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Correlation coefficient between harmonic flow and transverse momentum in heavy-ion collisions
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The correlation between the harmonic flow and the transverse momentum in relativistic heavy ion collisions
is calculated in the hydrodynamic model. The partial correlation coefficient, corrected for fluctuations of
multiplicity, is compared to experimental data. Estimators of the final transverse momentum and harmonic flow
are used to predict the value of the correlation coefficient from the moments of the initial distribution. A good
description of the hydrodynamic simulation results is obtained if the estimator for the final transverse momentum,
besides the transverse size and the entropy, includes also the eccentricities.
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I. INTRODUCTION

The dynamics of relativistic heavy ion collisions is stud-
ied experimentally by measuring characteristics of particles
emitted in collision events. Some of the most common ob-
servables used in heavy ion collisions are the harmonic
flow coefficients, measuring the azimuthal asymmetry of the
emitted hadrons, and transverse momentum spectra. In the
hydrodynamic scenario these two quantities are a measure of
the collective expansion of the dense matter created in the
interaction region [1–3].

In order to find an additional characteristic of the rapid
expansion, a correlation measurement between the harmonic
flow and transverse momentum has been proposed [4]. In
this paper we present results for the harmonic flow-transverse
momentum correlation coefficient in Pb + Pb and p + Pb
collisions at

√
sNN = 5.02 TeV. Experimental results for these

collisions have been published by the ATLAS Collaboration
[5]. The calculated correlation coefficients are corrected for
effects of multiplicity fluctuations within each centrality bin,
using the method of partial correlation coefficients [6].

The values of the final global collective variables, such
as the harmonic flow coefficients and the average transverse
momentum, can be reasonably well estimated from the initial
entropy, transverse size, and eccentricities. We study how well
such estimators of the final observables predict the correlation
coefficient between the final harmonic flow and the transverse
momentum. Linear hydrodynamic response is superimposed
on moments of the initial density to calculate the covariances
between the final observables.

*Piotr.Bozek@fis.agh.edu.pl
†hadi.mehrabpour@ipm.ir

II. MODEL

The collision dynamics is described by the viscous hy-
drodynamic model [7,8]. The initial entropy density in the
transverse plane is generated from the nucleon Glauber model.
Each participant nucleon contributes to the initial entropy
of the fireball. The system is evolved by the hydrodynamic
equations with shear viscosity η/s = 0.08 and a tempera-
ture dependent bulk viscosity [9]. At the freeze-out tem-
perature of 150 MeV hadrons are emitted statistically [10].
We perform simulation for Pb + Pb and p + Pb collisions at√

sNN = 5.02 TeV. Details of the calculation can be found in
Refs. [9,11].

The azimuthal spatial anisotropies of the initial entropy
density profile s(r, φ) in the transverse plane are characterized
by the eccentricities

εnein�n = −
∫

rdrdφ rns(r, φ)einφ∫
rdrdφ rns(r, φ)

. (1)

The hydrodynamic evolution of an azimuthally asymmetric
distribution leads to an azimuthal asymmetry in particle spec-
tra. For N particles emitted in the acceptance region the
harmonic flow coefficients are calculated

vn{2}2 = 1

N (N − 1)

N∑
j �=k=1

eın(φ j−φk ) (2)

in each event. The average transverse momentum in each
event is defined as

[pT ] = 1

N

N∑
i=1

pi . (3)

The flow coefficients and the average transverse momentum
are calculated for charged particles in most of the cases, but
we present also some results for identified particles, protons,
kaons, and pions. To improve the statistics we use combined
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events generated from the same hydrodynamic evolution. This
procedure allows to reduce the statistical error in correlations
an the corrections for self-correlations can be neglected [4].

III. PARTIAL CORRELATION

Covariances and variances of observables in heavy-ion
collisions are measured in experiments and predicted in model
calculations [12–16]. In most cases these are quantities based
on covariances (or cumulants) of flow coefficients. In this
paper we consider the correlation between the harmonic flow
coefficients and the average transverse momentum

ρ(vn{2}2, [pT ]) = Cov(vn{2}2, [pT ])√
Var(vn{2}2)Var([pT ])

. (4)

The covariances and variances in the above formula should
be calculated excluding self-correlations, i.e., the sums over
many particles should be done excluding same particle indices
[4], i.e., with

Cov(vn{2}2, [pT]) =
〈

1

N (N − 1)(N − 2)

×
∑

i �= j �=k

ein(φi−φ j )(pk − 〈[pT ]〉)

〉
(5)

and using dynamical variances

Var
(
v2

n

)
dyn

=
〈

1

N (N − 1)(N − 2)(N − 3)

×
∑

i �= j �=k �=l

einφi+inφ j e−inφk−inφl

〉

−
〈

1

N (N − 1)

∑
i �=k

einφi e−inφk

〉2

(6)

and

Var([pT ]) =
〈

1

N (N − 1)

∑
i �= j

(pi − 〈[pT ]〉)(p j − 〈[pT ]〉)

〉
,

(7)

〈· · · 〉 represents the average over events. If the correlations
between emitted particles come from the collective flow only,
the estimators in Eqs. (5), (6), and (7) represent the covariance
and the variances of the respective collective variables, with
statistical fluctuations removed. Predictions for the harmonic
flow-transverse momentum correlation have been presented
previously for Pb + Pb collisions at

√
sNN = 2760 GeV [4].

In the following we present hydrodynamic model results for
Pb + Pb collisions for a higher energy, corresponding to the
data published by the ATLAS Collaboration [5].

A direct comparison of the calculation to data is not
possible if the centrality bins in the experiment and in the
model calculation are different. The ATLAS data are obtained
in very narrow multiplicity bins, whereas model calculations
are done in relatively broad centrality bins, 5% or 10%. In a

given centrality bin the multiplicity fluctuates and such fluctu-
ations may influence the measurement of the flow-transverse
momentum correlation.

This effect in the context of heavy-ion collisions is dis-
cussed in Ref. [6]. The problem is how to extract the corre-
lation between two physical observables without interference
from a third control variable. In our case it is the question
of how to extract the correlation between the flow harmonic
vn{2}2 and the average transverse momentum [pT ] without
interference due to changes in the control variable, the event
multiplicity N . The most direct way is to fix the control vari-
able and to calculate all statistical averages in an ensemble of
events with fixed multiplicity. This would give the conditional
correlation coefficient at fixed multiplicity

ρ(vn{2}2, [pT ]|N ) = Cov(vn{2}2, [pT ]|N )√
Var(vn{2}2|N )Var([pT ]|N )

. (8)

The experimental data are calculated in narrow bins of multi-
plicity approximating the above procedure [5]. An alternative
way to estimate the correlation coefficient at fixed multiplicity
is to use the partial correlation coefficient with correction for
effects due to fluctuations in the control variable [6]. Using
the partial covariance

Cov(vn{2}2, [pT ] • N ) = Cov(vn{2}2, [pT ])

− Cov(vn{2}2, N )Cov(N, [pT ])

Var(N )
(9)

and the partial variances

Var(vn{2}2 • N ) = Var(vn{2}2) − Cov(vn{2}2, N )2

Var(N )
, (10)

Var([pT ] • N ) = Var([pT ]) − Cov([pT ], N )2

Var(N )
, (11)

one gets for partial correlation coefficient

ρ(vn{2}2, [pT ] • N )

= Cov(vn{2}2, [pT ] • N )√
Var(vn{2}2 • N )Var([pT ] • N )

= ρ(vn{2}2, [pT ]) − ρ(vn{2}2, N )ρ(N, [pT ])√
1 − ρ(vn{2}2, N )2

√
1 − ρ(N, [pT ])2

. (12)

The application of the partial correlation analysis is il-
lustrated in Fig. 1. The standard correlation coefficient
ρ(vn{2}2, [pT ]) is calculated for three different ensembles of
events width full and reduced width of the multiplicity distri-
bution (black dots).1 In the limit of zero width, one would
recover the correlation coefficient at fixed multiplicity. In
practice, we stop at an ensemble with 20% of events from the
center of the multiplicity distribution, due to limited statistics.

1The shape of multiplicity distribution is approximately a Gaus-
sian distribution in all centrality classes. The centrality bins in the
simulation are defined by the number of participants, not the final
multiplicity.
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FIG. 1. The harmonic flow-transverse momentum correlation co-
efficient (black dots) compared to the partial correlation coefficient
(red squares) for three different width of the multiplicity bins, all
events (100%), 50% of events, and 20% of events cut out from the
multiplicity distribution. (a) is for the 5–10 % and (b) is for the
30–40 % centrality bin.

One notices that the results depend on the width of the multi-
plicity bin. The limit of fixed multiplicity can be estimated
using the partial correlation coefficient ρ(vn{2}2, [pT ] • N )
(red squares in Fig. 1). With general assumptions, it is ex-
pected that the partial correlation coefficient does not depend
on the width of the multiplicity bin [6]. In our numerical
results it true within the statistical uncertainties. The two
correlation coefficients merge in the most narrow multiplicity
bin, although with increasing a large error.

IV. PARTIAL CORRELATION ANALYSIS OF FLOW
AND TRANSVERSE MOMENTUM

We calculate the correlations coefficient and the partial
correlation coefficient for charged hadrons emitted in Pb + Pb
collisions at

√
sNN = 5.02 TeV. The results obtained in the

hydrodynamic model are shown in Fig. 2. We note that the
corrections due to multiplicity fluctuations are significant,
the partial correlation coefficient ρ(vn{2}2, [pT ] • N ) is larger
that the standard correlation coefficient ρ(vn{2}2, [pT ]). The
experimental data are taken in narrow bins of centrality and
approximate the correlation coefficient at fixed multiplicity
ρ(vn{2}2, [pT ]|N ). The calculated partial correlation coeffi-
cient fairly well reproduces the measured data both for the
elliptic and triangular flow.

FIG. 2. The harmonic flow-transverse momentum correlation
coefficient (black dots) and the partial correlation coefficient (red
squares) compared to ATLAS Collaboration data (blue stars) [5] for
Pb + Pb collisions as a function the number of participant nucleons.
(a) and (b) are for elliptic and triangular flow, respectively.

The correlation between the harmonic flow and the average
transverse momentum could depend on the transverse mo-
mentum cuts used for the calculation of the flow coefficients.
First, because the harmonic flow coefficients depend on the
transverse momentum in a nonmonotonous way and second,
due to an increasing contribution from minijets for higher pT .
With increasing pT the harmonic flow-transverse momentum
correlation coefficient increases (Fig. 3). This effect appears
both in experimental data and in simulation results. The flow-

FIG. 3. The elliptic flow-transverse momentum correlation coef-
ficient for charged particles emitted in Pb + Pb collisions for dif-
ferent pT cuts, 0.2 < pT < 2 GeV (black dots), 0.5 < pT < 2 GeV
(red squares), and 1 < pT < 2 GeV (blue diamonds).
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FIG. 4. The elliptic flow-transverse momentum correlation co-
efficients (black dots) and the partial correlation coefficients (red
squares) in Pb + Pb collisions for protons (a), kaons (b), and pions
(c). The experimental points (blue stars) correspond to all charged
particles (all panels).

momentum correlation coefficient can be measured separately
for different particle species. In Figs. 4 and 5 are presented re-
sults for the partial correlation coefficient for protons, kaons,
and pions. The correlation coefficient becomes smaller with
increasing particle mass.

The flow-momentum correlation can be measured also in
p + Pb collisions. This measurement is interesting as it may

FIG. 5. Same as in Fig. 4 but for the correlation coefficient of the
triangular flow with the transverse momentum.

give some insight on the initial state. Two versions of the
Glauber model for the initial state are used, the standard one,
with deposition of entropy at the positions of the participant
nucleons and the second version of the model, with deposition
of entropy in between the participant nucleons [17]. The
two versions of the model give different rms transverse sizes
of the initial fireball. For the centralities considered in this
work, the first model gives Rrms � 1.5 fm and the second one
Rrms � 0.9 fm. The flow-momentum correlation coefficient
ρ(vn{2}2, [pT ]) is predicted to have a different sign in the two
scenarios [4].

We present results for the partial correlation coefficient
ρ(v2

n{2}, [pT ] • N ) in p + Pb collisions at
√

sNN = 5.02 TeV
(Figs. 6 and 7). The change from the standard correlation
coefficient ρ(v2

n{2}, [pT ]) is small both for the elliptic and
triangular flow. In particular, the sign of the correlation coef-
ficient is not changed in the two scenarios for the initial state.
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FIG. 6. The elliptic flow-transverse momentum correlation coef-
ficient in p + Pb collisions as a function of the number of charged
particles (pT > 0.5 GeV, |η| < 2.5). Two schemes for the initial
state, with two different average transverse sizes of the initial fireball,
Rrms � 1.5 fm (black triangles) and Rrms � 0.9 fm (red squares),
are compared. ATLAS Collaboration data are represented by blue
crosses.

A comparison of the calculation with experimental results
on the correlation coefficient between the harmonic flow and
transverse momentum favors the compact source scenario.
Interestingly, also the values of the harmonic flow coefficients,
of the average transverse momentum, and the femtoscopy
radii are better predicted in the compact source scenario
[11,18]. The agreement with the data on ρ(v2

n{2}, [pT ]) is
worst for the more central bin. It may indicate that entropy
fluctuations, which influence the multiplicity and the fireball
shape in the most central p + Pb collisions, are not correctly
implemented in the model. It would be interesting to confront
predictions of other models of initial state and hydrodynamic
simulations on flow-transverse momentum correlations with
the data. Another interesting point would be to compare the
predictions of hydrodynamic and cascade models in p + Pb
collisions.

V. ESTIMATORS FOR FLOW-MOMENTUM
CORRELATIONS

The correlation between the harmonic flow and the trans-
verse momentum of final charged hadrons results from a

FIG. 7. Same as Fig. 6 but for the triangular flow (no experimen-
tal data available).

hydrodynamic response applied to a given ensemble of initial
conditions in event by event evolution. In this paper we
consider a linear response to initial conditions. The linear
response estimators from the initial eccentricities is a good
approximation of the final harmonic flow [19–21]. The aver-
age transverse momentum in an event is largely determined
by the initial transverse size of the fireball [22]. Additional
corrections to the predictor for transverse momentum come
from the initial entropy and eccentricities [23,24].

In the following we study to predictors for the final global
observables [pT ], v2{2}2, v3{2}2, and N . The first ansatz for
the predictors is

p̂(Rrms, S) = 〈[pt ]〉 + ap(Rrms − 〈Rrms〉) + bp(S − 〈S〉),

N̂ (Rrms, N ) = aN (Rrms − 〈Rrms〉) + bN S,

v̂2{2}2(ε2) = k2ε
2
2 , v̂3{2}2(ε3) = k3ε

2
3 , (13)

where the initial transverse rms radius in an event is

Rrms =
[∫

rdrdφ r2s(r, φ)∫
rdrdφs(r, φ)

]1/2

(14)

and the initial entropy is

S =
∫

rdrdφ s(r, φ). (15)

Note that the linear predictor for the average transverse mo-
mentum is constructed as a linear relation for the deviation
from the average [pT ] − 〈[pT ]〉. The average 〈[pT ]〉 itself
depends on scales imposed on the dynamics, freeze-out tem-
perature, and hydrodynamic evolution time, not only on the
initial conditions. The coefficients (ap, …, k3) of the linear
relation (13) are adjusted to minimize the sum of square
deviations between the prediction and the actual value of
the global observable for events corresponding to a given
centrality class.

The covariance between the harmonic flow and transverse
momentum Cov(vn{2}2, [pT ]) in shown in Fig. 8. The co-
variance obtained using the hydrodynamic simulations (blue
triangles) is compared to the covariance of flow and transverse
momentum obtained using the estimator (13) (black dots). For
central collisions the covariance obtained using the predictors
reproduces the hydrodynamic results. For semiperipheral col-
lisions the deviation is significant. The same is true for the
partial correlation coefficient (Fig. 9), which involves also the
predictor for the final multiplicity.

In the improved ansatz, eccentricities ε2
n are added to the

estimator formula

p̂(Rrms, S) = 〈[pt ]〉 + ap(Rrms − 〈Rrms〉) + bp(S − 〈S〉)

+ cp
(
ε2

2 − 〈
ε2

2

〉) + dp
(
ε2

3 − 〈
ε2

3

〉)
,

N̂ (Rrms, N ) = aN (Rrms − 〈Rrms〉) + bN S

+ cN
(
ε2

2 − 〈
ε2

2

〉) + dN
(
ε2

3 − 〈
ε2

3

〉)
,

v̂2{2}2(ε2) = k2ε
2
2 , v̂3{2}2(ε3) = k3ε

2
3 . (16)

The flow-transverse momentum covariance Cov(vn{2}2, [pT ])
from the hydrodynamic simulations is well described using
the improved ansatz (red crosses in Fig. 8). Also the partial

064902-5
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FIG. 8. The covariance of the harmonic flow with the transverse
momentum in Pb + Pb collisions as a function of the number of
participant nucleons. The blue triangles represent the results of the
hydrodynamic simulation, the black dots represent the covariance
predicted using the estimator (13) of the final flow harmonic and
transverse momentum, the red crosses represent the covariance from
the improved ansatz (16) for the estimator of the transverse momen-
tum. (a) and (b) present results for the elliptic and triangular flows,
respectively.

correlation coefficient is fairly well described using the im-
proved ansatz (Fig. 9). The essential part of the improvement
comes from the inclusion of the eccentricities ε2

n in the ansatz
for the average transverse momentum. Figure 10 presents
the correlation coefficient between the transverse momentum
[pT ] and its predictor p̂. The inclusion of the eccentricities in
the predictor (16) for p̂ increases the correlation ρ([pT ], p̂T ).
It should be noted that estimators of the initial size in noncen-
tral collisions, other than the rms transverse radius, have been
discussed as determining the transverse expansion [25,26].

VI. EFFECT OF CONTROL VARIABLE
FOR OTHER OBSERVABLES

Another observable discussed in heavy ion collisions is
the variance of the average transverse momentum [22,27–29].
In the hydrodynamic model transverse momentum fluctua-
tions reflect the fluctuations of the initial volume [22] and
the violence of the collective transverse expansion [30]. For
broad centrality bins, multiplicity fluctuations are important.
Multiplicity fluctuations influence significantly the variance
of the average transverse momentum. The partial variance of

FIG. 9. The partial correlation coefficient of the harmonic flow
with the transverse momentum in Pb + Pb collisions as a function
of the number of participant nucleons. The blue triangles represent
the results of the hydrodynamic simulation, the black dots represent
the covariance predicted using the estimator (13) of the final flow
harmonic and transverse momentum, the red crosses represent the
covariance from the improved ansatz (16) for the estimator of the
transverse momentum and multiplicity. (a) and (b) present results for
the elliptic and triangular flows, respectively.

the transverse momentum with respect to the multiplicity is
significantly smaller than the standard variance (Fig. 11). This
observation should be kept in mind when comparing simu-

FIG. 10. The correlation coefficient of the average transverse
momentum [pT ] and its predictor p̂ in Pb + Pb collisions as a func-
tion of the number of participant nucleons. The black dots represent
results for the predictor depending on the initial transverse size and
entropy (13), the red crosses correspond to the predictor with initial
eccentricities added to the estimator formula (16).
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FIG. 11. The variance and partial variance of the average trans-
verse momentum in Pb + Pb collisions as a function of the number
of participant nucleons.

lations and data in centrality bins corresponding to different
widths of multiplicity distributions.

In Fig. 12 is shown the dynamical variance of the average
transverse momentum for identified particles. Again, to cor-
rect for the multiplicity fluctuations, we present results for the
particle variance of the average transverse momentum. The
event by event fluctuations of the average transverse momen-
tum are larger for massive particles. Part of this dependence
may be due to the increase of the average transverse mo-
mentum of emitted particles with particle mass. The variance
scaled by the square of average transverse momentum Var([pT ])

〈pT 〉2

shows still a clear dependence on particle mass (Fig. 13). With
increasing particle mass the contribution of collective flow
increases with respect to the thermal momentum.

As a further example, we study the partial correlation
for cumulants [13] of harmonic flows with corrections for
control variables [pT ] and N . We present results for the
correlation coefficient between the elliptic and triangular
flows ρ(v2{2}2, v3{2}2). In Fig. 14 we compare the standard
correlation coefficient and the partial correlation coefficients
with respect to multiplicity ρ(v2{2}2, v3{2}2 • N ), to trans-

FIG. 12. The dynamical variance of the event by event average
transverse momentum Var([pT ]) for protons (black circles), kaons
(blue diamonds), and pions (red squares) in Pb + Pb collisions as a
function of the number of participants nucleons.

FIG. 13. The dynamical variance of the event by event average
transverse momentum scaled by the square of the corresponding
average of the transverse momentum Var([pT ])/〈pT 〉2 for protons
(black circles), kaons (blue diamonds), and pions (red squares)
in Pb + Pb collisions as a function of the number of participants
nucleons.

verse momentum ρ(v2{2}2, v3{2}2 • [pT ]), and to both control
variables ρ(v2{2}2, v3{2}2 • N, [pT ]). The corrections due to
correlations of flow cumulants with control variables are
negligible.

VII. CONCLUSIONS

Correlations between the harmonic flow coefficients and
the average transverse momentum are studied for relativistic
collisions at

√
sNN = 5.02 TeV. Hydrodynamic model results

are compared to experimental data of the ATLAS Collabora-
tion [5]. Hydrodynamic simulations reproduce fairly well the
measurements for central and semicentral Pb + Pb collisions.
In p + Pb collisions the hydrodynamic model with initial
condition corresponding to a compact, small-sized source
reproduces qualitatively the measurement, while the standard
Glauber model initial conditions lead a wrong sign of the
correlation coefficient.

FIG. 14. The correlation coefficient between the elliptic and
the triangular flow ρ(v2{2}2, v3{2}2) (black dots), and the par-
tial correlation coefficients ρ(v2{2}2, v3{2}2 • N ) (red squares),
ρ(v2{2}2, v3{2}2 • [pT ]) (blue diamonds), and ρ(v2{2}2, v3{2}2 •
N, [pT ]) (green triangles) as functions of the number of participant
nucleons.

064902-7
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A novelty in the analysis is the incorporation of corrections
due to correlations to a control variable, the multiplicity.
Hydrodynamic simulations are performed in centrality bins
with relatively broad multiplicity distributions. The effect of
multiplicity fluctuations on the correlation coefficients can
be corrected using the partial correlation coefficient [6]. The
correction is sizable for the correlation of the elliptic flow and
transverse momentum and for the variance of the transverse
momentum.

The covariance between the final harmonic flow and trans-
verse momentum results from the hydrodynamic response
on the covariance matrix of the initial eccentricities, rms
transverse size, and multiplicity. A good ansatz for the linear
hydrodynamic response requires the combination of the trans-

verse size, entropy, and eccentricities in the estimator for the
final transverse momentum.

ACKNOWLEDGMENTS

H.M. would like to thank the AGH UST for the great hospi-
tality during the course of this work on his collaboration leave,
as well as his research adviser Hessamaddin Arfaei for all
his support. P.B. thanks Derek Teaney for helpful suggestions.
This research is supported by the AGH University of Science
and Technology, by the Institute for Research in Fundamental
Sciences (IPM), and by the Polish National Science Centre
Grant No. 2018/29/B/ST2/00244.

[1] J.-Y. Ollitrault, J. Phys.: Conf. Ser. 312, 012002 (2011).
[2] U. Heinz and R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123

(2013).
[3] C. Gale, S. Jeon, and B. Schenke, Int. J. Mod. Phys. A 28,

1340011 (2013).
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