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Effects of short-range nuclear correlations on the deformability of neutron stars
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In the present work, we investigate the effects of short-range correlations (SRC) on the dimensionless
deformability of the binary neutron system related to the GW170817 event. We implemented phenomenological
SRC in a relativistic mean-field model in which the bulk parameters, namely, incompressibility (K0), effective
nucleon mass ratio (m∗), symmetry energy (J), and its slope (L0), are independently controlled. Our results point
out that the SRC favor the model to pass through the constraints, established by the LIGO/Virgo Collaboration,
on the values of �1.4 and on the �1 × �2 region. We also found a clear linear correlation between �1.4 with
K0 and L0 (increasing dependence), and with m∗ and J (decreasing dependence). Finally, we also obtained
compatible numbers for R1.4 (model with and without SRC) in comparison with recent data from the neutron
star interior composition explorer mission.
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I. INTRODUCTION

A widely used approach to treat many-nucleon systems
(nuclei, for example) is based on the construction of nuclear
interactions, such as the one pion exchange potentials, in
which the free parameters are adjusted to reproduce, for
example, experimental data involved in the simplest bound
nuclear system used to study the nucleon-nucleon interaction,
namely, the deuteron (proton-neutron pair). This system has a
bound state energy of around 2 MeV [1,2], electric quadrupole
momentum of 2.82 mb [3], magnetic momentum given by
0.86 mn [4], and is described by a spin 1 and isospin 0
triplet state. From the knowledge of this interaction, it is
possible to treat nuclei by using the Brueckner-Hartree-Fock
[5,6] method, for example. From another perspective, it is
also possible to describe nuclei from the so-called “nuclear
shell model” (or “independent particle model”) [7], in which
it is considered, at first order, that each nucleon moves in-
dependently and is affected by an average potential due to
the remaining nucleons. From the solution of the Schrödinger
equation, the energy levels of the independent nucleon sub-
mitted to the average potential V (r) are determined. Possible
options for V (r) include the Woods-Saxon potential [8,9], the
harmonic oscillator, or even the finite square well potential. In
addition, microscopic systems of many interacting particles
can be described by approximation methods in which com-
binations of high-performance computing techniques allow a
fundamental understanding of nuclear properties from many-
body Hamiltonians. Among the main many-body models, a
more fundamental approach compared to the nuclear shell
model is the ab initio method [10–12]. It is based on the
density functional theory (DFT) [13–15] in which many-
body correlations are combined to the deuteron and nucleon-
nucleon interactions.

The aforementioned many-body approaches present lim-
itations in the mass number such that a current challenge

is the search for a universal energy density functional in-
cluding heavy isotopes, and are able to describe relevant
characteristics of finite nuclei and also extended asymmetric
nucleonic matter. The shell model is successful, for example,
in describing stable nuclei having proton or neutron numbers
given by 2, 8, 20, 28, 50, 82, 126 (magic numbers). For these
cases, the model predicts nuclei with filled shells. However,
electron-induced quasielastic proton knockout experiments
[16,17] show that the nucleon-independent particle behavior,
in which the shell model is based, occurs to about 70% of nu-
cleons in valence states. Nonindependent nucleons correlate
in pairs with high relative momentum due to the short-range
components of the nuclear interaction. These correlations are
called short-range correlations (SRC) [18–31]. Experiments
performed at the Thomas Jefferson National Accelerator Fa-
cility (JLab) concluded that for the 12C nucleus, 20% of the
nucleons present SRC and, within this set, 90% of the corre-
lated pairs are neutron-proton (np) type [32]. The remaining
pairs are divided into 5% for each nn and pp pairs. The
experiments consist of very energetic incident electrons in
the 12C nucleus. In the collision, it is found that a proton
is simultaneously removed with another correlated nucleon,
in this case, a neutron more frequently. The dominance of
the correlated np pair is also observed in proton removal
experiments in heavier nuclei, and even in those with more
neutrons, as verified in experiments involving 27Al, 56Fe, and
208Pb [33] nuclei. The predominance of the specific np pair,
or in other words, deuteron-like pairs, is justified as a direct
consequence of the tensor part of the nuclear interaction
[34,35].

The implications of SRC and, more specifically, of the pre-
dominance in the np pair formation are diverse, for example,
in the analysis of neutrino scattering by correlated nucleons
[36,37], in the momentum distribution of the quarks that form
these pair [38,39], and also in many nucleon systems such as
nuclear matter. Neutron star properties were also shown to be
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affected by the inclusion of the SRC phenomenology as one
can verify in Ref. [40].

In this work, we focus on the effects of the SRC in the
dimensionless tidal deformability (�) of the neutron star
system related to the GW170817 event [41–48]. Such a recent
observation of gravitational waves emission, from the binary
neutron star merger event, observed on 17 August 2017,
offered an opportunity for a deep understanding of the stellar
matter equation of state (EoS), since it provided important
constraints that reliable models should satisfy. In Sec. II,
we present the structure of the relativistic mean-field (RMF)
model, with SRC included, used to obtain the stellar matter
EoS and for the calculation of �. In Sec. III, we show the
influence of the SRC on the deformability of the neutron star
binary system. In particular, the results point out that the SRC
favor the model to reach the GW170817 constraints. Another
interesting result of our study is the clear linear correlations
exhibited between the nuclear matter bulk parameters and the
deformability. Finally, we present the summary and conclud-
ing remarks in Sec. IV.

II. RELATIVISTIC MEAN-FIELD MODEL INCLUDING
SHORT-RANGE CORRELATIONS

Probes of the short-range correlations can be verified from
the analysis of the nucleon momentum distribution functions
in several nuclei [49] such as 2H, 4He, 16O, 40Ca, as well as
12C, 56Fe, and 208Pb, previously mentioned. The SRC imply a
decrease in the occupation of the states below the Fermi level
and a partial occupation in the states above it. Consequently,
the momentum distribution function of nucleons, n(k), is
different from the step function of a Fermi gas of independent
particles, as depicted in Fig. 1 of Ref. [40], for instance.
The marked area in that figure corresponds to the region of
the so-called “high momentum tail” (HMT), in which n(k)
depends on k as n(k) ∼ k−4.

In Ref. [40], the authors proposed the implementation of
the HMT in the EoS of the relativistic mean field model
presenting third and fourth order in the scalar field σ , second
and fourth order in the vector field ω, and the interaction
between the ρ and ω mesons. Basically, the effect of the HMT
is to change the kinetic momentum integrals of the model by
replacing the traditional Fermi gas step functions by the new
n(k) distributions, in this case, given by nn,p(kF , y) = �n,p for
0 < k < kF n,p and nn,p(kF , y) = Cn,p(kF n,p/k)4 for kF n,p <

k < φn,pkF n,p. The proton fraction is given by y = ρp/ρ with
ρp being the proton density, and ρ = 2k3

F /(3π2) the total one.
In this work, we use the model constructed in Ref. [40] that

presents �n,p = 1 − 3Cn,p(1 − 1/φn,p), where Cp = C0[1 −
C1(1 − 2y)], Cn = C0[1 + C1(1 − 2y)], φp = φ0[1 − φ1(1 −
2y)], and φn = φ0[1 + φ1(1 − 2y)]. Furthermore, we also
use C0 = 0.161, C1 = −0.25, φ0 = 2.38, and φ1 = −0.56.
These values are determined from the analysis of d (e, e′, p)
reactions, medium-energy photonuclear absorptions, (e, e′)
reactions, and data from two-nucleon knockout reactions as
described in Ref. [50]. The energy density and pressure of the
RMF model with SRC implemented from such an approach

are, respectively, given by
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with the following kinetic contributions:
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Since the mean-field approximation is taken, σ, ω0 (zero
component), and ρ̄0(3) (isospin space third component) are the
expectation values of the mesons fields in the expressions
above. We also use, here, mω = 782.5 MeV, mρ = 763 MeV,
and mσ = 500 MeV. The effective nucleon mass is defined by
M∗ = Mnuc − gσ σ , the degeneracy factor is γ = 2 for asym-
metric matter, and Mnuc = 939 MeV is the nucleon rest mass.
The self-consistency of the model imposes on M∗ the condi-
tion of M∗ − Mnuc + (g2

σ /m2
σ )ρs − (A/m2

σ )σ 2 − (B/m2
σ )σ 3 =

0 with ρs = ρs p + ρsn and

ρsn,p = γ M∗�n,p
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The remaining field equations for ω0 and ρ̄0(3) are
m2

ωω0 = gωρ − Cgω(gωω0)3 − α′
3g2

ωg2
ρρ̄

2
0(3)ω0 and m2

ρρ̄0(3) =
gρρ3/2 − α′

3g2
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ρρ̄0(3)ω
2
0.

Six free coupling constants, namely, gσ , gω, gρ, A, B,
and α′

3, are determined in order to reproduce six bulk
parameters identified as ρ0 = 0.15 fm−3 (saturation density),
B0 = −16.0 MeV (binding energy), m∗ ≡ M∗

0 /Mnuc = 0.60
(ratio of the effective mass to the nucleon rest mass),
K0 = 230 MeV (incompressibility), J = 31.6 MeV
(symmetry energy), and L0 = 58.9 MeV. Here, one has B0 =
E (ρ0) − M, M∗

0 = M∗(ρ0), K0 = 9(∂ p/∂ρ)ρ0 , J = S (ρ0),
and L0 = 3ρ0(∂S/∂ρ)ρ0 with S (ρ) = (1/8)(∂2E/∂y2)|y=1/2

and E (ρ) = ε/ρ.
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We remind the reader that the values of the bulk param-
eters related to the “reference model” applied in Ref. [40]
and also in our work are based on different theoretical and
experimental studies. Usually, in nuclear mean-field models,
saturation density and binding energy are well established
closely around the values of 0.15 fm−3 and −16.0 MeV,
respectively. Regarding the symmetry energy and its slope,
the authors of Ref. [51] collected data of these quantities from
analyses of different terrestrial nuclear experiments and astro-
physical observations. They included investigations of isospin
diffusion, neutron skins, pygmy dipole resonances, α and β

decays, transverse flow, mass-radius relation, and torsional
crust oscillations of neutron stars. From the numbers extracted
from these terrestrial laboratory measurements and astrophys-
ical observations, the authors from [51] obtained the average
values of J = 31.6 ± 2.66 MeV and L0 = 58.9 ± 16 MeV.
Another set of data analyzed in Ref. [52] provided a similar
result for these isovector parameters, namely, J = 31.7 ±
3.2 and L0 = 58.7 ± 28.1. Concerning the incompressibility,
K0 = 230 MeV is consistent with the range of 220 MeV �
K0 � 260 MeV according to the the current consensus on this
quantity, see Ref. [53] for instance. Finally, the value of 0.6
for the effective mass ratio is in agreement with the limits
of 0.58 � m∗ � 0.64 [54]. In Ref. [54], the authors found a
strong correlation between m∗ and the spin-orbit splittings in
nuclei, for a particular class of relativistic models. Theauthors
concluded that parametrizations of this model presenting m∗
in the mentioned range show spin-orbit splittings in agreement
with well-established experimental values for 16O, 40Ca, and
208Pb nuclei. Furthermore, the 263 parametrizations of differ-
ent kinds of RMF models analyzed in Ref. [55] present a range
of 0.52 � m∗ � 0.80 for the effective mass ratio. The value of
m∗ = 0.6 used here is also inside this limit.

The last coupling constant of the model, namely, C is
chosen to be C = 0.005 instead of C = 0.01 from Ref. [40].
The former value ensures that the model predicts neutron stars
with masses around 2 solar masses (see next section).

In order to complete the equations needed to construct the
stellar matter, we present the chemical potentials for protons
and neutrons. They are given by

μn,p = ∂ε
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(8)

In Eq. (6), the sign (+) stands for protons and (−) for
neutrons.

From Eqs. (3) and (4) one sees that the SRC induce an
extra term in the kinetic contributions of the model. The scalar
density, Eq. (5), is also modified in the same direction, and the
kinetic part of the chemical potentials of the model changes as
μ

n,p
kin → μ

n,p
kin(SRC) + �n,pμ

n,p
kin .

III. RESULTS

A. Stellar matter

In order to determine properties related to the neutron star
system, we need to take into account charge neutrality and β-
equilibrium conditions. We consider stellar matter composed
by protons, neutrons, electrons, and muons with the last lep-
tons emerging when the electron chemical potential exceeds
the muon mass, i.e., for μe = (3π2ρe)1/3 > mμ = 105.7 MeV
(ρe is the electron density). Such assumptions lead to the con-
straints given by μn − μp = μe = μμ and ρp − ρe = ρμ =
[(μ2

μ − m2
μ)3/2]/(3π2), which have to be coupled to the field

equations coming from the RMF model. The chemical poten-
tial and density for the muons are given, respectively, by μμ

and ρμ. The total energy density and pressure of stellar matter
are E = ε + εe + εμ and P = p + pe + pμ, respectively, with
εl and pl being the energy density and pressure of the lepton
l = e, μ. Some neutron star properties, such as mass-radius
profile, can be found by solving the Tolman-Oppenheimer-
Volkoff (TOV) equations [56,57].

The spherically symmetric neutron star is composed of a
core, described here by the RMF model previously presented
along with the leptons considered, and a crust, divided into
outer and inner parts. Due to the restricted knowledge about
this specific part of the neutron star (there is not a con-
sensus with regard to its exact composition), we decided to
treat this region with widely used approaches without further
assumptions, i.e., without the inclusion of possible SRC ef-
fects. Moreover, the main purpose of our study is to analyze
the effects of SRC on �1.4 and, according to Ref. [59], the
more important contribution for this quantity comes from
the neutron star core EoS, in which we implement the SRC
phenomenology. We model the outer crust by the Baym-
Pethick-Sutherland (BPS) equation of state [58] in the density
region of 6.3 × 10−12 fm−3 � ρ � 2.5 × 10−4 fm−3 [59,60].
For the inner part, we use the polytropic form given by P(E ) =
A + BE4/3 [40,59,61,62] in a range of 2.5 × 10−4 fm−3 �
ρ � ρt , where ρt is the density associated to the core-crust
transition found, in our case, by the thermodynamical method
[63–66].

For both versions of the model, namely, with and
without SRC included, we found a maximum neutron
star mass of Mmax = 2.05M� and Mmax = 1.96M�, re-
spectively. All of them are compatible with the lim-
its of (1.928 ± 0.017)M� [67,68], (2.01 ± 0.04)M� [69],
2.14+0.20

−0.18M� (95.4% credible level) [70], and 2.14+0.10
−0.09M�

(68.3% credible level) [70]. It is worth noticing that the
effect of increasing Mmax pointed out in Ref. [40], which
uses C = 0.01, is also obtained in our model, in which C =
0.005. In Fig. 1, we display the mass-radius profile obtained
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FIG. 1. Mass-radius diagram for the RMF and RMF-SRC mod-
els for C = 0.01 (black curves) and 0.005 (red curves).

from the RMF model, with (RMF) and without (RMF-SRC)
SRC effects, for C = 0.01 (used in Ref. [40]), and for C =
0.005 (used in this work). Notice the difference in Mmax in
both parametrizations due to the reduction of the quartic-
self-coupling strength (C parameter) of the repulsive vector
field ω.

We are not restricted here to the reference model,
namely, the one with the bulk parameters given by ρ0 =
0.15 fm−3, B0 = −16.0 MeV, m∗ = 0.60, K0 = 230 MeV,

J = 31.6 MeV, and L0 = 58.9 MeV, for C = 0.005. We also
generate different parametrizations by changing only one
of these quantities while keeping the other ones fixed. We
calculate, for RMF and RMF-SRC models, some properties
related to the maximum mass neutron star for a set of different
parametrizations. The results are depicted in Fig. 2, namely,
maximum mass (Mmax), radius (Rmax), and central energy
density (Ecmax). The transition densities (ρt ), obtained for all
the parametrizations studied, are shown as well.

As one can see all parametrizations, constructed through
the variation of the bulk parameters, present Mmax compatible
with the observation of 2M� ms pulsars, except for those in
which m∗ � 0.65 (RMF model). Furthermore, regarding the
effect of the SRC on the maximum mass, we see that such a
phenomenology contributes to increase this quantity, as also
shown in Fig. 1. In the case of m∗ variation, this increasing
is reduced as m∗ approaches to 0.65. One can also notice
a reduction of Mmax with m∗ in both models, a feature also
registered in Ref. [71]. Another interesting result concerning
the inclusion of SRC is the reduction of the ρt values. This
means that the SRC enlarge the thermodynamical stable re-
gion described by the RMF-SRC model in comparison with
the RMF one.

B. Deformability calculations (GW170817 event)

Since the main quantities regarding the stellar matter de-
scription are determined, we now focus on the deformability
calculation related to the neutron star binary system studied
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FIG. 3. Results from the model with (RMF-SRC) and without
(RMF) SRC effects. (a) � as a function of M. Full circle: result of
�1.4 = 190+390

−120 from Ref. [42]. (b) Dimensionless tidal deformabil-
ities for the case of high-mass (�1) and low-mass (�2) components
of the GW170817 event. The confidence lines (90% and 50%) are
also taken from Ref. [42].

in the GW170817 event [41–43]. For this purpose, we need to
obtain the dimensionless tidal deformability, written in terms
of the (second) tidal Love number k2 as � = 2k2/(3C5) with
C = M/R (M and R are the mass and radius, respectively,
of the neutron star). k2 is evaluated through the following
expression:

k2 = 8C5

5
(1 − 2C)2[2 + 2C(yR − 1) − yR]

×{2C[6 − 3yR + 3C(5yR − 8)]

+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)]ln(1 − 2C)}−1 (9)

with yR ≡ y(R). The function y(r) is obtained through the
solution of a differential equation solved as part of a coupled
system of equations containing the TOV ones [59,72–76].

In Fig. 3, we show the results of � as a function of the neu-
tron star mass and the dimensionless deformabilities related
to the binary system of the GW170817 event. For the sake of
comparison, we display results for the model with and without
short-range correlations included. From the figure, it is clear
that SRC favor the model to reach the GW170817 data, since
�1.4 decreases in comparison with the model without the
effects, see panel (a), and the �2 × �1 curve moves to the
direction of the inner region of the LIGO and Virgo Collabora-
tion (LVC) data, as can be seen in panel (b). In the calculations
of Fig. 3(b), we use the range of 1.365 � m1/M� � 1.60 [41]
for the neutrons star with mass m1 from the binary system,
and the corresponding mass of the companion star, obtained
through [(m1m2)3/5]/[(m1 + m2)1/5] = 1.188M� [41].

We also verified whether the SRC effects are restricted
or not to the reference model used in this work, by generat-
ing different parametrizations obtained from the independent
variation of each bulk parameter. In that way, we ensure
the particular effect of the specific quantity we are chang-

FIG. 4. � as a function of the neutron star mass for different
parametrizations of the RMF model with (dashed lines) and without
(full lines) SRC included. Orange square: upper limit of �1.4 =
190+390

−120.

ing. In Figs. 4 and 5 we display the results for such new
parametrizations.

For example, in Figs. 4(a) and 5(a) we generate four
parametrizations, each one with ρ0 = 0.15 fm−3, B0 =
−16.0 MeV, m∗ = 0.60, J = 31.6 MeV, and L0 = 58.9 MeV
fixed, but changing K0 as indicated in the panels. For each
particular parametrization, we tested the effect of the SRC.
The same procedure is performed for the other isoscalar and
isovector bulk parameters in the remaining panels. The results
show the same behavior presented in Fig. 3, i.e., the SRC af-
fects the dimensionless deformabilities, namely, �1.4 and the
�1-�2 pair, always in the direction of the LVC observational
data. The smaller effect of the SRC inclusion is observed
for the parametrization for which m∗ = 0.55. Nevertheless, it
is also observed that the SRC effects are more pronounced
for parametrizations with higher values of m∗. Notice that
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FIG. 5. �1 × �2 for different parametrizations of the RMF
model with (dashed lines) and without (full lines) SRC included.
Orange lines: confidence lines of 90% and 50% from Ref. [42].
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FIG. 6. �1.4 as a function of the bulk parameters: (a) K0, (b) m∗,
(c) J , and (d) L0. Results for the model with (squares) and without
(circles) short-range correlations included. Full lines: fitting curves.

the differences between the models with and without SRC
are higher for parametrizations with m∗ � 0.60. Since M∗ =
Mnuc − gσ σ , it is possible to say that the attractive interac-
tion, represented by the scalar σ field, plays the major role
regarding the effects produced by the inclusion of the SRC
in the model. Such a feature is verified in the deformability
calculations.

Since we are able to generate different parametrizations of
the RMF model by changing independently its bulk param-
eters, we performed an investigation on the impact of these
quantities in the dimensionless deformability related to the
canonical star (M = 1.4M�), namely, �1.4. The results are de-
picted in Fig. 6. For all parametrizations, ρ0 = 0.15 fm−3 and
B0 = −16.0 MeV are fixed. From the figure, one can notice a
clear linear correlation between �1.4 and the bulk parameters
with correlation coefficients around 1. Such relationships are
preserved even when the SRC are included in the model. For
this case, it is observed that this phenomenology favors the
model to reach the limits of �1.4 = 190+390

−120 from the LVC,
corroborating the findings exhibited in Fig. 4. Furthermore,
it is also clear that �1.4 is more sensitive to variations of
m∗, as we discussed above. Such a pattern is confirmed in
Fig. 6(b) with a linear dependence clearly established. We
also notice that �1.4 is an increasing function of K0 or L0,
and decreases with J or m∗. This feature is also presented
for the parametrizations of the RMF-SRC model. Regarding
the L0 dependence of �1.4, it is worth noticing that such a
pattern (increasing of �1.4 with L0) was also observed in
Ref. [77], in which the authors used the empirical parabolic
law for the energy per particle as a function of the density and
the isospin asymmetry δ = 1 − 2y. Their findings and ours
can be indicative that the �1.4 × L0 function may follow an
increasing behavior, and as we have shown, the SRC do not
break this pattern.

Other interesting results, obtained from the analysis of
Fig. 6, are the ranges of the bulk parameters extracted
from the relationships of these quantities with the limits of

�1.4 = 190+390
−120. Since K0 and L0 can be negatives, from

the linear fitting curves, we focus on their maximum val-
ues, related to the upper limit of �1.4. They are given by
230 MeV and 58 MeV, respectively, for the RMF model.
On the other hand, when SRC are included, these numbers
change to K0 = 280 MeV and L0 = 74 MeV. For the in-
compressibility, some overlap is found for these ranges (with
and without SRC) and the current consensus of 220 MeV �
K0 � 260 MeV [53]. Concerning L0, an intersection is also
found with the range of 25 MeV � L0 � 115 MeV [55], or
even the more stringent ones given by L0 = 58.9 ± 16 MeV
[40] and L0 = 58.7 ± 28.1 MeV [52], for instance. For both
quantities, it is verified that the SRC enlarge the overlaps
between the values of K0 and L0 estimated from the LVC
data and the ones found by other predictions. Concerning
the limits of J and m∗, the fitting curves do not produce
negative values for these quantities. For the symmetry en-
ergy, the limits found are quite large, namely, 31.6 MeV �
J � 108 MeV (RMF) and 20.8 MeV � J � 131 MeV (RMF-
SRC), in comparison with J = 31.6 ± 2.66 MeV [40], J =
31.7 ± 3.2 MeV [52], and 25 MeV � J � 35 MeV [55]. For
the effective mass, the ranges are given by 0.60 � m∗ � 0.88
and 0.58 � m∗ � 0.79, respectively, for the RMF model and
the RMF-SRC one. Unlike the ranges of K0, L0, and J , the
SRC reduce the range of m∗ obtained through the association
with �1.4 = 190+390

−120.
As a remark, we emphasize to the reader that the effect of

the bulk parameters on �1.4 displayed in Fig. 6 (increasing or
decreasing, at least) is not universal concerning all quantities,
namely, K0, m∗, J , and L0. In Ref. [46], for instance, it was
observed that �1.4 increases as a function of K0 in a density
dependent van der Waals model (nucleon-nucleon interactions
parametrized as a function of the density). This is the same
pattern observed in the RMF/RMF-SRC models. However, in
that model �1.4 increases as J increases, showing the opposite
behavior in comparison with Fig. 6(c). Furthermore, this
opposite dependence is also presented in the RMF/RMF-SRC
models in which C = α′

3 = 0 in Eqs. (1) and (2) (not shown).
For these models, there is no restriction on the symmetry
energy slope as in the models studied here. With regard to
the m∗ dependence of �1.4, decreasing the latter as a function
of the former is also observed in Ref. [71], where the authors
investigate a RMF model with C = 0. Lastly, the effect of L0 is
also shown to be increasing in �1.4 for nonrelativistic Gogny
and MDI models studied in Ref. [48]. In this reference, the
authors also found a clear linear correlation for �1.4 × L0. The
increasing of �1.4 due to the increasing of L0 was also verified
in Refs. [77,78].

Finally, by restricting our calculations to the ranges for
K0, L0, J , and m∗ given by the circles and squares pre-
sented in Fig. 6, we obtained the following results for the
radius of the neutron star with M ∼ 1.4M�: 12.45 km �
R1.4 � 13.71 km (RMF) and 11.51 km � R1.4 � 13.61 km
(RMF-SRC). Such limits are in agreement with the re-
cent findings related to the millisecond pulsar PSR J0030
+ 0451, namely, R1.4 = 13.89+1.22

−1.39 km [79] and R1.4 =
13.02+1.24

−1.06 km [80], determined from the data coming from the
NASA Neutron Star Interior Composition Explorer (NICER)
mission.
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IV. SUMMARY AND CONCLUDING REMARKS

In this work we analyzed the effects of the short-range
correlations (SRC) on the dimensionless deformability re-
lated to the binary neutron star system of the GW170817
event. For the RMF model used in this work, in which ρ0 =
0.15 fm−3, B0 = −16.0 MeV, m∗ = 0.60, K0 = 230 MeV,
J = 31.6 MeV, and L0 = 58.9 MeV, we verified that the
inclusion of the SRC favor the model to reach the constraint
of �1.4 = 190+390

−120 (regarding the neutron star of M = 1.4M�)
and that one observed in the �1 × �2 region, as we show in
Fig. 3. This feature is not restricted to this particular model.
We verified that the impact of the SRC is the same even
for different parametrizations (different bulk parameters), as
exhibited in Figs. 4 and 5. The SRC are more pronounced with
respect to variations of m∗, which shows a more important role
of the attractive interaction represented by the scalar field σ .

We also analyzed that �1.4 is strongly correlated with
the isoscalar quantities K0 and m∗, and the isovector ones
J and L0. The relationships remain the same, i.e., a linear

dependence, even when SRC are included, according to the
findings pointed out in Fig. 6. It was also verified that
the ranges for the bulk parameters, associated with �1.4 =
190+390

−120, present some overlap with other constraints on K0, J ,
and L0 obtained from different predictions. Finally, the cal-
culations with the RMF and RMF-SRC models pointed out
compatible numbers for R1.4 in comparison with the data
obtained from the NICER mission.
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