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Variational and parquet-diagram calculations for neutron matter: Structure and energetics
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We develop the variational/parquet diagram approach to the structure of nuclear systems with strongly
state-dependent interactions. For that purpose, we combine ideas of the general Jastrow-Feenberg variational
method and the local parquet-diagram theory for bosons with state-dependent interactions [R. A. Smith and
A. D. Jackson, Nucl. Phys. A 476, 448 (1988)]. The most tedious aspect of variational approaches, namely the
symmetrization of an operator dependent variational wave function, is thereby avoided. We carry out calculations
for neutron matter interacting via the Reid and Argonne v6 models of the nucleon-nucleon interaction. While the
equation of state is a rather robust quantity that comes out reasonably well even in very simplistic approaches,
we show that effective interactions, which are the essential input for calculating dynamic properties, depend
sensitively on the quality of the treatment of the many-body problem.
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I. INTRODUCTION

Realistic nucleon-nucleon interactions depend on the rel-
ative spin, isospin, orientations, and angular momenta of the
nucleons involved. Popular phenomenological models [1–5]
represent the interaction in the form of a sum of local func-
tions, times correlation operators, i.e.,

v̂(i, j) =
n∑

α=1

vα (ri j ) Ôα (i, j), (1.1)

where ri j = |ri − r j | is the distance between particles i and
j, and the Oα (i, j) are operators acting on the spin, isospin,
and possibly angular momentum variables of the individual
particles. According to the number of operators n, the poten-
tial model is referred to as a vn model potential. Semirealistic
models for nuclear matter keep at least 6 operators, but up to
28 operators have been included [5] in the sum (1.1).

The six base operators are

O1(i, j; r̂i j ) ≡ Oc = 1,

O3(i, j; r̂i j ) ≡ (σ i · σ j ),

O5(i, j; r̂i j ) ≡ S(i, j; r̂i j ) ≡ 3(σ i · r̂i j )(σ j · r̂i j ) − σ i · σ j,

O2n(i, j; r̂i j ) = O2n−1(i, j; r̂i j )τ1 · τ2. (1.2)

where r̂i j = ri j/ri j . These operators are referred to as cen-
tral, spin, tensor, isospin, spin-isospin and tensor-isospin op-
erators, respectively. The arguments i, j and r̂i j of state-
dependent functions will be omitted for simplicity when no
ambiguity arises.

For simple, state-independent interactions as appropriate
for electrons or quantum fluids, the Jastrow-Feenberg ansatz

[6] for the wave function

�0 =
N∏

i, j=1
i< j

f (ri j )�0 (1.3)

and its logical generalization to multiparticle correlation func-
tions have been extremely successful. Here �0 is a model state
describing the statistics and, when appropriate, the geometry
of the system; for fermions it is normally taken as a Slater
determinant. One of the reasons for the success of this wave
function is that it provides a reasonable upper bound for the
ground state energy:

E0 = 〈�0|H |�0〉
〈�0|�0〉 . (1.4)

It has therefore been applied in both semianalytic calcula-
tions [6] as well as early Monte Carlo calculations [7,8] and
is still being used as an importance sampling function for
diffusion and Green’s function Monte Carlo computations
[9,10]. Semianalytic methods employ diagram expansions
and integral equation methods—specifically the hypernetted-
chain (HNC) summations [11,12] or their fermion versions
(FHNC) [13,14]—for the calculation of physically interesting
quantities.

In particular, this approach permits an unconstrained opti-
mization of the assumed correlation functions,

δE0

δ fn
(r1, . . . , rn) = 0, (1.5)

in which case the method is referred to as the (Fermi-)
hypernetted-chain Euler-Lagrange [(F)HNC-EL] procedure.
It has been a particularly important insight that the HNC-EL
method corresponds, for bosons, to a self-consistent summa-
tion of all ring and ladder diagrams of perturbation theory—
the so-called “parquet” diagrams [15–17]. To carry out these
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summations, specific local approximations are made, but the
upper-bound property for the energy makes sure that one has
achieved the best approximation for the computational price
one is willing to pay.

The Jastrow-Feenberg ansatz (1.3) is insufficient for deal-
ing with realistic nucleon-nucleon interactions of the form
(1.1). A logical generalization of the Jastrow-Feenberg wave
function (1.3) is the symmetrized operator product [18,19]

�SOP
0 = S

⎡⎢⎣ N∏
i, j=1
i< j

f̂ (i, j)

⎤⎥⎦�0, (1.6)

where

f̂ (i, j) =
n∑

α=1

fα (ri j ) Oα (i, j) (1.7)

and S stands for symmetrization. Unfortunately, the need to
symmetrize the correlations results in serious complications.
Not surprisingly, only limited success has been achieved
[18–20]. In fact, it is not even clear how to choose the cor-
relation functions fα (ri j ) because, due to the symmetrization,
components vα (r) of the interaction are multiplied, in the
energy expectation value (1.4), by products of correlation
functions fβ (r) fγ (r) with β �= α and γ �= α [21]. This makes
the use of simplistic choices of the correlation functions
like the “low-order constrained variational (LOCV) method”
[22,23] highly problematic if the interactions in the different
operator channels are very different [21] and sufficiently
high-order commutators are included. Hence, only very sim-
ple implementations—the so-called “single operator chain
(SOC)” approximation [19]—have been carried out. More-
over, the complicated structure of commutator terms makes
the identification with Feynman diagrams nontransparent.

In view of this situation, Smith and Jackson [24] started
from the idea of localized parquet-diagram summations and
implemented the procedure for a fictive system of bosonic
nucleons interacting via a v6 interaction. It turned out that the
equations derived were identical to those one would obtain
in a bosonic version of the summation method of Fantoni
and Rosati [18], which simply ignored the fact that the in-
dividual pair correlation operators f̂ (i, j) do not commute. In
other words, the problem of the importance of commutator
diagrams does not go away, but the idea of parquet-diagram
summations promises a clearer procedure to deal with these
effects without having to go through the development of a full
variational procedure.

Therefore we adopt here the ideas of Smith and Jackson
and generalize them to Fermi systems. To that end, in the
next section we will first review how the connections between
the HNC-EL equations of the Jastrow-Feenberg theory and
parquet-diagram summations are established. We will then
show how specific equations from the FHNC-EL theory for
state-independent correlations can be derived from corre-
sponding sets of parquet diagrams. Specifically, we will focus
on ring diagrams and the Bethe-Goldstone equation. Once
the connections have been established, we can go on and
formulate the method for fermions with a v6 interaction.

We will restrict ourselves to neutron matter in our appli-
cations for two reasons: First, we feel that the problem of
commutator diagrams which would, in the language of par-
quet theory, correspond to “twisted” ladder rungs, is solved.
Additionally, it has been pointed out [25] that the spin-orbit
force, which is omitted in the v6 models, plays an important
role in nuclear matter calculations near isospin symmetry. We
will demonstrate the importance of both the state-dependence
of the correlations and the nonlocality introduced by the Pauli
principle. On the other hand, we do not attempt an exhaustive
comparison with previous neutron-matter calculations as car-
ried out in Ref. [25]. Rather, we concentrate on the technical
implementations of parquet theory and its connections to
FHNC.

II. VARIATIONAL AND PARQUET THEORY

A. Bosons in brief

In this subsection we review very briefly the optimized
variational method (“HNC-EL”) for bosons and the “local
parquet summations,” because these equations have a very
familiar structure and can be derived with minimal approx-
imations from various basic theories. Skipping the technical
details that can be found in original papers and pedagogical
expositions, we display the resulting equations.

The static structure function S(q) is expressed in terms of
a Bogoliubov equation

S(q) = 1√
1 + 2Ṽp-h(q)

t (q)

(2.1)

in terms of a self-consistently determined “particle-hole”
interaction Vp-h. The Bogoliubov equation (2.1) is derived
from a random-phase approximation (RPA) equation for the
density-density response function

χ (q, ω) = χ0(q, ω)

1 − Ṽp−h(q)χ0(q, ω)
, (2.2)

S(q) = −
∫ ∞

0

dh̄ω

π
Im χ (q, ω), (2.3)

in terms of a local and energy-independent particle-hole inter-
action Ṽp-h(q). Here

χ0(q, ω) = 2t (q)

(h̄ω + iη)2 − t2(q)
, (2.4)

with t (q) = h̄2q2

2m , is the particle-hole propagator of nonin-
teracting bosons. The pair distribution function g(r) is then
related to the static structure function S(q) by the usual
connection

g(r) = 1 +
∫

d3k

(2π )3ρ
eiq·r[S(q) − 1]. (2.5)

Having defined a dimensionless Fourier transform by in-
cluding a density factor ρ, i.e.,

f̃ (q) = ρ

∫
d3reiq·r f (r), (2.6)
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this effective interaction takes the specific form

Vp-h(r) = g(r)[v(r) + Ve(r)] + h̄2

m
|∇

√
g(r)|2

+ [g(r) − 1]wI(r), (2.7)

w̃I(q) = −t (q)

[
1 − 1

S(q)

]2[
S(q) + 1

2

]
. (2.8)

In the language of Jastrow-Feenberg theory, the term Ve(r)
accounts for the contribution from “elementary diagrams” and
multiparticle correlations [26], whereas in terms of parquet-
diagram theory it is the contribution of diagrams that are both
particle-particle and particle-hole irreducible [27].

A few algebraic manipulations show that the pair distribu-
tion function satisfies the coordinate-space equation [28]

h̄2

m
∇2

√
g(r) = [v(r) + Ve(r) + wI(r)]

√
g(r). (2.9)

Equation (2.9) is recognized as the boson Bethe-Goldstone
equation in terms of the interaction v(r) + Ve(r) + wI(r).
This observation led Sim, Woo, and Buchler [29] to the
conclusion that “it appears that the optimized Jastrow function
is capable of summing all rings and ladders, and partially all
other diagrams, to infinite order.” In fact, the form of the equa-
tions can be obtained by demanding that the pair distribution
function g(r) satisfies both the Bogoliubov equation (2.1) and
the Bethe-Goldstone equation (2.9) [30]; the only quantity
undetermined by that requirement is Ve(r).

Since we will heavily rely on the derivations and local-
ization procedures of parquet-diagram theory, let us briefly
review the relevant steps. First, Eq. (2.3) defines an energy
dependent effective interaction

W̃ (q, ω) = Ṽp-h(q)

1 − Ṽp-h(q)χ0(q, ω)
. (2.10)

An energy independent effective interaction W̃ (q) is then
defined such that it leads to the same S(q), i.e.,

S(q) = −
∫ ∞

0

dh̄ω

π
Im

χ0(q, ω)

1 − Ṽp-h(q)χ0(q, ω)

= −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)W̃ (q, ω)
]

!= −
∫ ∞

0

dh̄ω

π
Im

[
χ0(q, ω) + χ2

0 (q, ω)W̃ (q)
]
, (2.11)

where the last line defines W̃ (q). Carrying out the integration
leads to

W̃ (q) = −t (q)(S(q) − 1). (2.12)

The particle-hole reducible part

w̃I (q) = W̃ (q) − Ṽp-h(q) (2.13)

of W̃ (q) so defined is then exactly the induced interaction
(2.8). This local wI (r) then supplements the bare interaction
in the Bethe-Goldstone equation.

It is relatively straightforward to generalize the procedure
to interactions with spin and tensor components that are
needed for nuclear systems [24].

B. Fermions with state-independent interactions

We discuss here the simplest implementation of the FHNC
theory that is compatible with the variational problem, called
the FHNC//0 approximation. This version has quantitative
deficiencies, in particular at high densities, but it permits the
clearest connection to the summation of ring and ladder dia-
grams of parquet theory. The implementation and relevance of
higher order exchange corrections will be discussed below in
Sec. III D.

In the FHNC//0 approximation, the generalization of
Eq. (2.1) is

S(q) = SF(q)√
1 + 2 S2

F (q)
t (q) Ṽp-h(q)

. (2.14)

where

SF(q) =
{

3q
4kF

− q3

16k3
F
, q < 2kF,

1, q � 2kF
(2.15)

is the static structure function of the noninteracting Fermi gas.
In this approximation, the effective interaction Ṽp-h(q) is

approximated by the “direct” part of the particle-hole interac-
tion: Ṽp-h(q) ≈ Ṽdd(q) in the language of the FHNC summa-
tions [31,32]. This quantity is structurally identical to that for
bosons, i.e.,

Vp-h(r) = VCW(r) + �dd(r)wI(r). (2.16)

Here

VCW(r) = [1 + �dd(r)]v(r) + h̄2

m
|∇

√
1 + �dd(r)|2 (2.17)

is the “Clark-Westhaus” effective interaction [31], �dd(r) is
the so-called direct correlation function, and wI(r) is the
“induced interaction”

w̃I(q) = −Vp-h(q) − tF(q)�̃dd(q)

= −t (q)

[
1

SF(q)
− 1

S(q)

]2[
S(q)

SF(q)
+ 1

2

]
, (2.18)

where we have abbreviated

tF(q) = t (q)

SF(q)
(2.19)

for future reference. In the FHNC//0 approximation, the static
structure function S(q) and the direct correlation function
�̃dd(q) are related by

S(q) = SF(q)[1 + �̃dd(q)SF(q)]. (2.20)

The Bose limit is obtained by setting SF(q) → 1. Note that
the Fourier transform of Eq. (2.20) does not give a useful
expression for the pair distribution function because g(r)
should be proportional to [1 + �dd(r)]. On the other hand,
S(q) ∝ q for q → 0+. This feature, its cause, and how to
overcome it have been discussed in many places; see, for
example, Refs. [32] and the discussion below Eq. (3.18) in
[33].

To derive the equation determining the short-ranged struc-
ture of the correlations, we begin with Eq. (2.18) which, using
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Eqs. (2.16) and (2.17), can be written as

Vp-h(r) + wI(r) = [1 + �dd(r)][v(r) + wI(r)]

+ h̄2

m
|∇

√
1 + �dd(r)|2

= −[tF(q)�̃dd(q)]F (r) (2.21)

(cf. Eq. (2.62) of Ref. [34]). This expression can in turn be
rewritten in coordinate space as√

1 + �dd(r)

[
− h̄2

2m
∇2 + v(r) + wI(r)

]√
1 + �dd(r)

= [tF (q)(SF(q) − 1)�̃dd(q)]F (r), (2.22)

where [· · · ]F stands for the Fourier transform (2.6).
The right-hand side of Eq. (2.22) is evidently zero for

bosons, and the Euler equation is a simple zero-energy
Schrödinger equation where the bare interaction is supple-
mented by the induced potential. For fermions, the right-hand
side alters [35] the short-ranged behavior of the correlation
function �dd(r), and hence the short-ranged behavior of the
pair distribution function g(r).

C. Connections between FHNC and parquet diagrams

1. Rings

The expression (2.14) reduces to the Bogoliubov equation
for the case of bosons, with SF(q) = 1. For fermions, we must
identify χ0(q, ω) with the Lindhard function

χ0(q, ω) = 2

N

∑
h

n(h)n̄(|h + q|)[t (|h + q|) − t (h)]

(h̄ω + iη)2 − [t (|h + q|) − t (h)]2
,

(2.23)
where n(q) = θ (kF − q) is the Fermi distribution and n̄(q) =
1 − n(q). Consistent with the convention (2.6) [for which
Ṽp-h(q) has the dimension of an energy], we have defined
the density-density response function slightly differently than
usual [36], namely such that it has the dimension of an inverse
energy.

The energy integration can no longer be carried out analyt-
ically. Nevertheless, we anticipate that Eq. (2.14) can also be
derived for fermions from the random-phase approximation
(2.3) for the dynamic structure function. Given any function
f (p, h) depending on a “hole momentum” |h| < kF and a
“particle momentum” p = h + q with |p| > kF, we may de-
fine its Fermi-sea average by

〈 f (p, h)〉(q) =
∑

h n̄(|h + q|)n(h) f (h + q, h)∑
h n̄(|h + q|)n(h)

= 1

SF(q)

∫
d3h

VF
n̄(|h + q|)n(h) f (h + q, h),

(2.24)

where VF is the volume of the Fermi sphere. In particular, we
find

〈t (|h + q|) − t (h)〉(q) = t (q)

SF(q)
= tF(q), (2.25)

which justifies our identification of tF(q) as an “average”
kinetic energy of the noninteracting Fermi system.

Equation (2.14) can then be obtained by approximating
the particle-hole energies t (|h + q|) − t (h) in the Lindhard
function (2.23) by the “average” kinetic energy tF(q), leading
to a “collective” Lindhard function,

χ coll
0 (q, ω) = 2t (q)

(h̄ω + iη)2 − t2
F (q)

. (2.26)

This approximation is occasionally also referred to as a “one-
pole approximation” or “mean spherical approximation.” Al-
ternative rationalizations of the collective approximation for
the Lindhard function may be found in Ref. [33]. The fre-
quency integration (2.3) can then be carried out analytically
and leads to Eq. (2.14).

2. Ladder Rungs

The analysis leading to the identification of a local, energy-
independent induced interaction w̃I(q) based on an energy-
dependent interaction of the form (2.10) is exactly the same
for fermions and for bosons. Following Refs. [15,16], we de-
fine a local effective interaction through the condition (2.11),

S(q) = SF(q) − W̃ (q)
∫ ∞

0

dh̄ω

π
Im χ2

0 (q, ω). (2.27)

For further reference, let∫ ∞

0

dh̄ω

π
Im χ2

0 (q, ω) ≡ S3
F(q)

t (q)λ(q)
; (2.28)

we then have

W̃ (q) = −tF(q)λ(q)
S(q) − SF(q)

S2
F(q)

. (2.29)

The frequency integral in Eq. (2.28) can be carried out an-
alytically [36]. In the “collective approximation” (2.26) for
χ0(q, ω), we obtain λ(q) = 1 and we recover the induced
interaction w̃I(q) from Eq. (2.18).

An issue that needs to be addressed when moving from the
Jastrow-Feenberg description to parquet diagrams concerns
the definition of �̃dd(q). In FHNC//0 we can obtain this
quantity from S(q) via Eq. (2.20). To construct the equivalent
of this relationship in parquet theory, we go back to Eq. (2.27).
There we should identify

�̃dd(q)S2
F(q)=−W̃ (q)

∫ ∞

0

dh̄ω

π
Im χ2

0 (q, ω)=S(q) − SF(q).

(2.30)
Accordingly, the relationship between �̃dd(q) and S(q) is
always given by Eq. (2.20).

3. Ladders

The final objective is to identify the coordinate-space
equation with a local approximation of the Bethe-Goldstone
equation, whose exact form still needs to be determined. We
begin with the Bethe-Goldstone equation as formulated in
Eqs. (2.1), (2.2) of Ref. [37]. It is understood that p, p′ are
particle states and h, h′ are hole states. Vectors k, k′ can
be either particle or hole states. Following Ref. [37], we
introduce the pair wave function ψ in a coordinate frame
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centered at the origin of the Fermi sea, given by the integral
equation

〈k, k′|ψ |h, h′〉 = 〈k, k′|h, h′〉

−n̄(k)n̄(k′)
〈k, k′|vψ |h, h′〉

t (k) + t (k′) − t (h) − t (h′)
.

(2.31)

In making the connection to FHNC-EL, we should assume
that the pair wave function is a function of the relative
coordinate (or momentum), i.e.,

〈k, k′|ψ |h, h′〉 = 1

N
ψ̃ (q),

and set

ψ (r) =
√

1 + �dd(r). (2.32)

Similarly, for local interactions, we should have

〈k, k′|vψ |h, h′〉 = 1

N
[v(r)ψ (r)]F (q).

To ensure this, the energy denominator coefficient

n̄(k)n̄(k′)
〈k, k′|vψ |h, h′〉

t (k) + t (k′) − t (h) − t (h′)

must somehow be approximated by a function of momentum
transfer q. This can be achieved by the averaging procedure
(2.24) applied to the above energy denominator coefficient, to
yield

2tF(q)λ(q)[ψ (q) − δ(q)] = −[v(r)ψ (r)]F (q). (2.33)

Alternatively, and more in the spirit of Bethe and Goldstone,
we write Eq. (2.31) as

[t (k) + t (k′) − t (h) − t (h′)][〈k, k′|ψ |h, h′〉 − 〈k, k′|h, h′〉]
= −n̄(k)n̄(k′)〈k, k′|vψ |h, h′〉. (2.34)

The approximation

t (|h + q|) − t (h) ≈ 〈t (|h + q|) − t (h)〉(q) = tF(q). (2.35)

now gives Eq. (2.33) without the factor λ(q) or, in coordinate
space, we have[

− h̄2

m
∇2 + v(r)

]
ψ (r)

= [2tF(q)[SF(q) − 1][ψ̃ (q) − δ(q)]]F (r). (2.36)

Equation (2.36) is similar to, but not identical with, (2.22),
which is obtained by the further assumption ψ2(r) − 1 � 1.
It therefore makes sense to assert ψ (r) ≈ √

1 + �dd(r). More
importantly, the bare interaction of the Bethe-Goldstone equa-
tion is supplemented by the induced interaction. The iden-
tification between the two expressions (2.36) and (2.22) is
not as precise as in the case of the ring diagrams, but note
that FHNC-EL//0 contains more than just particle-particle
ladders, also including particle-hole and hole-hole ladders
[38].

D. Propagator corrections

Our analysis has so far addressed the question, what does
it take to obtain a specific set of FHNC-EL diagrams from
a corresponding set of Feynman diagrams? The analysis can
be carried farther to other sets of diagrams. For example, the
“cyclic chain” diagrams of the FHNC-EL method can be de-
rived from the self-energy diagrams by the same localization
procedure described above.

Once the approximations have been identified, it is also
clear how to improve upon them: There is no reason to use the
“collective approximation” (2.26) in both the frequency inte-
grals (2.3) and the definition of the local effective interaction
(2.11).

A second issue is then the generalization of the kinetic
energy term |∇√

1 + �dd(r)|2. To this end, we begin with the
localized Bethe-Goldstone equation (2.33), where we supple-
ment the bare interaction v(r) by the induced interaction wI(r)
and identify the pair wave function ψ (r) with

√
1 + �dd(r).

We then have two equations, namely (2.29), which can be
written as

W̃ (q) = Ṽp-h(q) + w̃I (q) = −tF(q)λ(q)�̃dd(q), (2.37)

along with the Bethe-Goldstone equation (2.33)

2[tF(q)λ(q)[
√

1 + �dd(r) − 1]F (q)]F (r)

= −(v(r) + wI (r))
√

1 + �dd(r). (2.38)

Multiplying the latter equation with
√

1 + �dd(r) and com-
bining it with the former yields the expression

Vp-h(r) = [1 + �dd(r)]v(r) + �dd(r)wI(r)

− [tF(q)λ(q)�̃dd(q)]F (r) + 2
√

1 + �dd(r)

× [tF(q)λ(q)[
√

1 + �dd(r) − 1]F (q)]F (r).
(2.39)

Note that if we have tF(q) = t (q) and λ(q) = 1, the terms
on the second line combine to h̄2

m |∇√
1 + �dd(r)|2. Since

SF(q) = 1 for q > 2kF and λ(q) → 1 for large q, and
never differs from 1 by more than 20 percent, the use of
h̄2

m |∇√
1 + �dd(r)|2 seems to be justified.

III. STATE-DEPENDENT CORRELATIONS

A. Operator structure

In this paper we focus on interactions of the so-called v6

form, which in neutron matter involves only the first three
operators spelled out in Eq. (1.2), i.e.,

v̂(r) = vc(r)1 + vσ (r)σ1 · σ2 + vS (r)S12(r̂). (3.1)

An alternative choice of the interaction operators is [24,39]

v̂(r) = vc(r)1 + vL(r)L̂(r̂) + vT (r)T̂ (r̂) (3.2)

where

L̂(r̂) ≡ (σ1 · r̂)(σ2 · r̂), T̂ (r̂) ≡ σ1 · σ2 − (σ1 · r̂)(σ2 · r̂)
(3.3)

are the “longitudinal” and “transverse” operators. These op-
erators are amenable to summations of RPA-type diagrams
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because they have the features

Trσ3 Ôi(1, 3)Ô j (3, 2) = 2Ôi(1, 2)δi j, Ôi(1, 2) ∈ {1, L̂, T̂ }.
(3.4)

A third useful set of operators are the projectors

P̂s = 1
4 (1 − σ1 · σ2),

P̂t+ = 1
6 [3 1 + σ1 · σ2 + S12(r̂)],

P̂t− = 1
12 [3 1 + σ1 · σ2 − 2S12(r̂)]. (3.5)

These satisfy the relations P̂i(12)P̂j (12) = P̂i(12)δi j and P̂1 +
P̂2 + P̂3 = 1, and are therefore appropriate for solving the
coordinate-space equations. The three sets of operators are
related through⎛⎝ 1

σ1 · σ2

S12(r̂)

⎞⎠ =
⎛⎝1 0 0

0 1 1
0 2 −1

⎞⎠⎛⎝1
L̂
T̂

⎞⎠
=

⎛⎝ 1 1 1
−3 1 1

0 2 −4

⎞⎠⎛⎝P̂s

P̂t+
P̂t−

⎞⎠,

⎛⎝1
L̂
T̂

⎞⎠ = 1

3

⎛⎝3 0 0
0 1 1
0 2 −1

⎞⎠⎛⎝ 1
σ1 · σ2

S12(r̂)

⎞⎠
=

⎛⎝ 1 1 1
−1 1 −1
−2 0 2

⎞⎠⎛⎝P̂s

P̂t+
P̂t−

⎞⎠,

⎛⎝P̂s

P̂t+
P̂t−

⎞⎠ = 1

4

⎛⎝1 −1 −1
2 2 0
1 −1 1

⎞⎠⎛⎝1
L̂
T̂

⎞⎠
= 1

12

⎛⎝3 −3 0
6 2 2
3 1 −2

⎞⎠⎛⎝ 1
σ1 · σ2

S12(r̂)

⎞⎠. (3.6)

B. Momentum space equation

Particle-hole matrix elements are best calculated in the op-
erator basis {1, σ1 · σ2, S12(r̂)}, where for O1(1, 2) to O4(1, 2)
we have

〈h + q, h′ − q|vα (1, 2)Oα (1, 2)|h, h′〉
= ρ

N

∫
d3rvα (r) j0(qr)Oα (1, 2) (1 � α � 4), (3.7)

whereas we have for tensor components we have

〈h + q, h′ − q|α (1, 2)Oα (1, 2, r̂12)|h, h′〉
= − ρ

N

∫
d3rvα (r) j2(qr)Oα (1, 2, q̂) (5 � α � 6). (3.8)

Since there is no ambiguity, we will refer to both the j0 Fourier
transform and the − j2 Fourier transform by the tilde symbol
defined in Eq. (2.6).

The momentum-space equation (2.3) is best solved in
the basis {1, L̂, T̂ }, where we simply get the response func-
tion and the static structure function in the above operator

channels, i.e.,

χα (q, ω) = χ0(q, ω)

1 − Ṽ (α)
p−h(q)χ0(q, ω)

, (3.9)

Sα (q) = −
∫ ∞

0

dω

π
Im χα (q, ω), (3.10)

with α = 1, 3, 5. These equations are identical to those of
Ref. [24] for bosons when the bosonic particle-hole propaga-
tor (2.4) is inserted, whereas they give Eq. (2.14) in the above
three channels if the “collective” Lindhard function (2.26)
is used. For the full Lindhard function, the integral must be
carried out numerically. Likewise, both the energy-dependent
and the energy-independent effective interactions W̃ (α)(q, ω)
and W̃ (α)(q), as well as the induced interaction (2.18), are
obtained in this way, using Eq. (2.27). Of course, the tensor
operator introduces an angular dependence.

C. Coordinate space equation

Owing to the projection property P̂i(12)P̂j (12) = P̂i(12)δi j ,
the coordinate-space equations are best formulated in the
projector basis {P̂s, P̂t+, P̂t−}. The only new aspect is that we
must keep the angular dependence of the tensor correlations in
the kinetic energy term |∇√

1 + �dd(r)|2. For its evaluation,
let

3∑
i=1

(
1 + �

(i)
dd (r)

)
P̂i ≡

[
3∑

i=1

fi(r)P̂i

]2

=
3∑

i=1

f 2
i (r)P̂i. (3.11)

Then∣∣∣∣∣∇
3∑

i=1

fi(r)P̂i

∣∣∣∣∣
2

=
3∑

i=1

∣∣∣∣dfi(r)

dr

∣∣∣∣2

P̂i − f 2
S (r)

h̄2r2
|LS12(r̂)|2,

where fS (r) = ( ft+(r) − ft−(r))/6 is the component of f̂ (r)
in the tensor channel. The last term is simplified using

|LS12(r̂)|2 = 1
2

[
L2S2

12(r̂) − S12(r̂)(L2S12(r̂))

− (L2S12(r̂))S12(r̂)
]
. (3.12)

Next, we invoke L2S12(r̂) = 6h̄2S12(r̂) and

S2
12(r̂) = (2P̂t+ − 4P̂t−)2 = 4P̂t+ + 16Pt−, (3.13)

leading to

|LS12(r̂)|2 = −6h̄2S12(r̂) − 6h̄2S2
12(r̂)

= −36h̄2P̂t+ − 72h̄2P̂t−. (3.14)

We arrive at∣∣∣∣∣∇
3∑

i=1

fi(r)Pi

∣∣∣∣∣
2

=
3∑

i=1

∣∣∣∣dfi(r)

dr

∣∣∣∣2

P̂i

+36

r2
f 2
S (r)P̂t+ + 72

r2
f 2
S (r)P̂t−. (3.15)

Thereby, we have determined the structure of the particle-hole
interaction in the three projector channels. We can now go
back to the {1, L̂, T̂ } basis and in momentum space and solve
the equations iteratively.
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(a)

2

(b) (c)

FIG. 1. The figure shows the diagrammatic representation of
the lowest order exchange corrections Vee(r) and Xee(r). For the
interaction correction Vee(r), the red wavy line is to be interpreted as
the effective interaction W (ri j ). In the correlation correction Xee(r),
the wavy red line represents the function �dd(r).

D. Exchange corrections

Exchange diagrams have important consequences for the
effective interactions, particularly in nucleonic systems. They
must be included even at low densities to achieve consistency
between the energetics and the quasiparticle interaction [33].
The simplest version of the FHNC hierarchy that corrects for
this deficiency is FHNC//1, which includes the sum of the
three exchange diagrams shown in Fig. 1.

The relevant modification from the full FHNC-EL equa-
tions as formulated in Ref. [32] involves keeping only the
exchange term Vee(k). The Euler equation becomes

S(q) = SF(q) + X̃ee(q)√
1 + 2S2

F (q)
t (q) Ṽp-h(q)

, (3.16)

where the particle-hole interaction is modified by

Ṽp-h(q) → Ṽp-h(q) + Ṽex(q), Ṽex(q) ≡ Ṽee(q)

S2
F(q)

(3.17)

and where Xee(r12) and Vee(r12) are given by the sum of the
three diagrams shown in Fig. 1.

We have shown in Ref. [33] that naïve addition of exchange
diagrams is problematic because it leads to an incorrect
low-density limit of the pair correlations. We have rectified
this situation by a slight modification of the Euler equation,
namely

S(q) = SF(q)

√√√√√ 1 + 2S2
F (q)

t (q) Ṽex(q)

1 + 2S2
F (q)

t (q) Ṽp-h(q)
. (3.18)

The square-root term in the numerator may be identified with
a “collective RPA” expression for the exchange contribution to
the static structure function (for state-independent interactions
this is equal to the spin-structure function),

Sex(q) = SF(q)√
1 + 2S2

F (q)
t (q) Ṽex(q)

, (3.19)

The expression (3.16) is then obtained by expanding Sex(q) to
first order in the interactions and identifying

X̃ee(q) ≈ −S3
F(q)

t (q)
Ṽee(q).

We have commented above on the fact that, with the
qualification that the Jastrow-Feenberg wave function is not
exact, the positivity of the term under the square root in the
denominator is related to the stability against density fluctu-
ations. Likewise, the positivity of the numerator is connected
with the stability against spin-density fluctuations.

In time-dependent Hartree-Fock theory [40], the diagrams
shown in Fig. 1 correspond to the particle-hole ladder di-
agrams, driven by the exchange term of the particle-hole
interaction,

Wex(h, h′; q) = �〈h + q, h′ − q|W |h′, h〉. (3.20)

This nonlocal term supplements the RPA sum by the RPA-
exchange (or particle-hole ladder) summation. The connection
to the (local) FHNC expression (3.17) is made by realizing
that this expression is obtained from the exact expression
(3.20) by exactly the same hole-state averaging process as was
introduced in Eq. (2.24):

Vex(q) = Ṽee(q)

S2
F(q)

= 〈Wex(h, h′; q)〉(q). (3.21)

For state-dependent correlations and interactions, we can sim-
ply go back to the definition (3.20) and interpret the interac-
tion W (r) as an operator of the form (3.1). The calculation
for the central and spin components go exactly as before.
The tensor component needs special treatment which will be
outlined in the Appendix.

E. Energy

In calculating the energy, we can again simply follow the
analysis of Smith and Jackson, inserting exchange corrections
where appropriate. We must keep in mind that there is no
finite truncation scheme of the FHNC equations such that
acceptable expressions for the pair distribution function and
the static structure function are the Fourier transforms of each
other. That is, having obtained an optimized static structure
function S(q), one must construct the pair distribution func-
tion g(r) by appropriate combination of correlation diagrams
and exchanges. In the case of state-independent correlations,
the simplest expression for g(r) is

g(r) = [1 + �dd(r)][gF(r) + C(r)], (3.22)

C̃(q) = [
S2

F(q) − 1
]
�̃dd(q) + (X̃ee )(q). (3.23)

where gF(r) = 1 − 1
2�2(rkF), with �(x) = 3 j1(x)/x the pair

distribution function of noninteracting fermions. In the
FHNC//1 approximation, SF(q) is replaced by SF(q) +
X̃ee(q), and (X̃ee )(q), which is represented by the sum of
diagrams (b) and (c) shown in Fig. 1, is added to C̃(q).
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Summarizing, we obtain

E

N
= TF

N
+ ER

N
+ EQ

N
,

ER

N
= ρ

2

∫
d3r [gF(r) + C(r)]

[
[1 + �dd(r)]v(r)

+ h̄2

m
|∇

√
1 + �dd(r)|2

]
, (3.24)

EQ

N
= 1

4

∫
d3q

(2π )3ρ
t (q)�̃2

dd(q)
[
S2

F(q)/S(q) − 1
]
, (3.25)

where TF is the kinetic energy of the noninteracting Fermi gas.
In the state-dependent case, g(r) becomes an operator in spin
space,

ĝ(r) = [
1 + �

(s)
dd (r)

]
[1 + Cs(r) − �2(rkF)]P̂s

+[
1 + �

(t+)
dd (r)

]
[1 + Ct+(r) + �2(rkF)]P̂t+

+[
1 + �

(t−)
dd (r)

]
[1 + Ct−(r) + �2(rkF)]P̂t−

≡ gs(r)P̂s + gt+(r)P̂t+(r) + gt−(r)P̂t−, (3.26)

with which we obtain the potential energy〈
V̂

〉
N

= ρ

2
Tr

∫
d3rv̂(r)ĝ(r)

= ρ

4

∫
d3r[vs(r)gs(r) + 2vt+(r)gt+(r)

+ vt−(r)gt−(r)]

The kinetic energy term in Eq. (3.24) is generalized to
state-dependent correlations in the same way, without the
[1 + �

(α)
dd (r)] factors. Note, of course, that we need to keep the

kinetic-energy correction spelled out in Eq. (3.15). Finally, the
term EQ is generalized to

EQ

N
= 1

4

∫
d3q

(2π )3ρ
t (q)

∑
α

(
�̃

(α)
dd

)2
(q)

[
S2

F(q)/Sα (q) − 1
]

× Tr O2
α (1, 2), Oα ∈ {1̂, L̂, T̂ }. (3.27)

IV. RESULTS

In applying the EL-FHNC procedures established in pre-
ceding sections, we have chosen as inputs the v6 truncation
of the Reid interaction as formulated in Ref. [3] and the
Argonne v′

6 interaction [4]. For each of these interactions,
we have performed a sequence of computations: in terms of
correlation operators �

(α)
dd (r), (i) keeping only central com-

ponents, (ii) including both central and spin operators, and
(iii) supplementing the latter with tensor operators, in each
case omitting or keeping the exchange diagrams described
in Sec. III D. Additionally, we have used the “collective
approximation” (2.26) as well as the exact Lindhard function
in both the calculation of S(q) by means of Eq. (2.3) and the
calculation of the effective interaction through Eq. (2.27). As
is usual in FHNC notation, we designate the level at which
exchange diagrams are included by //n, e.g., //0 means no
exchanges are included, while //1 means that we keep the
one-line diagrams X (1)

ee (r) and V (1)
ee (r). Calculations using the

 0
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 25

0.0 0.5 1.0 1.5 2.0

E/
N

  (
M

eV
)

kF  (fm-1)

Reid v6

central correlations only
central and spin correlations
central, spin, and tensor
Argonne v6

FIG. 2. The neutron-matter equation of state for the Reid v6

potential is plotted versus Fermi wave number kF in three approx-
imations: (i) accounting only for central correlations (black line),
(ii) including both spin and central correlations (blue line), and (iii)
further introducing tensor correlations (magenta line). Also shown,
for the third case of central, spin, and tensor correlations, are results
for the Argonne v6 potential (boxes).

“collective approximation” will be referred to as “FHNC”
and those containing the exact particle-hole propagator as
“parquet.”

A. Energetics

We shall refrain here from showing the large array of
results obtained in the FHNC and parquet versions of the
theory and focus on the most telling implementations. Our
calculations have been extended to much lower densities than
what is usually done [25], since the regime of very low density
has been of recent interest due to the expectation there is some
fundamental similarity between low-density neutron matter
and the unitary gas. Among other significant features, the
superfluid gap at low densities is close to 0.5 times the Fermi
energy [41–43]. However, we did not go quite as low in
density as in our previous work, since good resolution in both
coordinate and momentum space would require a much larger
mesh.

The first quantity of interest is, of course, the energy per
particle, with results exhibited in Fig. 2. Shown there are only
the calculations containing exchange diagrams and the full
particle-hole propagator, the plots for other calculations being
omitted for clarity.

We observe that the equations of state begin to differ
visibly beyond kF = 1 fm−1, we note, of course, that at that
density the FHNC//0 and FHNC//1 approximations deviate
from a full FHNC-EL calculation by about the same amount;
see Fig. 3, and Fig. 1 of Ref. [43]. In fact, in view of
the difference in the correlation functions found in different
approximations to be discussed below, we find the agreement
between different calculations rather remarkable. We also
direct the reader’s attention to the fact that the results for
the Argonne potential are rather close to those of the Reid
interaction.

065804-8



VARIATIONAL AND PARQUET-DIAGRAM CALCULATIONS … PHYSICAL REVIEW C 101, 065804 (2020)

 0

 5

 10

 15

 20

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

E/
N

  (
M

eV
)

kF    (fm−1)

Argonne

AV4’ −− FHNC−EL
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FIG. 3. The figure shows a comparison of neutron matter equa-
tion of state for the Argonne v′

4 and v′
6 interactions for the state-

independent FHNC-EL and FHNC//0 calculations of Ref. [43], the
present work, as well as from the auxiliary-field diffusion Monte
Carlo (AFDMC) method [44] for the Argonne v18 interaction and
from a Brueckner-Hartree-Fock calculation [25] for the Argonne v′

4

potential.

As stated above, we keep the comparison with earlier
calculations to a minimum because extensive work is avali-
able [25]. Figure 3 gives an update for two versions of
the Argonne potential [4] including the calculations of this
work, the state-independent full FHNC-EL calculations of
Ref. [43], the Brueckner-Hartree-Fock calculations of Baldo
et al., and the auxiliary-field diffusion Monte Carlo (AFDMC)
method [44].

The close similarity of the energetics exhibited in Fig. 2
for the three quite different calculations is, however, by no
means an indication that central correlations are sufficient for
a description of this system, as was demonstrated in another
sequence of calculations. Figure 4 shows the bare interactions
in the three projector channels P̂s, P̂t+, and P̂t−, along with the
dynamic correlation functions 1 + �

(α)
dd (r) in these channels.

Obviously the interactions are very different; for example,
recall that the S-wave interaction has a scattering length of
a0 ≈ −18.7 fm [45]; i.e., it is close to developing a bound
state. Correspondingly, the correlation develops a strong peak
roughly at the location of the interaction minimum. The two
triplet channels are much less attractive; in fact the t+ chan-
nels is repulsive, hence the particles tend to be pushed apart.

We conclude this section with a brief comparison with
other many-body approaches; a very extensive comparison of
numerical data from different approaches may be found in
Ref. [25].

Variational and perturbative calculations are often referred
to as complementary approaches. We feel that this view is
somewhat oversimplified: It was already observed by Sim
et al. [29], and reiterated by Jackson et al. [15–17] that the
boson Bethe-Goldstone equation is indeed a proper subset
of the calculation within the optimized HNC scheme. We
have clarified above and in Ref. [33] to what extent the same

-100

-50

 0

 50

 100

 150

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

v α
(r

)

1+
Γ(α

)
dd

(r
)

r  (fm)

s
t+
t-

FIG. 4. Plots, versus radial separation r, of the components of
the Reid v6 interaction in spin-triplet states and of the corresponding
projectors P̂s, P̂t+, and P̂t− (magenta, blue, and black), together
with the dynamic correlation functions 1 + �

(α)
dd (r) in these channels

(same colors, lines with “+” markers), all at Fermi wave number
kF = 1 fm−1. Also shown is the correlation function 1 + �dd(r) for
state-independent correlations (yellow circles).

is true for fermions. We have come to the conclusion that
the only additional postulate is that the pair wave function
is a function of the interparticle distance; see Sec. II C 3. In
other words, for fermions the Brueckner-Hartree-Fock (BHF)
theory is also a proper subset of FHNC-EL. The essential
difference is that in conventional (BHF), ad hoc constraints
must be introduced to prevent the pair wave function from
becoming unphysically long ranged [46]. Exactly the same is
true when a variational theory is truncated at low order: The
Euler-equation in two-body approximation has unphysically
long-ranged solutions that must be somehow tamed; this is
done, for example, by the so-called “low-order constrained
variational (LOCV) method.” In the FHNC-EL scheme, the
“induced interaction” wI (r) makes sure that the long-range
behavior of the correlations is physically reasonable; artifi-
cially imposed constraints are therefore unnecessary.

B. Correlation and distribution functions

Two questions are addressed in this subsection: The first is
what it takes to have a reliable prediction for the distribution
and structure functions, and the second, once that is deter-
mined, how physical quantities of interest depend on density
and specific features of the interaction.

We have partly addressed the first issue already in the
preceding subsection, where we have shown that simple state-
independent correlations can reproduce the energetics with
reasonable accuracy, but they give no reliable prediction for
the dynamic correlations. The other question is concerned
with the importance of exchange diagrams and propagator
corrections. We address this question partly in Figs. 5 and 6,
where we show the dynamic correlation function and the pair
distribution function in the singlet channel in four different
approximations: without and with the exchange contribution
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FIG. 5. Plots, at Fermi wave number kF = 1 fm−1, of the spin-
singlet dynamic correlation function 1 + �

(s)
dd (r) versus radius r, as

obtained in the four different approximations explained in the text.

and propagator corrections (labeled FHNC//0 and FHNC//1),
as well as with propagator corrections (labeled parquet//0
and parquet//1). Evidently, all of these corrections have little
consequence for the direct dynamic correlations.

The situation changes remarkably for the pair distribution
function (Fig. 6), where we see that exchanges have a rather
drastic effect. We hasten to explain that this is exclusively
due to the term (X̃ee )(q) spelled out in Eq. (3.23); the
replacement SF(q) → SF(q) + (X̃ee )(q) has a negligible ef-
fect. It was observed a long time ago that the sum of the
three diagrams shown in Fig. 1 is much smaller than the three
individual terms [47]; the fact that the individual terms are
quite large is peculiar to the present situation. These terms are
relatively small in 3He and low-density gases.

Let us finally turn to the density dependence of the corre-
lations, shown in Fig. Record Info Table 2: 133432. We have
already pointed out that the s channel is close to forming a

0.0
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 0  1  2  3  4  5

g
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FHNC//1

parquet//0
parquet//1

FIG. 6. This figure shows, at kF = 1 fm−1, the spin-singlet pair
distribution function in the four different approximations as ex-
plained in the text.

bound state; accordingly, we find that the s projection of the
correlation function develops a strong nearest-neighbor peak
as the density decreases. With increasing density, this peak
is suppressed, evidently by both the Pauli principle and the
induced interaction wI(r).

C. Effective interactions

Effective interactions are perhaps more relevant than
ground state properties because they determine quantities like
the response [48] and pairing properties [49] that are directly
observable. Effective interactions have also been extensively
used in the calculations of the neutrino mean free path
[50–52]. Especially the work of Ref. [51] comes closest to
our strategy; of course we are using full parquet summations
whereas that work is restricted to the three-body order.

We address here again the same two questions that we have
posed above: What is an acceptable computational procedure
to determine these interactions, and how do they depend on
external parameters like the density ?

The most important input for linear response theory and,
hence, for the calculation of the dynamic structure function, is
the particle-hole interaction. The long-wavelength limit of the
particle-hole interaction is related to the hydrodynamic speed
of sound by

mc2 = d

dρ
ρ2 d

dρ

E

N
. (4.1)

In a Fermi fluid, we also have Pauli repulsion, reflected in the
relation

mc2 = mc∗2
F + Ṽp-h(0+) ≡ mc∗2

F

(
1 + F S

0

)
, (4.2)

where c∗
F =

√
h̄2k2

F
3mm∗ is the speed of sound of the noninteracting

Fermi gas with the effective mass m∗, and F s
0 is Landau’s

Fermi liquid parameter. Requiring a positive compressibility
leads to Landau’s stability condition F s

0 > −1.
The relationships (4.1) and (4.2) normally give identical

predictions only in an exact theory [53,54]; good agreement is
typically reached only at very low densities. The reason for
that is the very simple fact that the convergence of cluster
expansions for the Fermi-Liquid parameters is intrinsically
worse than that for the energy [53]: The contribution to any
n-body diagram to the energy is multiplied by roughly a factor
n2 in an equivalent expansion of the incompressibility from
Eq. (4.1). Even in the much simpler system 4He, where four-
and five-body elementary diagrams and three-body correla-
tions are routinely included, the two expressions (4.1) and
(4.2) can differ by up to a factor of 2 [55].

The situation is even more complicated in Fermi systems
due to the multitude of exchange diagrams, of which we kept
only the simplest. Hence, one can expect good agreement only
at very low densities [33], but not at the densities considered
here.

Figure 8 compares the results from Eqs. (4.1) and (4.2) for
the Reid v6 interaction and the parquet//1 calculation includ-
ing tensor correlations, shown as the magenta curve in Fig. 2.
The derivative (4.1) was calculated by finite differences; to
eliminate numerical noise mc2 has been fitted by a third-order
polynomial.
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FIG. 7. The figure shows the density dependence of the dynamic
correlation functions 1 + �

(α)
dd (r) in the three spin-projector channels

s (top), t+ (middle), and t− (bottom).

To connect microscopic and hydrodynamic speeds of
sound we have used an effective mass ratio m∗/m = 1, which
seems to be justified by our results from Ref. [33]. A number
of conclusions can be drawn from Fig. 8. The “direct” part is
somewhat improved compared with the calculation based on
state-independent interactions, where the F s

0 came out positive
(cf. Fig. 9 of Ref. [33]). One would have expected that F s

0
goes to zero linearly as kF → 0; this appears to happen only
at much lower densities. The underlying cause seems to be the
strong density dependence of the singlet correlation functions
shown in Fig. 7 (top). The state-independent calculation of
Ref. [33] does not have this feature: linear behavior can
be observed up to kF � 0.4 fm−1. We also find that the
contribution from exchange diagrams is quite substantial.
We attribute the remaining difference partly to higher-order

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

F 0
s

kF  (fm-1)

~Vdd(0+)
~Vp-h(0+)
E/N fit

FIG. 8. This figure shows the density dependence of the Fermi
liquid parameter F s

0 , as obtained from the speed of sound via the
derivative (4.1) (magenta line) and from the long-wavelength limit
(4.2) of the microscopic particle-hole interaction. The black curve
contains only the “direct” part (2.16), while the blue line contains
both direct and exchange parts. The solid lines show parquet//1
results, whereas the dashed lines show results from FHNC//1.

exchange diagrams, but also to the omission of “elementary”
diagrams.

In Fig. 9 we turn to the reliability of the derived particle-
hole interaction in successive approximations, i.e., using cen-
tral correlations, both central and spin-dependent correlations,
and finally adding tensor correlations. Evidently, central cor-
relations cannot give a valid prediction of the particle-hole
interaction. Important corrections come from the contribution
from exchange diagrams, Ṽex(k). This is to be expected and is
consistent with our findings from Fig. 8 and Ref. [33]. Tensor
correlations introduce some attraction at long wavelengths,

-10

-5

 0

 5

 10

 0  2  4  6  8  10  12  14

~ V
p-

h
(q

) 
 (

M
eV

)

q  (fm-1)

central correlations only
central and spin correlations

central, spin and tensor correlations

FIG. 9. For kF = 1 fm−1, this figure depicts the central chan-
nel of the particle-hole interaction Ṽp-h(q) [Eq. (3.17)], based on
(i) state-independent correlation functions (solid black line), (ii)
spin-dependent correlations (blue line), and (iii) spin and tensor
correlations (magenta line). Also shown is the direct part, given by
Eq. (2.16), in the three approximations (+ symbols, same colors).
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FIG. 10. This figure demonstrates the density dependence of the
particle-hole interaction V (α)

p-h (q) in the three operator channels α =
c (top), L (middle), and T (bottom). Note that we show Ṽ (α)

p-h (q) in
units of the Fermi energy of the free Fermi gas in order to make the
low-density behavior visible.

but have minimal impact on the effective interaction in the
central channel.

An overview of the density dependence of the effective
interactions in the three channels {1, L̂, T̂ } is provided in
Figs. 10. We emphasize, as discussed above, that only the
central channel is attractive, whereas both the longitudinal and
transverse channel interactions are repulsive.

Generally, we have not found a significant change of our
results caused by propagator corrections. Approximating the
response function by a “collective” version can be expected
to be a good approximation only if the system has a strong
collective mode. This is the case for both the transverse and
the longitudinal channels, where the interactions are repulsive.
The most likely case where a correction could be found would
be the central channel because there we have a negative F s

0 ,
which means that the zero-sound mode is Landau damped. We

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0.00.51.01.52.02.53.03.54.0
-1.0

-0.5

0.0

0.5

1.0

~ W
(S

) (q
)/

e F

central correlations only
central, spin, and tensor correlations

kF  (fm-1)
q/kF

FIG. 11. This figure depicts the spin-singlet channel of the effec-
tive interaction W̃ (S)(q) [Eq. (2.29)], based on (i) state-independent
correlation functions (solid black line) and (ii) spin- and tensor-
dependent correlations (red lines) as a function of q/kF for a se-
quence of densities 0.2 � kF � 1.8 fm−1.

found, nevertheless, that the collective approximation (2.26)
in the RPA expression (2.3) is very good, being most impor-
tant when the system approaches the stability limit F s

0 → −1.
The particle-hole interactions are necessary input for the

calculation of excitations, whereas the other effective inter-
actions, Ŵα (r), are necessary for the calculation of pairing
properties [33,56,57]. The latter differ from the particle-
hole interactions only by the induced interaction wI(r); see
Eq. (2.12). In the present cases, we found that these correc-
tions are rather small. On the other hand, the inclusion of
state-dependent correlations has, as shown in Fig. 11 a rather
dramatic effect, in particular at low densities. Recalling the
nonanalytic dependence of the superfluid gap on the pairing
interaction at the Fermi surface [36], one should consider pre-
vious work [33,43,58,59] only qualitative. We have refrained
at this juncture from pursuing the matter any farther because
one expects [21] that the inclusion of commutator diagrams—
which would be equivalent to nonparquet corrections to the
Bethe-Goldstone equation—leads to further massive change
of the effective interactions. This problem needs to be solved
first.

V. SUMMARY

In this paper, we have taken up work by Smith and Jackson
[24] and generalized it to Fermi systems. In doing so, we
have relied heavily on what is known from the optimized
variational (F)HNC method and made use of the fact that
the parquet equations of Ref. [24] could also be obtained
from the bosonic version of the (F)HNC equations of Fantoni
and Rosati [18]. In that way, and also by comparison with
the state-independent Jastrow-Feenberg case [33], we have
been able to identify the localization procedures leading from
the general parquet equations to the “local” ones. In the
boson case, there was just one such procedure, namely the
approximation of the generally energy-dependent induced in-
teraction by an energy-independent form (2.11), which holds
for both bosons and fermions. This was already recognized
in Ref. [60]. In the case of fermions, there is an additional
localization procedure, which leads to correlation functions
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depending only on the interparticle distance [see Eq. (2.24)],
which turns the pair wave function of the Bethe-Goldstone
equation into a function of the interparticle distance.

Our procedure goes beyond the so-called FHNC-SOC
(single-operator-chain) approximation in the following sense.
The SOC approximation calculates only the operator-
dependent chain diagrams, the correlation functions in these
channels commonly being obtained by the LOCV procedure.
In that sense, the SOC approximation may be understood as
an RPA with an effective interaction [61]. We also sum these
chain diagrams, but our correlation functions are determined,
in all operator channels, by the localized Bethe-Goldstone
equation. Moreover, the “induced interactions” also have the
full operator structure.

The present implementation of the parquet theory does
not solve the notorious problem of the commutator diagrams.
Model studies for a fictitious system of bosons with spins
[21] have indicated that they can be very important if the
interactions in spin-singlet and spin-triplet cases are very
different, which is indeed the case here, as indicated in Figs. 7.
However, comparison with parquet theory should offer a much
more elegant solution of the problem of commutators than car-
rying out the symmetrization operators for a variational wave
function of the form (1.6). The next step in implementing the
parquet strategy is to generalize the Bethe-Goldstone equation
to include all time-orderings of the induced interaction wI(r)
in the summation of ladder diagrams, thereby superseding
the Bethe-Goldstone equation. Work in this direction is in
progress.

Another very promising aspect is that the view of parquet-
diagram theory allows for a relatively straightforward inclu-
sion of spin-orbit interactions. These interactions are included
routinely in Brueckner Bethe-Goldstone and coupled cluster
calculations; the literature on the subject matter is vast and we
cite only a few either historically relevant or recent examples
[3,5,25,52,62–64]. On the other hand, practically no serious
progress has been made implementing spin-orbit forces varia-
tional calculations that have the diagrammatic richness of the
HNC summations. Work in this direction is in progress.
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APPENDIX: CALCULATION OF EXCHANGE DIAGRAMS

The easiest way to calculate the exchange corrections is to
begin with Eq. (3.20):

Vex(q) = 〈Wex(h, h′, q)〉. (A1)

The input is normally a coordinate-space representation of
W (1, 2); in other words the effective interaction has the form

Ŵ (1, 2) = W0(r)P̂s + W+(r)P̂t+ + W−(r)P̂t−. (A2)

The calculation of the central has been outlined in Ref. [47];
spin correlations are dealt with in exactly the same way. The
matrix elements of the tensor operator must be calculated in-
dependently. A working formula for these exchange diagrams
is

Ṽee(k) = −ρ

ν

∫
d3r W (r)[�2(rkF) j0(rk)

−�(rkF)[I (k; r) + I∗(k; r)] + I (k; r)I∗(k; r)].

(A3)

Here I (k; r) is conveniently calculated by an expansion in
spherical harmonics,

I (k; r) = 3

4πk3
F

∫
d3k′eik′ ·rn(k′)n(|k − k′|)

=
∑

�

(2� + 1)i�P�(cos(k̂ · r̂))c�(k, r) (A4)

with

c�(k, r) = 3

2kF
3

∫ kF

0
d p p2 j�(r p)

∫ 1

xL

dx P�(x), (A5)

where

xL =
⎧⎨⎩

1 if |p − k| > kF,

−1 if p + k < kF,
p2+k2−k2

F
2pk otherwise.

(A6)

For central forces this procedure gives

Ṽee(k) = −ρ

∫
d3r W (r)

[
�2(rkF) j0(rk) − 2�(rkF)c0(k; r)

+
∞∑

�=0

(2� + 1)c2
� (k; r)

]
. (A7)

We have verified in Ref. [47] that keeping c0(k, r) and c1(k, r)
is generally sufficient.

For the tensor force, we obtain

ṼS,i j (k) = −ρ

∫
d3r WS (r)(3x̂ix̂ j − δi j )[�

2(rkF)eik·r

−�(rkF)[I (k; r) + I∗(k; r)] + I (k; r)I∗(k; r)].

The first term is just the j2 Fourier transform. The other two
terms can be calculated by expansion in spherical harmonics.
The contributions from the c0(k, r) terms are zero due to
the angle integration. The only term that survives is the c1
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contribution from the last term, which reads

−9ρ

∫
d3rWS (r)c2

1(k, r)
∑

i j

(3x̂ix̂ j − δi j )z
2σiσ j = −18

15
ρ

∫
d3rWS (r)c2

1(k, r)
(
2σzσz − σzσx − σyσy

)
= −6

5
ρ

∫
d3rWS (r)c2

1(k, r)S12(k̂). (A8)

If we keep only c0(k, r) and c1(k, r) we arrive at

Ṽex[WS] = ρ

∫
d3r WS (r)

[
�2(rkF) j2(kr) − 6

5
c2

1(k, r)

]
. (A9)
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