎟⎟⎠ and Ũe =

⎛⎜⎜⎜⎝
C1INe−1,Np (ω2

⊥/2eB)

iC2INe,Np (ω2
⊥/2eB)

C3INe−1,Np (ω2
⊥/2eB)

iC4INe,Np (ω2
⊥/2eB)

⎞⎟⎟⎟⎠. (24)

Note that in Eq. (23) all the Re and Rp dependence is in the
function I2

Re,Rp
. From Eq. (11.7) in [45], we have

Re, max∑
Re=0

Rp, max∑
Rp=0

I2
Re,Rp

=
Rmax∑
Re=0

1 = Rmax = A eB

2π
, (25)

where Re,max = Rp,max = Rmax is discussed in Appendix A.
From this, we can write

Rmax∑
Re=0

Rmax∑
Rp=0

∑
σe=±1

c(Ne, σe) | M | 2= G2
F

2
A eB

2π
LμνNμν, (26)

where Lμν and Nμν are the lepton and hadron tensors, respec-
tively. Their expressions are

Lμν =
∑

σe=±1

c(Ne, σe) Ũ e γμ(1 − γ5)Uν U νγν (1 − γ5)Ũe,

Nμν = Ũ pγ
μ(gV − gAγ5)UnU nγ

ν (gV − gAγ5)Ũp. (27)

The next step is to build the transition rate Wabs
fi , and insert

it into Eq. (13). We also have to replace
∫

d	e,
∫

d	p and∫
d	n by Eqs. (A8), (A12), and (A17), respectively. The final

expression is given by

σabs

V
= G2

F

2

eB

2π

Ne, max∑
Ne=0

∫ ∞

−∞

d pe, z

2π
[1 − fse (Ee, μe, T )]

×
Np, max∑
Np=0

∫ ∞

−∞

d 2 pn, ⊥
(2π )2

∑
sp=±1

×
[(

1 + A

2

)
Ssp,sn,Np,Ne LμνNμν |sn=1

+
(

1 − A

2

)
Ssp,sn,Np,Ne LμνNμν |sn=−1

]
, (28)

where p n,⊥ =
√

p2
n,x + p2

n,y. The existence of maximum val-

ues for Np and Ne is analyzed in Appendix B. Note that,
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due to the importance that we assign to the equation of
state, we have already split this expression into terms with
the neutron spin up and down, respectively. Each term is
weighed by the corresponding spin asymmetry factor. This is a
result from our definition for the neutron spinor in Eq. (A16).
Thanks to the presence two Kronecker deltas in this spinor,
no modification is required in the hadron tensor. In Eq. (28),
we have introduced the structure function for the absorption
process as

Ssp,sn,Np,Ne =
∫ ∞

−∞

d p n,z

2π

∫ ∞

−∞

d p p,z

2π
(2π )2

× δ(Ee + Ep − |pν | − En)

× δ(p e,z + p p,z − p ν,z − p n,z )

× fsn (En, μn, T )
[
1 − fsp (Ep, μp, T )

]
. (29)

An analytical expression for this function is given in
Appendix C, where unlike in [42] this function is evaluated
in the case where mp 
= mn. This is because the use of an
effective mass does not allow the approximation mp

∼= mn. It
is important to notice that the integration of Eq. (29), shown in
Appendix C, is valid only for the Skyrme model and also for a
Fermi sea of noninteracting particles: a system where single-
particle energies can be written in the form of Eqs. (C2). From
the models for the EoS where single-particle energies are
obtained numerically, a numerical integration of Eq. (29) [in
fact, of Eq. (C4)] should be done, which makes the numerical
problem much more difficult due to the usually big values for
the Np summation in Eq. (28).

Finally, the contraction of the leptonic and hadronic cur-
rents are given by

LμνNμν |sp,sn (Ne = 0) = θ (pe, z ) I2
0,Np

(t )
{
g2

V + 3g2
A + (

g2
V − g2

A

)
cos(θν ) + 2gA(gA + gV )[sp + sn cos(θν )]

− 2gA(gA − gV )[sn + sp cos(θν )] + [
g2

V − g2
A + (

g2
V + 3g2

A

)
cos(θν )

]
snsp

}
, (30)

where θν is the angle between the neutrino and the magnetic field. When Ne � 1, we have

LμνNμν |sp,sn (Ne � 1) = g2
V

{
I2
Ne−1,Np

(t )�−
Ne

(pe, z )[1 − cos(θν )] + I2
Ne,Np

(t )�+
Ne

(pe, z )[1 + cos(θν )]
}
(1 + snsp)

+ g2
A

{
I2
Ne−1,Np

(t )�−
Ne

(pe, z ) [3 + cos(θν ) + 2(sn − sp)(1 + cos(θν )) − snsp(1 + 3 cos(θν ))]

+ I2
Ne,Np

(t )�+
Ne

(pe, z ) [3 − cos(θν ) − 2(sn − sp)(1 − cos(θν )) − snsp(1 − 3 cos(θν ))]
}

+ 2gV gA
{
I2
Ne−1,Np

(t )�−
Ne

(pe, z )[−1 + cos(θν )] + I2
Ne,Np

(t )�+
Ne

(pe, z )[1 + cos(θν )]
}
(sn + sp), (31)

where

�±
Ne

(pe, z ) ≡ 1

2

(
1 ± pe, z∣∣(p2

e, z + 2eBNe
)1/2∣∣

)
. (32)

The expression in Eq. (30) is the same as the one in [42]. But
for the one in Eq. (31) we have considered all spin terms. Note
that the neutrino mean free path is obtained from the cross
section as λabs = (σabs/V )−1. In the next section we discuss
our results.

Note that, because in this work we employ pure neutron
matter, once the neutrino is absorbed by the neutron, the final
proton and electron do not find other fermions of the same
kind. In this sense, in Eq. (13) [or Eqs. (28) and (29)], we
should make the replacements [1 − fsp (Ep, μp, T )] → 1 and
1 − fse [Ee, μe, T )] → 1. However, we have retained these
functions to preserve a more general scheme.

III. RESULTS AND DISCUSSION

We present now our results for the neutrino mean free
path in homogeneous hot neutron matter under the presence
of a strong magnetic field. We consider a range of densities
of 0.04 � ρ � 0.4 fm−3, corresponding approximately to the
outer core region of a neutron star, temperatures up to T = 30
MeV, and different values of the magnetic field intensity rang-
ing from B = 0 up to B = 1018 G. The EoS is evaluated within
the Hartree-Fock model, using LNS Skyrme interaction de-
veloped by Cao et al. [46]. We have developed our formalism

assuming a particular form for the single-particle energy for
the neutron, which is the one from the Skyrme model. This
expression is shown in Eq. (6). In [38] we have employed
the same model together with the Brueckner-Hartree-Fock
(BHF) approach using the Argonne V18 [47] nucleon-nucleon
potential supplemented with the Urbana IX [48] three-nucleon
force. In that work we have obtained a good agreement
between both models for the inelastic dispersion of neutrinos
by neutrons. Note that the LNS Skyrme interaction is specially
suitable for a comparison with the BHF model, since its
parameters were determined by fitting the nuclear matter EoS
calculated in the BHF framework.

Before the discussion of our results, it is convenient to
make a summary of the spin asymmetry of the system, which
was already analyzed in [38] for the same interaction (see
in particular Fig. 3 in that work). The spin asymmetry A
characterizes the degree of polarization of the system. That is,
we consider a system of neutrons interacting with each other
through the strong interaction and with an external strong
magnetic field. The strong interaction favors an equal number
of neutrons with spin up and down (i.e., A = 0), while the
magnetic field tries to align all the neutron spins antiparallel
to it (i.e., A = −1). The actual value for A is then obtained
through an energy minimization calculation from the EoS,
as discussed in Sec. II A. As expected, the magnitude of A
increases for decreasing densities and also for growing values
of the magnetic field. In fact, within the range of B from 1014

G up to 2.5 × 1018 G, we have log10(| A |) ∼= a log10(B) + b,
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(a)

(b)

FIG. 2. Energy dependence of the structure function Ssp,sn,Np,Ne

for ρ = 0.16 fm−3. In all panels we consider Np = Ne = 0, we
take qz > 0 and qz

∼= q0 − | �pν |[1 − cos(θν )], and we employ as a
representative value for the square of the transverse momentum
transfer by the neutron, pn, ⊥ = 170 MeV. Also we use | �pν | = 3T ,
with T = 15 MeV. The values for sp, sn are uu, ud , du, and dd . In
panels (a) and (b) we show results for two values of the the magnetic
field intensity, where we have used θν = 0.

where a ∼= 1 and b is approximately constant for a fixed value
of the density (this behavior is depicted in panels (b) and (d)
in Fig. 3 of [38]). Our concern in this work is the neutrino
mean free path, which has different values according to the
state of polarization of the neutron matter. This is developed
in the following.

We turn now to the analysis of the absorption structure
function as defined in Eq. (29). The expression for this struc-
ture function is given in Appendix C. At variance with the
well studied structure function for the dispersion mean free
path (see Eq. (23) in [38]), this structure function has some
particular features which deserve to be discussed. One should
keep in mind that our structure function represents only a
fraction of the proton-neutron phase space and, due to this, it
depends on many variables. Beyond its rather simple expres-
sion, it is the great number of independent variables which
makes it difficult to analyze. Following the same pattern as
for the dispersion structure function, we plot the absorption
structure function as a function of q0 (the energy transfer by

the weak interaction). But instead of using a fixed value for
qz, we employ qz

∼= q0 − | �pν |[1 − cos(θν )]. This expression
is obtained by solving the first two expressions in Eqs. (C6),
for qz > 0 and Ee

∼= p e,z.
In Fig. 2 we plot the structure function at a fixed density for

different proton-neutron spin projections, denoted as sp, sn =
uu, ud, du, and dd . In this figure we study the effect of the
magnetic field on the structure function. The first obvious
result is that the split among the different spin components
is more relevant for B = 1018 G. This split is due to two main
elements. First, it is due to the coupling of the magnetic field
with the magnetic moments of protons and neutrons: from
Eqs. (C2) we notice that there is an energy shift of �E =
(spμBp − snμBn)B. Keeping in mind that μBp > 0 and μBn <

0, the main source of this split is understood. Second, the
neutron effective mass depends on its spin projection, which
represents the second contribution to the split. However, due
to the particular Skyrme model that we have employed, this
effect is small. This is because the split between the spin up
and down effective masses is small. Some parametrizations of
the Skyrme interaction lead to a more important split among
these two components (see for instance Fig. 5 in [41]). Note
that in Fig. 5 in [41] the split is significant for B = 1019 G,
and it shows a considerable reduction for B = 2.5 × 1018 G.
Due to the temperatures and the magnetic field strengths under
consideration in this work, the coupling of the magnetic field
with the magnetic moment of protons and neutrons is the
dominant element to understand the results in Fig. 2.

The shape of the different structure functions is linked
to the single-particle energies and to the chemical potential
derived from the EoS. But it is the area under the different
functions which really matters: comparing the different areas,
the bigger ones leads to bigger cross sections and smaller
mean free paths. Let us denote the different areas under each

FIG. 3. Dependence of the structure function Ssp,sn,Np,Ne on
Np for two values of the magnetic field intensity and Ne = 0.
We have considered θν = π/2, pn, ⊥ = 120 MeV, | �pν | = 3T , with
T = 30 MeV and sp, sn = ud , while the other conditions are the
same as in Fig. 2.
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structure function as
∫

Ssp,sn,Np,Ne . From Fig. 2 and assuming
that the whole area contributes to the cross section, we notice
that

∫
Suu,0,0 <

∫
Sud,0,0 and

∫
Sdu,0,0 <

∫
Sdd,0,0: for a fixed

proton spin projection, the contribution for neutrons with spin
up is smaller than the one with spin down. The same behavior
takes place for the dispersion structure function, having the
same origin, which is the character of the phase space for
polarization matter: the phase space for neutrons with spin up
is smaller than that of neutrons with spin down. A complete
discussion on this point is given in [38]. A corollary of
this discussion is that the structure function has a clear spin
dependence and, in the spin summation in Eq. (28), it cannot
be taken as a common factor.

In the following two figures, we limit ourselves to one spin
configuration for simplicity, as the other contributions have
the same behavior. In Fig. 3, we show the Np dependence of
the structure function for two values of the magnetic field. By
drawing the structure function for Np = 0 and for Np = 20, we
observe an energy shift stemming from the (Np + 1/2) eB/mp

term in the proton single-particle energy. Because this term
proportional to B, it is straightforward to understand that
this shift is one order of magnitude bigger for B = 1018 G
than for B = 1017 G. The problem here is, to what Np value
should we sum up? Or equivalently, what is the biggest value
for q0? The value for q0 is limited by the conservation of
energy: |pν | + En = Ee + Ep. The initial energy of the system
depends on the particular values of the momentum carried
by each particle, its potential energy, and the value for the
magnetic field. Note that q0 = |pν | − Ee: |pν | has a fixed
value and Ee < |pν | + En. This gives a maximum value for
q0, keeping in mind that Ep

∼= 0 is not a realistic situation (see
the discussion on the maximum value for the initial energy
in Appendix B). This is the first constraint on the value for
Np, but as we discuss soon Np has also restrictions due to
the accessible phase space. Before ending this paragraph, it
is worth mentioning that Ne is indirectly present in q0. This
quantum number is part of the electron single particle energy.
In this figure, we have employed the approximate equality
qz

∼= q0 − | �pν |[1 − cos(θν )], which is valid only if Ne = 0. A
similar figure can be done for Ne 
= 0, leading to the same
conclusions.

In Fig. 4, which is the last one for the structure function,
we consider the temperature dependence of this function for
B = 1018 G and for three values of the temperature, T =
5, 15, and 30 MeV. By comparing these results with the
ones from the dispersion structure function (see Fig. 4(a) in
[38]), we notice that the behavior of the absorption structure
function with temperature is quite different from the one in
the dispersion process. For the dispersion process, the area
under the structure function strongly grows with temperature.
In contrast, for the absorption one the areas are similar,
but with a clear decrease as one increases the temperature.
The absorption structure function represents only a part of
the available phase space and so gives a different result. A
complete analysis of the temperature dependence requires the
full phase space of the problem. This will be done soon, when
we discuss the temperature dependence of the neutrino mean
free path.

FIG. 4. The structure function Ssp,sn,Np,Ne for different tempera-
tures. We have considered θν = 0, pn, ⊥ = 70 MeV, | �pν | = 3T , with
T = 30 MeV and sp, sn = ud , while the other conditions are the
same as in Fig. 2.

We have considered the absorption structure function in
some detail, because it helps us to understand the mean
free path. Another ingredient is the function I2

Ne,Np
(t ) [see

Eq. (A5)], which we have plotted in Fig. 5 for different values
of Np and Ne. As discussed in Sec. II, this function is part of
the wave function of charged particles in a constant magnetic
field: the energy levels are quantized for an axis perpendicular
to the magnetic field direction and have continuum values
parallel to the field. This is a function of t = ω2

⊥/2eB and,
in panel (a) of this figure, we consider different values for
Np with a fixed Ne = 0. In panel (b) we take Np = 100 for
two values of Ne. Our concern is how this function affects
the result for the neutrino mean free path. Keeping in mind
that

∫ ∞
0 dt I2

Ne,Np
(t ) = 1, the weight of this function is linked

to the maximum value for t . The maximum value for ω⊥ =
[(p n,x + pν,x )2 + (p n,y + pν,y)2]1/2 results from the particle
distribution function fsn (En, μn, T ) and the neutrino momen-
tum. For the same ωmax

⊥ , different values for the magnetic field
give different tmax. Together with the structure function, this
tmax value establishes a constraint on the maximum values for
Np and Ne.

We turn now to the analysis of the neutrino absorption
mean free path. We conclude our study by adding the disper-
sion contributions, which have been discussed in [38]. The
behaviors of these two contributions with temperature and
with magnetic field are very different. Due to this and for the
benefit of the reader, we recall some aspects of the dispersion
cross section in the following paragraphs. The presence of
a constant magnetic field establishes a preferred direction in
space and, consequently, the total cross section depends both
on the magnitude of the momentum of the incoming neutrino
and on the angle θν between its momentum and the direction
of the magnetic field. For the dispersion reaction, an incoming
angle of θν = π/2 results in a cross section almost identical
to the one in the absence of the magnetic field. This is because
the phase space for this reaction is barely modified by the
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(a)

(b)

FIG. 5. Some values for the I2
Ne,Np

(t ) function as defined in
Eq. (A5).

magnetic field. As we show soon, this is not the case for the
absorption reaction, where the phase space (of final states) is
substantially modified by the magnetic field.

First, in Eq. (28) we sum over all spin components. By
taking for simplicity the Ne = 0 case, the weak dynamics from
Eq. (30) already gives us some relevant information about
this sum. In Table I, we show results from Eq. (30), where
we have used gV = 0.973 and gA = 1.197. From this table,
we can see that contributions with spin down for the proton
are zero for du and are almost negligible for dd . Moreover,
for each of the two extreme values of θν , only one spin
component contributes to the cross section: the uu component
for θν = 0 and the ud component for θν = π . Each component

TABLE I. Some values for the function [LμνNμν/I2
0,Np

(t )]
(sp, sn, cos(θν )) from Eq. (30) for pe, z > 0. Note that this function
has no dimensions.

sp, sn θν = 0 θν = π/2 θν = π

uu 18.84 9.42 0
ud 0 11.46 22.92
du 0 0 ≈0
dd 0.20 0.10 0

(a)

(b)

FIG. 6. The absorbtion neutrino mean free path as a function of
the density and for three different values for the neutrino incoming
angle, θν . In panel (a) we show results for a magnetic field intensity
B = 1017 G, while we have B = 1018 G for panel (b). The momentum
of the incoming neutrino is | �pν | = 3T .

is weighed by a different factor, even thought these factors
are similar in magnitude. This fact, together with the different
shapes for the spin components of the absorption structure
function shown in Fig. 2, contribute to the asymmetry in the
neutrino absorption cross section. Another ingredient is the
partial polarization of the system, which is represented by the
spin asymmetry A.

In Fig. 6, we present our result for the absorption neutrino
mean free path as a function of the density, at a temperature
T = 15 MeV, for two values of the magnetic field, B = 1017

G and B = 1018 G and for three different angles of the incom-
ing neutrino. If we compare these results with the dispersions
ones (see Fig. 10 in [38]), we notice that the mean free path
shows the same qualitative behavior. But, at variance with the
dispersion case, the magnitude of the absorption mean free
path has a strong dependence on the magnetic field. From
B = 1017 G to B = 1018 G there is an important reduction in
the mean free path. The reason for this reduction is magnetic
dependence of the phase space for final states. An increase
of this phase space results in an increase of the cross section
and consequently a reduction in the mean free path. As we
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(a)

(b)

FIG. 7. The absorbtion neutrino mean free path for three differ-
ent values for the temperature. As in Fig. 6, panels (a) and (b) show
the results for magnetic field intensities B = 1017 G and B = 1018 G,
respectively, using the same approximation for the momentum of the
incoming neutrino.

have already discussed, when the magnetic field grows, the
number of Landau levels which contribute to the cross section
decreases. But the degeneracy of the levels, given by eBA/2π ,
grows. Therefore, for increasing values of the magnetic field
there is some kind of competition between the increase of
the final phase space due to the degeneracy and the reduction
in the number of Landau levels. From our numerical results,
it turns out that within a range for the magnetic field from
B = 1016 G up to B = 1018 G, the absorption neutrino mean
free path decreases for increasing values of the magnetic
field. Referring now to the maximum values for Np and Ne,
we can give only indicative values (see the discussion in
Appendix B). For ρ = 0.16 fm−3, we have Np  150 and
Ne  10 for B = 1017 G, while the values for B = 1018 G are
Np  15 and Ne = 0.

In the next step, we analyze the temperature dependence of
the absorption neutrino mean free path. In Fig. 7, we consider
three temperatures: T = 5, 15, and 30 MeV, for B = 1017

G and B = 1018 G. For simplicity, we have plotted only the
results for θν = π/2, and for the energy of the neutrino we
have used the prescription | �pν | = 3T . Our results show that

FIG. 8. The absorbtion neutrino mean free path as a function of
the momentum of the incoming neutrino | �pν |, for θν = π/2. We have
chosen three values for the temperature.

the temperature dependence is rather weak, especially when
compared with the dispersion case. To understand this behav-
ior it is useful to compare the dispersion structure function
from Fig. 4(a) in [38] with the absorption ones in Fig. 4 in this
work: the area of the absorption structure function decreases
instead of increasing. This means that the absorption mean
free path should increase for higher temperature values. How-
ever, our structure function spreads over a wider energy region
as the temperature grows, populating more Landau levels. The
increase in the number of Landau levels turns down the value
of the mean free path. The combined result is a small decrease
in the absorption mean free path with temperature.

The temperature dependence is further explored in Fig. 8,
where the neutrino absorption mean free path is depicted as
a function of the momentum of the neutrino for three values
of the temperature, B = 1018 G, density ρ = 0.16 fm−3, and
θν = π/2. The | �pν | dependence of the neutrino mean free
path shows a qualitative agreement for both the dispersion and
absorption reactions. This is because the structure function
is larger for larger values of the momentum of the neutrino.
For the absorption reaction, for an increasing value for | �pν |
we have more energy in the initial state and therefore more
Landau levels contribute to the mean free path. The reduction
in the structure function for higher temperatures obviously
remains. The interplay among these elements for the absorp-
tion reaction results in a neutrino mean free path almost
independent of the temperature. This is a particular result and
we cannot give a deeper explanation. Having in mind the rule
| �pν | = 3T and going back to Fig. 7, we notice the same result:
the mean free path for T = 5 MeV (| �pν | = 15 MeV) is clearly
separated from the ones for T = 15 (| �pν | = 45 MeV) and
30 MeV (| �pν | = 90 MeV), for all densities.

At this point, it is clear that the phase space for the final
state in the absorption reaction is very different from the
one in the dispersion reaction due to the magnetic field. The
magnetic field can be reduced continuously to B = 0. In the
absence of magnetic field, the phase spaces for absorption
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(a)

(b)

FIG. 9. The absorbtion neutrino mean free path as a function
of the density and for three different values for the magnetic field
intensity. For the neutrino incoming angle we have employed θν =
π/2 and we have used | �pν | = 3T . In panel (a) the temperature is
T = 5 MeV, while in panel (b) we have T = 15 MeV.

and for the dispersion reaction are the same [17]. In Fig. 9,
we show the absorption neutrino mean free path for magnetic
fields B = 0, 1017, and 1018 G, θν = π/2 and two tempera-
tures: T = 5 MeV in panel (a) and T = 15 MeV in panel
(b). Note that in panel (a) we have employed a logarithmic
scale for λabs. The absorption mean free path for B = 0 has
a different functional dependence with the density and a very
pronounced temperature dependence, consistent with the one
for the dispersion reaction. Let us recall that the phase space
for the dispersion reaction is barely affected by the magnetic
field. It is not a trivial subject to perform the limit from a
strong magnetic field to B = 0. This discussion goes beyond
the scope of the present contribution and we refer the reader
to [34,42] for details on how to perform this limit process.

In what follows, we focus on the asymmetry of the neutrino
mean free path. In panel (a) in Fig. 10, we show λabs as a
function of the magnetic field intensity. This is done at a
density ρ = 0.16 fm−3, T = 15 MeV, and for three angles:
θν = 0, π/2, and π . As the magnitude of λabs decreases for
increasing values of the magnetic field, this figure is somehow
misleading because the asymmetry is not clearly seen. Due to

(a)

(b)

FIG. 10. Dependence on the magnetic field intensity. We have
fixed the density at ρ = 0.16 fm−3 and T = 15 MeV. The absorption
mean free path is depicted in panel (a) for three angles θν of the
incoming neutrino, while in panel (b) we show ζabs as defined in
Eq. (33), for the same set of angles. The magnetic field intensity B is
given in gauss units.

this, we have defined the quantity

ζabs = λabs(θν ) − λabs(θν = π/2)

λabs(θν = π/2)
, (33)

which gives a more accurate idea of the increase of the
asymmetry in the neutrino mean free path. The ζabs function is
depicted in panel (b) in the same figure. As already discussed,
the magnetic field establishes a preference axis in space. Our
results show that it is more likely for a neutrino moving
antiparallel to the magnetic field (θν = π ) to be absorbed,
than one which moves parallel to it. Assuming an isotropic
production of neutrinos, this implies that more neutrinos are
emitted parallel to the magnetic field. In an actual neutron star
model, the whole magnetic field cannot be considered as a
constant vector field. Our model should be applied locally,
according to the geometry of the field.

The asymmetry in the mean free path for both the absorp-
tion and dispersion reactions results from the interplay among
several elements. Considering the different interactions which
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FIG. 11. The absorbtion neutrino mean free path as a function of
the density and for three different values for the neutrino incoming
angle θν , B = 1018 G, and T = 15 MeV, where the momentum of
the incoming neutrino is taken as | �pν | = 3T . The continuous lines
are the case where the spin asymmetry A is arbitrarily taken as zero,
while for the dotted lines we employed the not-null A value from our
EoS.

take place in the process, we have (i) the results from Table I,
giving us information on the weak interaction contribution to
the asymmetry in the mean free path; (ii) the strong interac-
tion, which favors the situation A = 0; and (iii) the coupling
of the magnetic field with protons, neutrons, and electrons,
which tends to polarize the system. The balance among these
last two elements leads to the equilibrium values for the
spin asymmetry A, the effective masses, and the chemical
potential. For simplicity, sometimes all these contributions
are summarized in one single quantity: the spin asymmetry
A. In Fig. 11, we show the mean free path, under the same
conditions of panel (b) in Fig. 6, but evaluating the neutrino
mean free path putting arbitrarily A = 0 (continuous lines
in the figure). For comparison we give also the results from
Fig. 6 (dotted lines). We can see that the isolated contribution
from A does not explain the main contribution to the mean
free path asymmetry. Our point here is that the evaluation
of the asymmetry in the neutrino mean free path requires a
consistent model, starting from the EoS and considering all
the just mentioned elements.

As a final point, we include the dispersion contribution to
the mean free path. The addition of this contribution gives the
total neutrino mean free path, λtot:

λtot =
(

1

λabs
+ 1

λdis

)−1

. (34)

Results for λdis have been taken from [38]. We give our results
for this quantity in Figs. 12 and 13. In the first figure we show
λtot as a function of the density, for B = 1017 and 1018 G,
three angles for the incoming neutrino, θν = 0, π/2, and π ,
and a temperature T = 15 MeV. The second figure has the
same variables except for the temperature, where we have
employed T = 30 MeV. In both figures we have included

(a)

(b)

FIG. 12. The total neutrino mean free path for three different
values for the neutrino incoming angle θν and for T = 15 MeV.
As in Fig. 6, panels (a) and (b) show the results for magnetic field
intensities B = 1017 G and B = 1018 G, respectively, using the same
approximation for the momentum of the incoming neutrino. For
convenience, we show also the absorption neutrino mean free path
for θν = π/2.

also λabs for θν = π/2. This is done as a reference of the
relative importance of the absorption contribution. Before we
go on with our analysis, note that λabs and λdis have very
different behaviors for the temperatures and the magnetic
fields considered in the present contribution. While λdis has a
strong dependence on temperature and its value for θν = π/2
is almost independent of the magnetic field, λabs has a weak
dependence on temperature and it decreases for increasing
values of the magnetic field. This contrasts with the result for
B = 0: in this case both λabs and λdis have the same (strong)
dependence with temperature and, due to the values of the
coupling constants, one has λabs < λdis.

By comparing now the panels (a) and (b) in Fig. 12,
we notice that the dispersion reaction is as important as the
absorption one for B = 1017 G, while it is negligible for
B = 1018 G. This comes as a result of the dependence of
λabs on the magnetic field. By doing the same comparison in
Fig. 13, we notice that the dispersion contribution becomes
more important, due to its strong temperature dependence.
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(a)

(b)

FIG. 13. The same as in Fig. 12, but for T = 30 MeV.

We want to finish the discussion of our results by perform-
ing a quantitative analysis of the asymmetry. To this end, we
define the mean free path asymmetry as

χtot = λtot (θν = 0) − λtot (θν = π )

〈λtot (θν )〉 , (35)

where we have employed 〈λtot (θν )〉 ∼= [λtot (θν = 0) +
λtot (θν = π )]/2. Note that for the dispersion reaction one
has 〈λtot (θν )〉 = λtot (θν = π/2). We give numerical values
for χtot in Table II, for three values of the density and for
B = 1017 and 1018 G, with temperatures of T = 15 and
30 MeV. As expected, the mean free path asymmetry is more
important for the stronger magnetic fields. The reduction in

TABLE II. Mean free path asymmetry χtot , as a function of the
density for two values of the magnetic field intensity and two values
of the temperature.

ρ (fm−3) χtot (B = 1017 G) χtot (B = 1018 G)

T = 15 MeV T = 30 MeV T = 15 MeV T = 30 MeV

0.050 0.112 0.068 0.740 0.565
0.160 0.088 0.034 0.579 0.479
0.400 0.094 0.042 0.603 0.506

χtot for higher values of the density is because the strong
interaction becomes more important. Let us recall that
the strong interaction favors a nonpolarized system. Some
increase of χtot at ρ = 0.40 fm−3 is particular to many of
the Skyrme parametrizations. Beyond this difficulty, we have
preferred to employ the same parametrization as in [38], in
order to make a fair comparison of both contributions to the
total mean free path.

The increase of the temperature leads to a decrease in
the mean free path asymmetry. This result seems intuitively
correct, as temperature reduces the spin asymmetry A. How-
ever, it is convenient to give some details on the origin
of this results. In first place, λabs has a weak temperature
dependence. On the other hand, λdis depends strongly on
the temperature, but its mean free path asymmetry (χdis) is
rather independent of the temperature. The last element is that
the absorption mean free path asymmetry is bigger than the
dispersion one. This is because in the absorption reaction we
deal with charged particles which have a stronger interaction
with the magnetic field. Now, as temperature grows, the λdis

contribution to χtot becomes more important, which leads
to smaller values for χtot, which explains the temperature
dependence of our results in this table.

Regarding the use of other EoS, we refer to our previous
work [38], in which we also used the BHF model, as men-
tioned at the beginning of this section. There is a qualitative
agreement between the two models for the dispersion reaction.
To implement the BHF model for the absorption reaction, one
has to evaluate Eq. (28), using the single-particle energies, the
chemical potential, and the spin asymmetry A from the BHF
model (which are the same as for the dispersion reaction).
Numerically, this is much more involved than for the Skyrme
model, as in this case the structure function in Eq. (29) [or
more specifically in Eq. (C4)], should be evaluated numer-
ically for each value of the Np and Ne quantum numbers.
As a general consideration, by inspection of Fig. 3 in [38],
the magnitude of the spin asymmetry A takes smaller values
for the BHF model, which means that the asymmetry in the
neutrino mean free path will be also smaller if we employ the
BHF model.

In the last point for this section, we make some comparison
with other works. We start with the work of Shinkevich and
Studenikin [34]. This work makes a similar analysis, but
using a relativistic framework in free space. In free space,
it is employed the total cross section instead of the mean
free path. The spin asymmetry A (named S in that work),
is taken as an input of the model (i.e., it is not explicitly
evaluated). The spin asymmetry is incorporated in their results
by making the replacement sn → A. In the absence of dense
medium, this replacement leads to the correct expression.
We have an overall agreement with their results, having in
mind that in our case the effect of the dense medium is
important and the comparison is only qualitative. In our case,
a dense medium imposes restrictions on the available phase
space, which depends on the temperature. The net effect is a
smoothing of the results in relation to theirs.

In the work by Baiko and Yakovlev [32], a formalism
similar to ours is employed. However, they focus on very
low temperatures, the scope of their paper being different
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from ours. To the best of our knowledge perhaps the most
complete analysis on the subject has been made by Maruyama
et al. [37]. We should quote that we have obtained a general
agreement with all these papers. What sets us apart from the
other works is the treatment we make of the equation of state.
We have determined the EoS with a magnetic field and from
this we obtain spin-dependent single-particle energies and a
chemical potential which lead to specific values for ρ+ and
ρ−, the densities of neutrons with spin up and down, respec-
tively. Even though the spin asymmetry A appears explicitly
in the expression for the cross section, an accurate evaluation
of the structure function requires single particles and chemical
potential consistent with the value of the magnetic field.

Finally, as our work employs the formalism for the cross
section from the work by Arras and Lai [42], we make
some comments about this work. The scope of the work is
different than ours. In [42], a formalism of neutrino transport
in the presence of magnetic field is developed and explicit
expressions are derived for the neutrino flux of the Boltzmann
transport equation. Unlike our work in which we attach great
importance to the EoS, in [42] no EoS is discussed. The
work focuses on developing a set of analytical expressions
of astrophysical interest. To obtain their expressions, certain
approximations are used, which we will not discuss here.
Unfortunately, numerical results for the neutrino mean free
path are not discussed, which precludes a comparison.

IV. SUMMARY AND CONCLUSIONS

In this work we have evaluated the neutrino mean free
path for the absorption reaction ν + n → e− + p, in hot dense
neutron matter under a strong magnetic field. First, we eval-
uated an EoS using the Hartree-Fock model with an LNS
Skyrme interaction. As mentioned, we have a proton and an
electron as final state. Being charged particles in a magnetic
field, their quantum state is partially quantized, showing the
so-called Landau levels. Due to this quantization, the phase
space of final states is quite different from that of the same
reaction but in the absence of a magnetic field. This contrasts
with the scattering reaction (ν + n → ν ′ + n′), where the
phase spaces of final states are very similar. While for B = 0
the absorption reaction is always more important than the
dispersion one, when B 
= 0, the situation is different: λabs has
a weak dependence on the temperature and decreases when
the magnetic field grows, while λdis has a strong dependence
on the temperature (it decreases for growing values of T),
and for θν = π/2 is almost independent of the magnetic field.
Therefore, in the presence of a strong magnetic field, either
λabs or λdis can be the dominant contribution depending on
the temperature. As a corollary of this behavior λabs can be
important for low temperatures as long as the magnetic field
is strong.

For a not-null magnetic field, the neutrino mean free path
depends on the angle between the momentum of the neutrino
and the magnetic field (which we take as the ẑ axis). Let
us recall that we consider the magnetic field to be locally
constant. Keeping this in mind, this establishes a preferred
direction in space resulting in an asymmetrical emission. This
asymmetry is the result of the interplay among the weak,

strong, and electromagnetic interactions. The weak interaction
is responsible for the reaction ν + n → e− + p, giving as
a result a transition matrix element which depends on the
spin of the particles involved. On the other hand, we need a
model for the strong interaction to solve the EoS, together
with the electromagnetic coupling of the neutron magnetic
moment with the magnetic field. From the EoS we obtain a
partially polarized system. This information is contained in
the single-particle energies, the chemical potential, and the
neutron spin asymmetry A, needed for the evaluation of the
neutrino mean free path. As already mentioned, the EoS gives
us the equilibrium situation between the strong interaction
(which favors A = 0) and the coupling to the magnetic field
(A → −1). For more complex systems, one needs a spin
asymmetry for each particle which couples to the magnetic
field. For instance, in [49] an EoS was developed for a
system of protons and neutrons (at a fixed fraction of protons)
where two asymmetries (one for neutrons and another one for
protons) were discussed.

It is worth mentioning that the actual problem of the
angular distribution of the emitted neutrinos from a neutron
star with a strong magnetic field is a much more complex
issue. We believe that the two reactions considered in this
work are two of the most relevant reactions to understand this
problem. To accomplish the bigger goal of modeling a neutron
star, one needs several elements. First, one needs a model
for the magnetic field distribution. Due to the scale of the
reactions, a locally constant field is a good approximation. But
for the emission from the whole star, one should care about a
model for the magnetic field distribution. Second, a model for
the composition and mass distribution of the star is needed.
Perhaps the simplest realistic model for star matter consists
of protons, neutrons, and electrons in β equilibrium and
charge neutrality. More elaborate models include hyperons
and leptons (beyond the electron). In this case, we also have
Landau levels in the initial state and the scheme must be
extended for these conditions. Unlike what happens for the
B = 0 case and to the best of our knowledge, there is no EoS
available for matter at β equilibrium within a strong magnetic
field, where single-particle energies, chemical potentials, and
the spin asymmetry for each particle are explicitly discussed.
In addition to and beyond the reactions considered in this
work, there are other reactions which should be considered
(see for instance [16,42]).

Our results shows that the shortest neutrino mean free path
is obtained for neutrinos moving antiparallel to the magnetic
field. As a consequence it is expected that the flux of emitted
neutrinos parallel to the magnetic field is bigger than the one
in the opposite direction. In Eq. (35) we have defined the
mean free path asymmetry χtot, in order to account for this
asymmetry in a quantitative way. We have obtained rather
big values for χtot. However, it would be speculative to draw
a conclusion from these values: as discussed in the above
paragraph, a model for the geometry of the magnetic field,
the local density and temperature, together with the actual
composition of a neutron star should be considered. In any
case, we understand that in the search for an explanation for
the pulsar kick problem, this asymmetry cannot be ignored.
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In this work we have shown a self-consistent treatment
of the mean free path for neutrinos, starting from the EoS
and putting special emphasis in its asymmetry. Both the
weak transition matrix element and the EoS contribute to the
asymmetry in the neutrino mean free path. We have employed
pure hot dense neutron matter due to it simplicity and because
it is a reasonable assumption that this model represents one
important contribution to the problem. Nuclear correlations
beyond the mean field could have a relevant effect on the
mean free path and its asymmetry. One way to deal with
these correlations is the so-called ring approximation (see for
instance [50,51]). But there are other correlations that can be
also important. From this, our next aim is to analyze the role
of nuclear correlations beyond the mean field on the neutrino
mean free path.
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APPENDIX A: WAVE FUNCTIONS AND PHASE
SPACE SUMMATION

We give and discuss the wave function for electrons, pro-
tons, neutrons, and neutrinos. We employ cylindrical coor-
dinates (ρ, φ, z). For convenience we also show the single
particle energies and explicit expressions for

∫
d	N (the state

summation for particle N). All particle wave functions are
normalized within a volume V = LA, where L is the length
along the z axis and A is the area in the (ρ, φ) plane. This is
done for convenience and our final results for the mean free
path are independent of V . All particles are within a constant
magnetic field in the ẑ direction, B = Bk̂. We discuss for each
particle the effect of this field.

1. The electron

First we consider the solution of the Dirac equation for an
electron within a constant magnetic field B, in the ẑ direction.
This wave function is derived in full detail in [45]. Our
notation is similar to the one in [42]. We reproduce the results
below and briefly discuss them. The electron wave function is


e(ρ, φ, z, t ) = L−1/2ei(pe,zz−Eet )

(
eB

2π

)1/2

ei(Ne−Re )φ Ue(ρ, φ),

(A1)
where the energy is given by

Ee = (
m2

e + 2eBNe + p2
e,z

)1/2
, (A2)

where Ne = 0, 1, 2, . . . , Ne, max is the Landau level index for
the energy (the value for Ne, max is discussed in Appendix B),
pe,z is the z component of the momentum, and for the spinor
Ue(ρ, φ) we have

Ue(ρ, φ) =

⎛⎜⎝C1INe−1,Re (ξ )e−iφ

iC2INe,Re (ξ )
C3INe−1,Re (ξ )e−iφ

iC4INe,Re (ξ )

⎞⎟⎠, (A3)

with C1 = α+A+, C2 = σe α−A+, C3 = σe α+A−, and C4 =
α−A−, where

α± =
√

1

2

(
1 ± σe

pe,z

| � |
)

A± =
√

1

2

(
1 ± me

Ee

)
, (A4)

with | � |= (p2
e,z + 2eBNe)1/2, and σe is the spin projection

which is discussed soon. The function INe,Re (ξ ) is given by

INe,Re (ξ ) =
(

Re!

Ne!

)1/2

e−ξ/2ξ (Ne−Re )/2LNe−Re
Re

(ξ ), (A5)

with ξ = eB ρ2/2, and for the definition of the Laguerre
polynomials Li

j we have adopted the one from [52]. The
Re is called the radial quantum number, with values Re =
0, 1, 2, . . . , Re, max. The value for Re, max is discussed soon in
this section.

The plane-wave states in the ẑ direction (eipe,zz) are lim-
ited by the length L. We apply the periodic boundary con-
dition eipe,zz = eipe,z (z+L). More explicitly we require that
eipe,zL = 1 = cos(pe,zL) + i sin(pe,zL), therefore the allowed
wave numbers are

pe,z = 2πnz

L
, nz = 0,±1,±2, . . . . (A6)

Note also that we take the continuous limit for pe,z, where
the discrete summation over nz is replaced by an integral by
means of Eq. (A6):

∞∑
nZ =−∞

→ L

2π

∫ ∞

−∞
d pe,z. (A7)

The electron wave function is characterized by four quan-
tum numbers which correspond to four operators: (i) the
Hamiltonian (quantum number Ne), (ii) the operator of the
projection of the momentum onto the direction of the mag-
netic field p̂e,z (quantum number nz), (iii) the operator of the
projection of the total angular momentum onto the direction
of the magnetic field Ĵz (quantum number l = Ne − Re), and
(iv) the longitudinal polarization σ · P, where P=ı∇ + eA, A
being the vector potential (quantum number σe = ±1).

Instead of working with the azimuthal quantum number l ,
we employ the Re quantum number. Note that l = Ne − Re

is a integer; this is because in Eq. (A3) a factor e−iφ/2 has
been absorbed by the four-vector. The Re quantum number
admits a geometrical interpretation which we do not discuss.
We refer the interested reader to [45] for this discussion. From
Eq. (A2), the energy does not depend on the Re quantum
number, meaning that the energy levels are degenerate. The
degree of the degeneration is given by the maximum value for
this quantum number, Re,max.

The degree of the quantum degeneracy of the wave func-
tion in Eq. (A1) is independent of the coordinate system used
to represent it. We outline the derivation of Re,max given by
Landau and Lifshitz [53], developed in Cartesian coordinates.
At this point it is helpful to recall that the classical trajectory
of an electron within a constant magnetic field is given by
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a circular helix whose axis is parallel to the ẑ direction
(see for instance Fig. 1, Complement EV I in [54]). In the
quantum problem, the state is degenerate with respect to pe,x,
the x̂ component of the linear momentum. We know the y
coordinate of the center of the circle in the xy plane, given
by y0 = −pe,x/eB, which should lie within the area A, that is,
0 � y0 � Ly. Using Eq. (A6) but for the x axis, we have nx =
Lx pe,x/2π . Finally we have Re,max = nx,max = eBLxLy/2π or
Re,max = eBA/2π . Note that without a finite volume V , the
degree of degeneration would be infinite.

Now we pay attention to the ground state (Ne = 0). As the
functions I−1,Re are not well defined, only the spin projection
σe0 = − sgn(pe, z ) is allowed (in this case from Eq. (A4),
the coefficient α+ = 0). Hence the ground state has spin
opposite to the magnetic field.1 Finally, we consider the state
summation

∫
d	e. This is the sum over all quantum numbers

(discrete and continuous). We have∫
d	e =

Ne, max∑
Ne=0

∑
σe=±1

c(Ne, σe)
Re, max∑
Re=0

L

2π

∫ ∞

−∞
d pe, z, (A8)

where the function c(Ne, σe) = 1 − δNe, 0δσe,−σe0 , with σe0 =
− sgn(pe, z ). This function is equal to 1, except for its
null value when Ne = 0 and σe = −σe0. This is needed be-
cause of the discussion given in the preceding paragraph. In
Appendix B, we discuss the value of Ne, max.

2. The proton

For the proton, we employ a nonrelativistic wave func-
tion. Being a spin-1/2 charged particle, the proton also has
Landau levels. But it would be wrong to take the electron
wave function, change the mass and the charge, and take
the nonrelativistic limit. For the electron case, one could
arrange the spinors so that the energy depends only on Ne. The
anomalous magnetic moment of the proton does not allow this
procedure. We have performed the nonrelativistic calculation
of the proton wave function within a constant magnetic field
and we have obtained the same result as in [42]:


p(ρ, φ, z, t ) = L−1/2ei(pp,zz−Ept )

(
eB

2π

)1/2

ei(Rp−Np)φ Up(ρ),

(A9)
where

Up(ρ) =

⎛⎜⎝
δsp,+1IRp,Np (ξ )
δsp,−1IRp,Np (ξ )

0
0

⎞⎟⎠. (A10)

1Just for clarity, we simplify this point by giving the nonrelativistic
limit. In this case, we have Ne = n + 1/2 + s̃e, with n = 0, 1, 2, . . .

and s̃e = ±1/2. First we consider the ground state Ne = 0, therefore
n = 0 and s̃e = −1/2, having only one possible spin projection. If we
take a fixed value for Ne, with the condition that it is not equal to zero,
then we can have the two spin projections: Ne = n + 1/2+ | s̃e | and
Ne = n′ + 1/2− | s̃e |, with n′ = n + 1.

The nonrelativistic expression for the energy of the proton is

Ep = mp + p2
p,z

2mp
+ eB

mp

(
Np + 1

2

)
− spμBpB, (A11)

where μBp = 2.793μN and Np = 0, 1, 2, . . . , Np, max, is the
energy level quantum number for the proton Landau state and
Np, max is discussed in Appendix B. The meaning of IRp,Np (ξ ),
ξ , and Rp are the same as for the electron. In particular,
Rp = 0, 1, 2, . . . , Rp,max, with Rp,max = Re,max.

For the proton state summation we have∫
d	p =

Np, max∑
Np=0

Rp, max∑
Rp=0

∑
sp=±1

L

2π

∫ ∞

−∞
d pp, z. (A12)

As for the electron, we discuss in Appendix B the value
of Np, max.

3. The neutron

We employ a nonrelativistic wave function for the neutron.
Let us recall that we are considering pure hot neutron matter
for the reaction ν + n → e− + p, within a strong magnetic
field. Neutrons are partially polarized and this information
is in the neutron wave function. In unpolarized matter, one
makes an average over the spin up and down contributions, |u〉
and |d〉, respectively. For polarized matter, we employ a single
mixed spin wave function |χn〉 (for details see Appendix B in
[38]),

|χn〉 =
√

1 + A

2
|u〉 +

√
1 − A

2
|d〉, (A13)

where A is the spin asymmetry as defined in Eq. (5). The
mean value of the spin projection operator Ŝz using this wave
function is

〈χn|Ŝz|χn〉 = A
h̄

2
, (A14)

which is the same as the mean value of the spin projection
operator for the whole system, as required by the mean value
for a mixed wave function [54]. In what follows, we employ
the neutron spin wave function in Eq. (A13) for the evaluation
of the cross section:


n(ρ, φ, z, t ) = (V )−1/2ei( �pn·�r−Ent ) Un, (A15)

where

Un =
√

1 + A

2
δsn,+1

⎛⎜⎝1
0
0
0

⎞⎟⎠ +
√

1 − A

2
δsn,−1

⎛⎜⎝0
1
0
0

⎞⎟⎠. (A16)

The inclusion of δsn,+1 and δsn,−1 is done for convenience. We
repeat the expression for the energy from Eq. (6):

En = mn + p2
n

2m∗
sn

− snμBnB + vsn

8
.

Finally, for the neutron, we have∫
d	n =

∑
sn=±1

1

(2π )3

∫
d3 pn. (A17)
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4. The neutrino

We are considering massless neutrinos which are left
handed (or polarized). In this case, for a neutrino with mo-
mentum �pν , its energy is | �pν | and the wave function is given
by


ν (ρ, φ, z, t ) = V −1/2ei( �pν ·�r−| �pν |t ) Uν (θν ), (A18)

where,

Uν (θν ) = 1√
2

⎛⎜⎜⎝
−√

1 − cos(θν )√
1 + cos(θν )√
1 − cos(θν )

−√
1 + cos(θν )

⎞⎟⎟⎠, (A19)

where θν is the polar angle for �pν and we take φν = 0 for the
azimuthal angle. As we are considering a single neutrino with
its wave function given by Eq. (A18), no summation over the
neutrino state is needed.

APPENDIX B: ESTIMATION FOR Np, max AND Ne, max

In this Appendix we explain why the summation over the
quantum numbers Np and Ne runs up to finite maximum val-
ues. This is a consequence of the conservation of the energy.
Let us call Ei = Eν + En and E f = Ee + Ep the initial and
final energies, respectively. The energy conservation (Ei =
E f ) is expressed by the corresponding δ function in Eq. (C1).
All single-particle energies are positive, and for the benefit of
the reader we rewrite them here for dense pure neutron matter:

En = mn + p2
n

2m∗
sn

− snμBnB + vsn

8
,

Eν = |pν |,

Ep = mp + p2
p,z

2mp
+ eB

mp

(
Np + 1

2

)
− spμBpB,

Ee = (
m2

e + 2eBNe + p2
e, z

)1/2
.

The key point which determines finite values for Np, max

and Ne, max is that the neutron is in a dense medium. The
equilibrium conditions of particles in a dense medium limit
their maximum energy. This information is contained in the
function fsn (En, μn, T ) [see Eq. (C1)]. To make our point
clearer, let us consider the T → 0 limit, and we neglect the
interaction among neutrons (m∗

sn
→ mn and vsn → 0). In that

case, we have

lim
T →0

fsn (En, μn, T ) = θ (μn − En). (B1)

The Fermi energy is defined by the relation, EF (pF ) = μn,
where pF is the Fermi momentum. The value for μn is
obtained from the EoS. The maximum value for the initial
energy is then

Ei, max = |pν | + mn + p2
F

2mn
+ | μBnB | . (B2)

The values for |pν | and B are inputs of our calculation. This
means that Ei, max cannot take arbitrarily big values. The
situation for a free neutron is different, since its kinetic energy

can take any value. We turn now to E f :

E f = mp + p2
p,z

2mp
+ eB

mp

(
Np + 1

2

)
− spμBpB + (

m2
e + 2eBNe + p2

e, z

)1/2
. (B3)

There is no Fermi sea for protons nor one for electrons within
our model of pure neutron matter. This means that both | pp, z |
and | pe, z | can take values within the range [0,∞), but the
constraint Ei = E f limits this range. We focus on Np, max and
Ne, max. For fixed values for B, pp, z and pe, z, E f grows for
increasing values for Np and Ne. To evaluate Np, max we put
pp, z = pe, z = 0 and Ne = 0. By solving the equation Ei, max =
E f (pp, z = 0, pe, z = 0, Ne = 0), we have

Np, max = mp

eB

(
p2

F

2mn
+ mn − mp − me

+|pν |+ | μBnB | + | μBpB | − eB

2mp

)
. (B4)

The same analysis can be done for Ne, max, where now we use
Np, max = 0. From the right-hand side of this expression one
takes the integer part.

Only when T = 0 can we show an analytical expression for
Np, max (or Ne, max). This is because fsn (En, μn, T ) as a function
of pn decreases exponentially when En(pn) > μn, but there is
no defined value of pn for which the function is zero. Note
that the temperature changes continuously, meaning that for
all practical purposes the result from Eq. (B4) remains valid
for T ≈ 0, although we no longer have the step function from
Eq. (B1). This does not mean that we cannot give values for
Np, max and Ne, max. This is easily implemented numerically:
we sum up Np, max and Ne, max up to values where the mean free
path does not change. In addition, from Eq. (C2) we notice
that En depends also on m∗

sn
and vsn , which are functions of

the density and the temperature. In the text we give indicative
values for Np, max and Ne, max, in the sense that for higher values
of these quantum numbers the mean free path does not change.

Alternatively, one can employ a numerical criterion to
obtain Np, max and Ne, max at T 
= 0. For instance, we write

fsn (En(pn = 0), μn, T )
fsn (En(pn, max), μn, T )

= 10−10. (B5)

By solving this equation for pn, max, one uses this value instead
of pF in Eq. (B4) and obtains Np, max. It is very simple
to implement the modifications to include m∗

sn
and vsn and

develop an analogous equation for Ne, max. The factor 10−10

is arbitrary and one should change this factor until the mean
free path remains unaltered. In practice, for T = 5 MeV the
results (for Np, max and Ne, max) are close to those for T = 0,
while for T = 30 MeV the increase is given by a few units of
these quantum numbers.

As a final point for this Appendix, we make a brief discus-
sion about the interplay between Np, max and Ne, max. One can
take these extreme values and ignore this interplay, as long
as one does not care about the efficiency of the numerical
code which evaluates the mean free path. To discuss this
interplay, we show a simple model. From Ep we retain only
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the Np contribution, �EN p ≡ NpeB/mp. And we do the same
for the electron, �ENe ≡ (m2

e + 2eBNe)1/2 − me. We define
�E f ≡ �EN p + �ENe and, just to give an example, we set
the maximum possible value for this energy at �Emax

f = 64
MeV. We consider two cases: (i) For B = 1018 G, we have
�EN p=10 = 63 MeV, but �ENe=1 = 108 MeV, which means
that no electron Landau level contributes to the cross section
and we have to sum Np from zero up to ten. (ii) For B =
1017 G, �EN p=100 = 63 MeV, and in this case �ENe=3 = 59
MeV. Then, we have combinations among the proton and
the electron Landau levels: Np = 0, 1, 2, . . . , 100 and Ne = 0;
Np = 0 and Ne = 0, 1, 2, 3; Np = 0, 1 and Ne = 0, 1; etc. Due
to the small electron mass, the energy gap is always bigger for
the electron.

APPENDIX C: EVALUATION OF THE STRUCTURE
FUNCTION Ssp,sn,Np,Ne

In this Appendix we evaluate the structure function for
the absorption process Ssp,sn,Np,Ne . We present a general ex-
pression, but at the end of this Appendix we show a simpler
expression which is more appropriate for our work. We recall
the structure function defined in Eq. (29),

Ssp,sn,Np,Ne =
∫ ∞

−∞

d p n,z

2π

∫ ∞

−∞

d p p,z

2π
(2π )2

× δ(Ee + Ep − |pν | − En)

× δ(p e,z + p p,z − p ν,z − p n,z )

× fsn (En, μn, T )
[
1 − fsp (Ep, μp, T )

]
, (C1)

where fsi (Ei, μi, T ) has been given in Eq. (4). The single-
particle energies Ei and the chemical potentials μi should be
obtained from a particular model for the medium, which in our
case is the Skyrme model (see [40,41] and references therein).
Within the Skyrme model, the nucleons single-particle ener-
gies for particles in a magnetic field, can be written as,

Ep = mp + p2
p,z

2m∗
sp

+ eB

mp

(
Np + 1

2

)
− spμBpB + vsp

8

En = mn + p2
n

2m∗
sn

− snμBnB + vsn

8
, (C2)

where μBp and μBn are the proton and neutron magnetic
moments, respectively and Np indicates the Landau level. The
effective masses (m∗

sp
and m∗

sn
), together with the residual

terms vsp and vsn , depend on the density of the system,
and explicit expressions are found in [40,41]. The structure
function gives us information on the accessible phase space
of protons and neutrons. Even thought we work with neutron
matter, the single-particle energies in Eq. (C2) are the ones
for proton-neutron matter. We have employed these energies
to give a more general expression for the structure function.

We take both the neutrino and the electron energies as
in free space (with a magnetic field). We are considering
massless neutrinos which are left handed (or polarized). The
energy of the electron is taken as

Ee = (
m2

e + 2eBNe + p2
e, z

)1/2
. (C3)

Note that due to the particular value for the magnetic moment
of the electron, one can arrange the expression so that the
energy depends only on Ne.

We now use the delta function representing the momentum
conservation in Eq. (C1) to obtain

Ssp,sn,Np,Ne =
∫ ∞

−∞
d p n,z δ(Ee + Ep − |pν | − En) fsn (En, μn, T )

× [
1 − fsp (Ep, μp, T )

]
, (C4)

where p p,z = p ν,z + p n,z − p e,z. By assigning impulse values
to the lines in the diagram in Fig. 1, energy-momentum
conservation allow us to write

q0 = |pν | − Ee,

qz = p ν,z − p e,z, (C5)

p p,z = p n,z + qz.

Using these expressions we replace the energy and the z-
momentum component of the electron by q0 and qz. The
remainder integral in Eq. (C4) can be done by solving the
energy-conservation equation

Ee + Ep − |pν | − En = 0, (C6)

which in fact is a polynomial of second order in p n,z. After
some algebra, we have

αn p2
n,z + βn p n,z + γn = 0, (C7)

where

αn = 1

2

(
1

m∗
sp

− 1

m∗
sn

)
,

βn = qz

m∗
sp

,

γn = − p2
n,⊥

2m∗
sn

+ q2
z

2m∗
sp

− mn + mp − q0

+ eB

mp

(
Np + 1

2

)
− spμBpB

+ snμBnB + 1

8

(
vsp − vsn

)
, (C8)

We recall that p n,⊥ =
√

p2
n,x + p2

n,y. The energy-momentum

of the neutrino and the electron enter into the structure func-
tion through the external quantities q0 and qz. This means that
our expression for the structure function remains valid also for
a dense system built up from protons, neutrons, electrons, and
neutrinos. Energy conservation can now be rewritten as

δ(Ep − En − q0) = 1(
β2

n − 4α2
nγ

2
n

)1/2

× [δ(p n,z − p+
n,z ) + δ(p n,z − p−

n,z )],

(C9)

065806-17



E. BAUER AND J. TORRES PATIÑO PHYSICAL REVIEW C 101, 065806 (2020)

where p±
n,z are the roots of Eq. (C7). Finally, the expression

for the structure function is given by

Ssp,sn,Np,Ne = 1(
β2

n − 4α2
nγ

2
n

)1/2

[
fsn (En, μn, T )

× [
1 − fsp (Ep, μp, T )

]|p n,z=p+
n,z

+ fsn (En, μn, T )
[
1 − fsp (Ep, μp, T )

]|p n,z=p−
n,z

]
.

(C10)

In particular, in this work we consider pure neutron matter.
Therefore, in Eqs. (C2), (C8), and (C10), we have to replace
fsp (Ep, μp, T ) → 1, m∗

sp
→ mp, and vsp → 0, obtaining

Ssp,sn,Np,Ne = 1(
β2

n − 4α2
nγ

2
n

)1/2

[
fsn (En, μn, T )|p n,z=p+

n,z

+ fsn (En, μn, T )|p n,z=p−
n,z

]
. (C11)

As mentioned in the text, we should recall that the structure
function is a function of many variables. For simplicity, we
show explicitly only the discrete variables, but it also depends
on q0, qz, p2

n,⊥, m∗
sp

, m∗
sn

, μp, μp, T , and B.

Another limit is when m∗
sp

= m∗
sn

= mN . In this case, we
have αn = 0, and Eq. (C7) reduces to

βn p n,z + γn = 0, (C12)

that is, p n,z = −γn/βn and

1(
β2

n − 4α2
nγ

2
n

)1/2 → mN

| qz | , (C13)

and the structure function is

Ssp,sn,Np,Ne = mN

| qz | fsn (En, μn, T )

× [
1 − fsp (Ep, μp, T )

]|p n,z=−γn/βn , (C14)

which is the same expression as in Eq. (E2) in [42].
As a final comment on this Appendix, we should men-

tion that for β2
n − 4α2

nγ
2
n = 0 [or equivalently for qz = 0 in

Eq. (C14)], there is a point for which the structure function is
undefined. This is because at this point the energy has a double
pole (p+

n,z = p−
n,z).
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