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Analytical determination of the structure of the outer crust of a cold nonaccreted neutron star:
Extension to strongly quantizing magnetic fields
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The iterative method recently proposed for determining the internal constitution of the outer crust of a
nonaccreted neutron star is extended to magnetars by taking into account the Landau-Rabi quantization of
electron motion induced by the presence of a very high magnetic field. It is shown that in the strongly quantizing
regime, the method can be efficiently implemented using new analytical solutions for the transitions between
adjacent crustal layers. Detailed numerical computations are performed to assess the performance and precision
of the method.
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I. INTRODUCTION

Although most neutron stars are endowed with typical
magnetic fields of order 1012 G, the subclass of magnetars
[1]—including anomalous x-ray pulsars and soft gamma-ray
repeaters (SGR)—exhibit much higher fields, up to a few
times 1015 G at their surface [2,3]. Potentially even more
extreme magnetic fields could be sustained in their interior,
as shown by numerical simulations [4]. Giant flares, such as
those observed in SGR 1806−20, are among the most spec-
tacular astrophysical manifestations of the magnetic activity,
whereby sudden changes in the magnetic field configuration
are accompanied by starquakes, as suggested by the detection
of quasiperiodic oscillations (see, e.g., Ref. [5] for a recent
review). The frequencies of the various modes depend on the
internal constitution of these stars. However, the identification
of these modes remains challenging due to uncertainties on
the stellar structure, in particular on the properties of the
crust [6–8]. Some parts of the crust may actually be ejected
during such events [9]. The subsequent decompression of
this neutron-rich material provides suitable conditions for the
rapid neutron capture process, the so-called r process, at the
origin of stable and some long-lived radioactive neutron-rich
nuclides heavier than iron [10]. The final nuclear abundances
of the processed stellar material depend on the initial com-
position of magnetar crusts. The crustal properties are also
important for the long-term evolution of the magnetic field
and the cooling of the star [11–13].

The internal structure of a neutron star can be significantly
altered by the presence of a high magnetic field, especially
in the crust region (see, e.g., Ref. [14] for a recent review).
The composition of the outer crust of a magnetar has been
traditionally determined following the study of Ref. [15] by
minimizing the Gibbs free energy per nucleon g at zero
temperature and for a finite set of pressure values (see, e.g.,
Refs. [16–19]). The pressure step must be small enough to find
the complete stratification, especially in the deepest region
of the outer crust where even a thin layer can contain the
most abundant nuclear species. Systematic calculations over

a wide range of magnetic-field strengths, as required for the
modeling of magnetars, can thus become computationally
very expensive.

In this paper, the computationally very fast approach re-
cently proposed to calculate the structure of the outer crust
of an unmagnetized neutron star [20,21] is extended to take
into account the presence of a strongly quantizing magnetic
field. New analytical solutions for the transition pressure
between adjacent crustal layers are presented in Sec. II. The
analytical approximations for the nuclear abundances and the
depths of the different layers that were previously discussed in
Ref. [20] are suitably generalized to magnetars in Sec. III. The
numerical implementation of all these formulas is discussed
in Sec. IV, where numerical tests of their precision are also
presented.

II. TRANSITION BETWEEN ADJACENT
CRUSTAL LAYERS

In the following, we shall consider the crustal region at
densities ρ above the ionization threshold and below the
neutron-drip point. As in Ref. [20], we assume that each
crustal layer is made of a single nuclear species (A, Z) with
mass number A and atomic number Z in thermodynamic equi-
librium at temperature T below the crystallization temperature
Tm (for all practical purposes, we shall set T = 0 K).

The equilibrium composition at pressure P is determined
by the minimization of the Gibbs free energy per nucleon
given by (see, e.g., Ref. [17])

g(A, Z, ne) = M ′(A, Z )c2

A

+ Z

A

[
μe − mec2 + 4

3
Cαh̄cn1/3

e Z2/3

]
, (1)

where M ′(A, Z ) is the mass of the nucleus (A, Z) (including
the rest mass of Z electrons), me is the electron mass, μe is the
Fermi energy of a relativistic electron gas with number density
ne, C is the crystal lattice structure constant, and α = e2/(h̄c)
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is the fine structure constant (e being the elementary electric
charge, h̄ the Planck-Dirac constant, and c the speed of light).
The pressure is expressible in terms of the electron number
density ne by the relation

P = Pe + C αh̄cZ2/3n4/3
e , (2)

where Pe denotes the pressure of an ideal electron Fermi gas
(see, e.g., Ref. [22] for general expressions). To first order in
α, the transition from a crustal layer made of nuclei (A1, Z1) to
a denser layer made of nuclei (A2, Z2) is formally determined
by the same condition as in the absence of magnetic fields,
and is approximately given by [23]

μe + C αh̄cn1/3
e F (Z1, A1; Z2, A2) = μ1→2

e , (3)

F (Z1, A1; Z2, A2) ≡
(

4

3

Z5/3
1

A1
− 1

3

Z2/3
1 Z2

A2
− Z5/3

2

A2

)

×
(

Z1

A1
− Z2

A2

)−1

, (4)

μ1→2
e ≡

[
M ′(A2, Z2)c2

A2
− M ′(A1, Z1)c2

A1

]

×
(

Z1

A1
− Z2

A2

)−1

+ mec2. (5)

The singular case Z1/A1 = Z2/A2 needs not be considered as
it leads to much higher densities than any other transition
(see, e.g., the discussion in Appendix A of Ref. [24]). The
baryon chemical potential μ1→2 and the pressure P1→2 at the
interface between the two layers both vary continuously and
can thus be calculated from Eqs. (1) and (2) respectively, with
Z = Z1, A = A1. The transition is generally accompanied by
a discontinuous change of the mean nucleon number density:

n̄max
1 = A1

Z1
ne, (6)

n̄min
2 = A2

Z2
ne

[
1 + 1

3
Cαh̄cn1/3

e

(
Z2/3

1 − Z2/3
2

)(dPe

dne

)−1]
. (7)

The bottom of the outer crust is marked by the onset of
neutron emission by nuclei. This process is determined by the
following equations [25]:

μe + 4

3
Cαh̄cn1/3

e Z2/3 = μdrip
e , (8)

μdrip
e ≡ −M ′(A, Z )c2 + Amnc2

Z
+ mec2, (9)

where mn is the neutron mass.
In the presence of a magnetic field, the electron motion

perpendicular to the field is quantized, as first shown by

Rabi [26]. The magnetic field is strongly quantizing if B� ≡
B/Brel � 1 with

Brel =
(

mec2

αλ3
e

)1/2

≈ 4.4 × 1013 G, (10)

where λe = h̄/(mec) is the electron Compton wavelength. For
a given magnetic field strength B�, the number of occupied
levels is determined by the condition

ne = 2B�

(2π )2λ3
e

νmax∑
ν=0

gνxe(ν), (11)

xe(ν) =
√

γ 2
e − 1 − 2νB�, (12)

where γe = μe/(mec2), gν = 1 for ν = 0, and gν = 2 for ν �
1. For a given value of the Fermi energy μe, the electron
number density ne exhibits typical quantum oscillations as a
function of B�.

For B� � (γ 2
e − 1)/2, electrons are confined to the lowest

Rabi level. The equilibrium condition (3) is amenable to
analytical solutions if the electron density in the second term
of the left-hand side is expressed in terms of the electron
Fermi energy using the ultrarelativistic approximation

ne ≈ B�

2π2λ3
e

γe. (13)

Introducing

F̄ (Z1, A1; Z2, A2; B�) ≡ 1

3
CαF (Z1, A1; Z2, A2)

(
B�

2π2

)1/3

,

(14)
Eq. (3) thus reduces to

γe + 3F̄ (Z1, A1; Z2, A2; B�)γ 1/3
e = γ 1→2

e , (15)

which can be expressed as a cubic polynomial equation.
Introducing the dimensionless parameter

υ ≡ γ 1→2
e

2|F̄ (Z1, A1; Z2, A2; B�)|3/2
, (16)

and using the known analytical expressions for the real roots
of cubic equations (see, e.g., Ref. [27]), the solutions of
Eq. (15) for γe are given by the following formulas:

(i) F̄ (Z1, A1; Z2, A2; B�) > 0:

γe = 8F̄ (Z1, A1; Z2, A2; B�)3/2 sinh3
(

1
3 arcsinh υ

)
,

(17)

(ii) F̄ (Z1, A1; Z2, A2; B�) < 0:

γe=
{

8|F̄ (Z1, A1; Z2, A2; B�)|3/2 cosh3
(

1
3 arccosh υ

)
if υ � 1,

8|F̄ (Z1, A1; Z2, A2; B�)|3/2 cos3 θk if 0 � υ < 1,
(18)

with

θk ≡ 1

3
arccos υ + 2πk

3
(19)

and k = 0, 1, 2.
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The mathematical solutions k = 1 and k = 2 yield γe � 0, and they must therefore be discarded. The transition pressure and
the densities of the layers are given by

P1→2 = B�mec2

4π2λ3
e

[
xe +

√
1 + x2

e − log

(
xe +

√
1 + x2

e

)
+

(
4B�Z2

1 x4
e

π2

)1/3
Cα

3

]
, (20)

n̄max
1 = B�

2π2λ3
e

A1

Z1
xe, (21)

n̄min
2 = B�

2π2λ3
e

A2

Z2
xe

[
1 + 1

3
Cα

(
Z2/3

1 − Z2/3
2

)( B�

2π2

)1/3 √
1 + x2

e

x5/3
e

]
, (22)

where xe = √
γ 2

e − 1.
For high enough magnetic fields, the second term in the

left-hand side of Eq. (15) can be larger than γe so that the
equilibrium composition corresponds to γ 1→2

e < 0. Although
the expansion of the Gibbs free energy is not expected to be
accurate in this case, analytical solutions can still be of interest
as a first initial guess in the search for the numerical value of
γe. Real solutions only exist for F̄ (Z1, A1; Z2, A2; B�) < 0 and
−1 < υ � 0:

γe = 8|F̄ (Z1, A1; Z2, A2; B�)|3/2 cos3 θk, (23)

and k = 0, 1, 2. As in the case of “low” magnetic fields (but
still strongly quantizing), the solution k = 1 must be ignored
since γe < 0. However, both k = 0 and k = 2 now leads to
γe � 0. The physically admissible solution is determined by
selecting the expression yielding the lowest transition pressure
satisfying the conditions γe � 1 and n̄min

2 � n̄max
1 , as required

by mechanical stability. Solutions for the neutron-drip transi-
tion can be found using the above formulas after substituting
F (Z1, A1; Z2, A2) by (4/3)Z2/3 and γ 1→2

e by γ
drip
e .

III. GLOBAL STRUCTURE AND NUCLEAR ABUNDANCES

In principle, the global structure of a highly magnetized
neutron star should be calculated solving simultaneously Ein-
stein’s and Maxwell’s equations. However, the influence of the
magnetic field on the crust size was shown to lie below about
1–2% for B� � 104 [28–31]. We shall thus employ the same
analytical formulas as those derived for unmagnetized neutron
stars in Ref. [20]. The relative nuclear abundance of a crustal
layer is thus approximately given by

ξ = δP

Pdrip
, (24)

where δP the range of pressures of the layer under consid-
eration and Pdrip is the neutron-drip pressure. The associated
baryonic mass for a star with a gravitational mass M and a
circumferential radius R can be obtained as follows:

δ MB ≈ ξ
8πR4Pdrip

rgc2

(
1 − rg

R

)3/2
, (25)

where rg = 2GM/c2 is the Schwarzschild radius. The proper
depth z below the surface at the transition between two
adjacent crustal layers with baryon chemical potential μ1→2

is approximately given by

z ≈ zdrip
(μ1→2/μs)2 − 1

(mnc2/μs)2 − 1
, (26)

where μs is the baryon chemical potential at the stellar surface
(where P = 0), and the depth at the neutron-drip transition is
given by

zdrip ≈ R2

rg

[(
mnc2

μs

)2

− 1

]√
1 − rg

R
. (27)

Contrary to the case of unmagnetized neutron stars, μs/c2 is
not simply given by the mass m0 per nucleon of 56Fe because
the density at the surface is finite and is approximately given
by [15,17]

ns ≈ As

λ3
e

[ |C|αB2
�

4π4Zs

]3/5

, (28)

with Zs = 26 and As = 56 the corresponding atomic and mass
numbers of 56Fe. The corresponding value of μs can be
calculated from Eq. (1) with ne = (Zs/As)ns.

IV. STRATIFICATION OF THE OUTER CRUST

The stratification of the outer crust is determined as in
the case of unmagnetized neutron stars [20]. Given a crustal
layer made of nuclide (A1, Z1), the composition of the layer
beneath can be found by merely determining the nuclide (A2,
Z2) leading to the lowest transition pressure P1→2. Starting
with 56Fe at the stellar surface, the sequence of equilibrium
nuclides can thus be determined iteratively. The iteration
is stopped when the baryon chemical potential exceeds the
neutron mass energy. Once the composition has been found,
the detailed structure of the crust and the nuclear abundances
can be readily calculated using the analytical formulas for
the pressure and baryon chemical potential at the interface
between adjacent layers.

To assess the efficiency of the method in the strongly quan-
tizing regime, we have calculated the internal constitution of
the outer crust of a nonaccreted magnetar with B� = 2000
using experimental data from the 2016 Atomic Mass Evalu-
ation [32] supplemented with the nuclear mass table HFB-27
from the BRUSLIB database [33] and based on the Hartree-
Fock-Bogoliubov method [34]. We have also made use of
the recent measurements of copper isotopes [35]. Nuclear
masses were estimated from tabulated atomic masses after
subtracting out the electron binding energy using Eq. (A4) of
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TABLE I. Stratification of the outer crust of a magnetar with B� = 2000, as obtained using recent experimental data supplemented with
the nuclear mass model HFB-27 [34]. In the table are listed the atomic numbers Z1 and Z2 of adjacent layers, the corresponding mass numbers
A1 and A2, the dimensionless parameter xe, the maximum and minimum mean nucleon number densities n̄max

1 and n̄min
2 at which the nuclides

are present, the transition pressure P1→2, the electron and baryon threshold chemical potentials μ1→2
e and μ1→2, the relative abundance ξ1 of

nuclide (A1, Z1), and its relative depth z1/zdrip. Units are megaelectronvolts for energy and femtometers for length. See text for details.

Z1 A1 Z2 A2 xe n̄max
1 n̄min

2 P1→2 μ1→2
e μ1→2 ξ1 z1/zdrip

26 56 28 62 1.31 4.98 × 10−6 5.15 × 10−6 3.00 × 10−7 0.966 930.4 2.62 × 10−4 8.67 × 10−3

28 62 38 88 5.68 2.21 × 10−5 2.34 × 10−5 1.23 × 10−5 4.44 931.3 1.04 × 10−2 0.101
38 88 36 86 8.26 3.37 × 10−5 3.47 × 10−5 2.69 × 10−5 2.84 931.8 1.28 × 10−2 0.156
36 86 34 84 13.1 5.49 × 10−5 5.67 × 10−5 7.06 × 10−5 5.13 932.8 3.82 × 10−2 0.261
34 84 32 82 18.6 8.08 × 10−5 8.37 × 10−5 1.46 × 10−4 7.83 933.9 6.60 × 10−2 0.380
32 82 50 132 23.9 1.08 × 10−4 1.12 × 10−4 2.44 × 10−4 19.6 934.9 8.55 × 10−2 0.491
50 132 30 80 25.1 1.17 × 10−4 1.17 × 10−4 2.67 × 10−4 −17.0 935.1 1.98 × 10−2 0.513
30 80 46 128 28.2 1.32 × 10−4 1.39 × 10−4 3.44 × 10−4 19.0 935.7 6.72 × 10−2 0.579
46 128 44 126 34.5 1.69 × 10−4 1.74 × 10−4 5.11 × 10−4 15.2 936.8 0.146 0.697
44 126 42 124 37.8 1.91 × 10−4 1.96 × 10−4 6.18 × 10−4 16.9 937.4 9.39 × 10−2 0.761
42 124 40 122 42.8 2.22 × 10−4 2.29 × 10−4 7.95 × 10−4 19.4 938.2 0.154 0.853
40 122 38 120 45.2 2.43 × 10−4 2.51 × 10−4 8.90 × 10−4 20.7 938.6 8.36 × 10−2 0.897
38 120 38 122 50.0 2.78 × 10−4 2.82 × 10−4 1.09 × 10−3 24.2 939.4 0.175 0.980
38 122 38 124 51.0 2.88 × 10−4 2.93 × 10−4 1.14 × 10−3 24.7 939.5 4.11 × 10−2 0.998
38 124 51.2 2.94 × 10−4 1.14 × 10−3 24.8 939.6 5.47 × 10−3 1.00

Ref. [36]. In each layer, nuclei are arranged in a body-centered
cubic lattice independently of the magnetic field strength [37].
The structure constant is taken from Ref. [38]. Results are
summarized in Table I. The computations took about 0.07
seconds using an Intel Core i7-975 processor. In contrast, the
standard approach using about 19000 different pressure values
between P = 9 × 10−12 MeV fm−3 and P = Pdrip with a pres-
sure step δP = 10−3P took about 24 minutes, i.e., ≈2 × 104

times longer. Comparing with the results obtained in Ref. [20],
the magnetic field changes the composition of the crust: the
layers made of 64Ni, 66Ni, and 78Ni have disappeared, while
new layers made of nuclei 88Sr, 132Sn, 128Pd are now present.
Due to the increase of the matter density induced by the mag-
netic field, matter is more uniformly distributed: the baryonic
content of the shallow layers is now comparable to that of the

deeper layers. In these calculations, the same nuclear masses
as in the absence of magnetic fields were employed. However,
high enough magnetic fields can also influence the structure
of nuclei [39,40], inducing additional changes in the crustal
composition [18].

We have determined the precision of the method by solving
numerically the exact equilibrium conditions:

g
(
A1, Z1, n1

e

) = g
(
A2, Z2, n2

e

) ≡ μ1→2, (29)

P
(
n1

e, Z1
) = P

(
n2

e, Z2
) ≡ P1→2. (30)

The relative deviations between these results and the analyti-
cal formulas are indicated in Table II. In most cases, the errors
on the pressures and densities do not exceed 0.24%. The errors
of a few percent found for the transition from 56Fe to 62Ni in

TABLE II. Precision of the calculated properties of the outer crust of a magnetar, as listed in Table I. The relative deviation δq (in %) of a
quantity q is calculated as δq = 100(q − qexact )/qexact, where qexact is the exact value while q denotes the value calculated using the analytical
formulas. See text for details.

Z1 A1 Z2 A2 xe n̄max
1 n̄min

2 P1→2 μ1→2 ξ1 z1/zdrip

26 56 28 62 −1.4 −1.4 −1.6 −4.6 −3.1 × 10−4 −4.6 −3.5
28 62 38 88 −1.1 × 10−1 −1.1 × 10−1 −1.9 × 10−1 −2.4 × 10−1 −1.4 × 10−4 −1.2 × 10−1 −1.4 × 10−1

38 88 36 86 9.7 × 10−2 9.7 × 10−2 1.1 × 10−1 2.1 × 10−1 1.8 × 10−4 5.8 × 10−1 1.1 × 10−1

36 66 34 84 2.7 × 10−2 2.7 × 10−2 3.3 × 10−2 5.7 × 10−2 7.8 × 10−5 −3.6 × 10−2 3.0 × 10−2

34 84 32 82 1.0 × 10−2 1.0 × 10−2 1.4 × 10−2 2.1 × 10−2 4.1 × 10−5 −1.2 × 10−2 1.1 × 10−2

32 82 50 132 5.3 × 10−2 5.3 × 10−2 3.0 × 10−2 1.1 × 10−1 2.6 × 10−4 2.4 × 10−1 5.4 × 10−2

50 132 30 80 1.6 1.6 1.7 3.3 8.0 × 10−3 5.9 × 101 1.6
30 80 46 128 2.7 × 10−2 2.7 × 10−2 1.2 × 10−2 5.6 × 10−2 1.6 × 10−4 −9.9 2.7 × 10−2

46 128 44 126 2.6 × 10−3 2.6 × 10−3 4.2 × 10−3 5.4 × 10−3 1.8 × 10−5 −1.0 × 10−1 2.6 × 10−3

44 126 42 124 2.1 × 10−3 2.1 × 10−3 3.4 × 10−3 4.2 × 10−3 1.5 × 10−5 −2.5 × 10−3 1.9 × 10−3

42 124 40 122 1.5 × 10−3 1.5 × 10−3 2.6 × 10−3 3.0 × 10−3 1.1 × 10−5 −1.8 × 10−3 1.4 × 10−3

40 122 38 120 1.3 × 10−3 1.3 × 10−3 2.3 × 10−3 2.5 × 10−3 9.9 × 10−6 −2.0 × 10−3 1.1 × 10−3

38 120 38 122 3.7 × 10−4 3.7 × 10−4 3.7 × 10−4 7.5 × 10−4 3.1 × 10−6 −7.9 × 10−3 3.3 × 10−4

38 122 38 124 3.5 × 10−4 3.5 × 10−4 3.5 × 10−4 7.1 × 10−4 3.0 × 10−6 −9.4 × 10−4 3.1 × 10−4

38 124 3.5 × 10−4 3.5 × 10−4 7.0 × 10−4 −9.4 × 10−4
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the shallow region of the crust where electrons are only mod-
erately relativistic (as indicated by the rather low value of the
parameter xe) can be traced back to the approximation (13).
The transition from 132Sn to 80Zn also exhibits comparatively
large deviations, but their origin is different. As indicated
in Table II, the threshold electron chemical potential μ1→2

e
associated with this transition is negative so that the second
term in Eq. (3) must be large and negative. However, the
expansion of the Gibbs free energy per nucleon to first order
in α requires this term to be small. Except for the two peculiar
cases discussed above, the depths are determined with an error
of 0.14 % at most. As expected, the relative abundances being
obtained from pressure differences exhibit larger deviations,
especially in the vicinity of the transitions from 56Fe to 62Ni
and from 132Sn to 80Zn. On the other hand, the analytical for-
mulas for the baryon chemical potentials remain very accurate
in all cases, with deviations below 8 × 10−3%, thus ensuring
that the sequence of equilibrium nuclides is correctly repro-
duced. Having found the composition, the crustal properties
could thus be refined in a second stage by solving numerically
Eqs. (29) and (30). The overall procedure will still remain
much faster than the full minimization.

V. CONCLUSIONS

We have extended the iterative method proposed in
Ref. [20] for determining the structure and the composi-
tion of the outer crust of a cold nonaccreted neutron star

to allow for the Landau-Rabi quantization of the electron
motion induced by the presence of a magnetic field. We
have shown that this method can be very efficiently imple-
mented in the limit of a strongly quantizing magnetic field
by making use of new analytical solutions for the transitions
between adjacent crustal layers. Computations are found to
be as fast as for unmagnetized neutron stars. Computer codes
have been made publicly available for both unmagnetized
[21] and strongly magnetized neutron stars [41]. The general
scheme proposed in Ref. [20] is therefore particularly well-
suited for systematic calculations of the equation of state
of dense magnetized matter for a large number of different
magnetic-field strengths, as required for the modeling of
magnetars.
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