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Semimicroscopic analysis of 6Li elastic scattering at 40 MeV/nucleon
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Analysis of the differential cross sections for 6Li elastic scattering from 24Mg, 28Si, 40Ca, 48Ca, 58Ni, 90Zr,
and 116Sn at 40 MeV/nucleon is performed within the framework of the optical double folding model. Simple
phenomenological effective nucleon-nucleon interaction represented by a density-independent single Yukawa
term is utilized to generate the real optical potential part. The derived potentials in conjunction with imaginary
parts expressed in phenomenological volume Woods-Saxon forms have been successfully used to reproduce the
seven sets of data. For the sake of comparison, the same measurements are reanalyzed using folded potentials
based upon the density-independent M3Y effective interaction. Furthermore, reasonably successful reproduction
of the data is obtained by Woods-Saxon-type optical model potentials. The radial sensitivity of the derived
real potentials to the calculating elastic-scattering angular distributions has been investigated using the notch
perturbation technique. The target mass dependence in real and imaginary volume integrals as well as total
reaction cross sections are also investigated.
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I. INTRODUCTION

The optical model (OM) is useful for describing the in-
teraction of nuclear particles involved in elastic scattering as
well as in more complicated processes. The complex potential
of the OM considers the many open channels by including an
imaginary part representing the loss of flux from the channel
in consideration. Elastic scattering is the simplest process
that occurs in a heavy-ion (HI) collision because it involves
very little rearrangement of matter and energy. Therefore, this
process has been studied in many experimental investigations,
and a huge body of elastic cross-section data is currently
available.

The double folding (DF) model is one of the simplest
and most appropriate tools for constructing the interaction
potential between complex nuclei. In the DF model, a re-
alistic effective nucleon-nucleon (NN) interaction is folded
over the distributions of nucleons within the projectile and
target nuclei. One of the most famous and successful effective
NN interactions is the so-called M3Y G-matrix interaction
[1] or its density-dependent version [2,3]. The DF potentials
with these versions usually provide only the real part of the
nucleus-nucleus potential. In this case, the imaginary potential
added to the real DF potential is commonly represented in the
Woods-Saxon (WS) form or its derivative. Accordingly, the
potential parameters included are determined phenomenolog-
ically to reproduce the experimental data of elastic scattering.

During several decades, it has been reported that the
breakup of the weakly bound 6Li projectile is responsible
for the reduction in the renormalization factor (NR ≈ 0.5 to
0.6) of the folded potential. This drop is necessary to fit
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elastic-scattering data. This effect could be simulated by a
complex dynamic polarization potential (DPP). The real DPP
part is added as a repulsive term at nuclear potential surface.
Sakuragi et al. [4], Sakuragi [5], and Sakuragi et al. [6] applied
coupled discretized continuum channel (CDCC) techniques to
confirm that the elastic-scattering data can be fitted well with
the potential renormalization close to unity when coupling to
break up the channel is included. They reported that elastic HI
scattering is almost insensitive to the potential at the nuclear
interior due to a strong absorptive potential except for a few
cases of high-energy scattering. In the case of high energies,
cross sections at large angles are very sensitive to the details
of the potential at the nuclear interior since the observed large
angle scattering displays nuclear rainbowlike enhancements.
Also, Pang and Mackintosh [7] studied the DPP due to the
breakup of the projectile for 6Li scattering from 12C at five
laboratory energies from 90 to 318 MeV. They determined
the DPP by calculating the potential that exactly reproduces
the S matrix when the process of the breakup is included in
CDCC calculations. An extensive discussion of this method
that is far away from our interest is presented in Ref. [8].
On the other hand, the assumption that the breakup effects
strongly contribute to the DPP only at the surface region is
well established [9,10].

It is worth noting that the elastic scattering of 6Li supplies
a strong test of the validity for HI potential models [11].
Large bodies of data have been accumulated in the case of
6Li scattering on various targets. The elastic scattering of
6Li with several targets has been extensively studied below
200 MeV [12–18]. Nadasen and co-workers [19,20] have
studied 6Li elastic scattering from 12C, 28Si, 40Ca, 58Ni, 90Zr,
and 208Pb at 210 MeV only with WS potentials and from
12C and 28Si at 318 MeV with phenomenological and folding
OM potentials [21]. A study of 600-MeV 6Li scattering on
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12C, 58Ni, 90Zr, and 208Pb targets was performed, and the
coupling effect between the elastic and the breakup channels
at an intermediate energy was reported in Ref. [22]. Farid and
Hassanain [11,23] have analyzed 73–318 MeV 6Li elastic and
inelastic scatterings from 12C, 28Si, 40Ca, 58Ni, 90Zr, and 208Pb
using DFM calculations with density-independent M3Y and
Jeukenne-Lejeune-Mahaux (JLM) effective NN interactions.

To extract a systematic optical potential (OP) for loosely
bound nuclei, Trache et al. [24] and Carstoiu et al. [25] have
obtained OM parameters from the fits to the elastic-scattering
angular distributions using the density-dependent JLM ef-
fective NN interaction in DF calculations. They suggested
that one can, indeed, obtain the OM potentials for pairs of
projectile-target nuclei for data which are not available or
scarce by using a folding model procedure with renormaliza-
tion factors extracted from the systematics. Also, Furumoto
and Sakuragi [26] used the DF model with the JLM effective
NN interaction for a systematic analysis of α-nucleus elastic
scattering in the range of 40–240 MeV.

About 10 yr ago, elastic-scattering cross sections at 240
MeV of 6Li particles from 24Mg and 28Si [27], 40Ca and 48Ca
[28], 58Ni and 90Zr [29], and 116Sn [30] were measured. The
OP parameters were obtained for all reactions from the fit of
elastic-scattering data using the DF model with other density-
dependent M3Y effective NN interactions as well as the WS
potential except for 6Li + 24Mg and 6Li + 28Si scattering
systems which were obtained by fitting elastic scattering with
two different DF potentials as well as WS potentials. The key
for analyzing the interactions in Refs. [27–30] is the so-called
scaling factor Sr on the radius of the calculated real OP. They
argued that it represents the repulsive surface correction of
DPP that is vital for a realistic description by the folding
model.

On the other hand, based upon the α-cluster structure,
several studies have been carried out to investigate the DF
cluster potentials for the analyses of HI’s elastic scattering
[31–33]. Recently, six sets of 6Li + 28Si elastic-scattering
data over the 76–318-MeV energy range have been analyzed
using the α-cluster folding formalism [34]. Alternatively, the
energy-density functional theory [35,36] is used to calculate
the real part of the nucleus-nucleus potential to analyze the 6Li
+ 28Si reaction at ELab = 7.5–318 MeV, and it was compared
with WS and squared WS forms.

Substantially, in the framework of the optical folding
model, many theoretical investigations were performed for
elastic scattering of heavy ions by a weakly bound nucleus
as the 6Li projectile [4–6,9–11,23–25]. One of the main
motivations for these studies was related to the role of the 6Li
breakup and other reaction channels into a nuclear collision
process in terms of the DPP. If, in these studies, the DPP
influences are included, excellent results are obtained. In light
of this context, my main motivation for the present paper
is to simplify the calculation of the nuclear potential, in
conjunction with obtaining the best fit with experimental data
through twofold: (i) Study the effect of varying the 6Li nuclear
density distribution forms to select the simplest one which
produces the best fit of the experimental data, and (ii) test the
validity of using a simple NN interaction that could include
the DPP effect.

The main goal of the present paper is analyzing the present
data by DF calculations for the real part generated by sim-
ple density-independent single Yukawa (S1Y) effective NN
interaction with a simple Gaussian form for the 6Li projectile
and without any external factor representing the effect of
the DPP. For the sake of comparison, the same measure-
ments have been analyzed using DF potentials based upon
the density-independent M3Y effective interaction. Moreover,
the notch test is employed to investigate the sensitivity of the
elastic-scattering cross section to the various regions of the
constructed real potentials.

In this paper, the elastic scattering of 6Li on 24Mg, 28Si,
40Ca, 48Ca, 58Ni, 90Zr, and 116Sn targets at 40 MeV/nucleon
is analyzed. The phenomenological analyses of the elastic-
scattering data are extracted in Sec. II. Section III specifies the
details of the semimicroscopic real DF potentials generated
based upon the S1Y and M3Y effective NN interactions with
the fits to the elastic-scattering data. The final section is
devoted to a summary of the results.

II. PHENOMENOLOGICAL ANALYSIS

The present elastic-scattering data have been analyzed with
the program HIOPTIM-94 code [37] in a standard OM potential
defined as

U (R) = VC(R) − V0 fV(R) − iW0 fW(R), (1)

where V0 and W0 are the depths of the real and imaginary parts
of the potential with the WS form

fx(R) = (
1 + exp

{[
R − rx

(
A1/3

P + A1/3
T

)]/
ax

})−1
and

x = V,W,

where rx and ax are the real (imaginary) radius parameter
(in femtometers) and diffuseness of the potential (in fem-
tometers), respectively. The Coulomb potential VC(R) for
uniformly charge distributions [14,38] of the colliding nuclei
with the radius RC = 1.4(A1/3

P + A1/3
T ) fm is used.

An automatic search is carried out in order to optimize the
fits to data by minimizing the χ2 which is defined

χ2 = 1

N

N∑
i=1

{[σcal(θi ) − σexp(θi )]/�σ (θi )}2
, (2)

where N is the number of differential cross-section data
points and σcal(θi ) is the ith calculated cross section. σexp(θi )
and �σ (θi) are the corresponding experimental cross section
and its relative uncertainty, respectively. The χ2 values are
obtained considering statistical errors for all analyzed data.

The theoretical predictions of the angular distribution of
differential cross sections extracted using the WS phenomeno-
logical OP defined by Eq. (1) and dashed line are shown
in Figs. 1 and 2 in comparison with the experimental data.
All angular distributions display typical patterns for elastic
scattering, dominated by strong absorption with Fraunhofer
diffractive oscillations around the crossing point, followed by
less developed structures at larger angles. The corresponding
best-fit parameters extracted for all seven cases are listed in
Table I. In addition to the depth, reduced radius, and diffuse-
ness for the real and imaginary parts of the OP, the table gives
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FIG. 1. Ratio of the elastic-scattering cross sections to the
Rutherford cross section as a function of the scattering angles at
ELab = 240 MeV for the 6Li scattered from 24Mg, 28Si, 40Ca, and
48Ca. The dashed line denotes the calculated ratio generated by the
phenomenological WS potentials of Eq. (1). The solid and dotted
lines represent the results of the S1Y and M3Y semimicroscopic
potentials, respectively.

the best-fit χ2, the total reaction cross-section (σR), the values
of the volume integrals per pair of interacting nucleons for the
real (JR) and imaginary parts (JI ) of the potential, respectively,
and, finally, the corresponding root-mean-square (rms) radii
of the real 〈r2〉1/2

V and imaginary 〈r2〉1/2
W potentials. For the

seven considered reactions, the data are well reproduced over
all the measured angular ranges. These results are consistent
with those extracted in previous studies [27–30]. It is noted
that the radii of the imaginary potentials are about 20–30%
larger than those of the real potentials.

III. FOLDING MODEL ANALYSIS

In addition to the analysis with WS-type potentials, the
data have been reanalyzed in the framework of the semimicro-

FIG. 2. The same as Fig. 1 but for the 6Li scattered from 58Ni,
90Zr, and 116Sn at ELab = 240 MeV.

scopic DF model. The nucleus-nucleus DF potential is given
by

VF (R) =
∫

ρ1(r1)ρ2(r2)vNN(s)dr1dr2, (3)

where ρ1 and ρ2 are nucleon densities in the projectile and
target nuclei, respectively, R denotes the distance between the
centers of mass of the colliding nuclei, s = |R + r1 − r2| is
the relative vector between the interacting nucleon pair, and
vNN(s) is the effective NN interaction used in the calculations.

Several effective NN interaction forms can be used for
calculating the folding model potentials. In the present paper,
two forms are considered. The first is the so-called S1Y
interaction, a phenomenological density-independent single
Yukawa term, which is defined as [39]

vNN(s) = V0e−s/μ/(s/μ), (4)

TABLE I. WS phenomenological OP parameters obtained by fits of scattering data.

V rV aV JV (MeV 〈r2〉1/2
V W rW aW JW (MeV 〈r2〉1/2

W σR

Interaction (MeV) (fm) (fm) fm3) (fm) (MeV) (fm) (fm) fm3) (fm) (mb) χ 2

6Li + 24Mg 114.58 0.757 0.891 243.35 4.31 34.63 0.963 1.031 141.30 5.19 1693 1.11
6Li + 28Si 143.34 0.720 0.944 262.82 4.43 32.13 1.016 0.921 129.16 5.13 1669 1.34
6Li + 40Ca 153.90 0.742 0.957 252.37 4.66 32.25 1.057 0.905 120.60 5.45 1918 1.86
6Li + 48Ca 153.10 0.788 0.893 251.94 4.70 32.00 1.084 0.823 114.32 5.5 1969 1.48
6Li + 58Ni 153.35 0.804 0.917 246.51 4.92 32.59 1.092 0.867 112.15 5.75 2179 1.76
6Li + 90Zr 159.61 0.889 0.799 261.24 5.26 38.61 1.089 0.979 116.08 6.44 2810 1.34
6Li + 116Sn 183.09 0.849 0.913 254.07 5.56 29.05 1.187 0.863 97.91 6.94 3014 0.99
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with V0 ≈ 60(1.0 − 0.005E/AP ) MeV, where E and AP are
the incident energy and the mass number of the projectile,
respectively.

The most common M3Y Reid effective NN realistic inter-
action [3] is used as a second choice in the calculation. It has
the form

vNN(s) = 7999
e−4s

4s
− 2134.25

e−2.5s

2.5s
+ J00(E )δ(s), (5)

where J00(E ) represents the single nucleon knock-on contri-
bution to the interaction and is given by

J00(E ) = −276 (1–0.005E/AP ). (6)

Earlier, DF analyses [39] of HI elastic scattering at energies
(E/AP ≈ 10 –100 MeV/nucleon) are carried out by the S1Y
interaction with a complex strength, suggested by Satchler
[39] where experimental data for 36 sets of HI elastic scat-
tering was successfully reproduced. The success of this NN
interaction is restricted for peripheral HI scattering where the
strong absorption is dominated. Satchler [39] and Satchler
et al. [40] avoided light HI scattering systems where the
elastic-scattering data are sensitive to the potential in the
interior region at small radii. Farid and Hassanain tested
the validity of the S1Y and M3Y effective interactions in
analyzing the elastic scattering of a light HI [11,23] and
the S1Y with JLM interactions for the α−α system [41].
The DF model was employed to generate both the real and
the imaginary potential parts for the former systems whereas
the real part was calculated only for the later α−α system.

Whereas the S1Y and M3Y effective interactions are used
to deduce the real OP part, the imaginary part is treated
phenomenologically using the WS potential in the three-
parameter volume form as in Eq. (1).

Since the form of density distribution of colliding nuclei
is crucial in DF calculations, four different matter density
distributions for the loosely bound 6Li ground state have been
used enabling a comparative study.

(1) Fermi two parameters (F2P),

ρ(r) = ρ0

[
1 + exp

(
r − 1.508

0.5

)]−1

, (7i)

with rms radius 〈r2〉1/2
m = 2.195 fm as in Ref. [30].

(2) The form which has been constructed from a phe-
nomenological electron-scattering proton charge distri-
bution (PHN) with the assumption that the 6Li proton and
neutron densities are equal where N = Z [11],

ρ(r) = 0.203 exp(−0.3306r2)
+ [ − 0.0131 + 0.001378r2]

× exp( − 0.1584r2), (7ii)

with 〈r2〉1/2
m = 2.394 fm.

(3) The form obtained from proton scattering with the
cluster-orbital shell-model approximation (COSMA)

TABLE II. Parameters for the nuclear matter densities of the
target’s nuclei in form of the F2P model with its corresponding rms
radius values.

Nucleus ρ0 (fm−3) c (fm) a (fm) 〈r2〉1/2 (fm) Reference

24Mg 0.17 2.995 0.478 2.922 [43]
28Si 0.175 3.15 0.475 3.012 [11]
40Ca 0.169 3.60 0.523 3.399 [11]
48Ca 0.187 3.723 0.515 3.479 [44]
58Ni 0.176 4.08 0.515 3.695 [45]
90Zr 0.165 4.90 0.515 4.251 [11]
116Sn 0.156 5.469 0.5 4.626 [30]

[30],

ρ(r) = 2.0

(
exp[−r2/(1.55)2]

π3/2(1.55)3

)

+ 1.0

(
2 exp[−r2/(2.07)2]

3π3/2(2.07)5

)
r2, (7iii)

with 〈r2〉1/2
m = 2.444 fm.

(4) Finally, in the form of a Gaussian [42] one term (G1T),

ρ(r) = ρ0 exp(−βr2), (7iv)

where β is adjusted to reproduce the recently rms radius
value published in Ref. [46]. Here, 〈r2〉1/2

m = 2.36 fm is used.
For all studied target densities, the F2P form defined by

Eq. (7i) where the parameters ρ0, c(half density radius), and
a (diffuseness) are shown in Table II with the corresponding
〈r2〉1/2

m values is used.
The four different densities of the 6Li nucleus that have

been used are displayed in Fig. 3. It shows that the PHN
is the only density that produces a tail for 6Li whereas the
others are not. The rms radius of 6Li is spread from 2.195
to 2.444 fm. In order to deal with the analysis of the experi-
mental data, it is worthwhile to select the best choice among
the four density distributions of the 6Li nucleus. Therefore,
the elastic-scattering differential cross sections generated by
the S1Y and M3Y interactions with four density distributions
are calculated and compared with the experimental data. The
volume WS imaginary three parameters shown in the tables of
Refs. [27–30] are used as a starting point in my calculations.
The best fit is observed for the G1T and COSMA density
distributions whereas the worse for the F2P form. Hence,
we chose G1T because its rms radius is compatible with the
recent rms radius value determined by Tanihata et al. [46].

The elastic-scattering data have been analyzed using the
DF potential generated by the selected 6Li density distribution
with the two effective interactions S1Y and M3Y outlined
above. The four parameters, the real depth (V0) for the
S1Y interaction or renormalization factor (NR), for the M3Y
interaction in addition to the three imaginary WS parameters
for each case are adjusted to fit the experimental scattering
data.

Figures 1 and 2 reveal also a comparison between experi-
mental elastic-scattering data for the seven reactions consid-
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FIG. 3. Nuclear matter density distributions for the 6Li projectile.

ered in this paper and the theoretical predictions produced

by the derived S1Y and M3Y semimicroscopic DF poten-
tials described by the best-fit parameters listed in Table III.
The solid and dotted curves show the results of the best-fit
semimicroscopic DF calculations based upon the S1Y and
M3Y effective interactions, respectively. All the calculated
cross sections reproduce successfully the experimental data
up to the most backward measured angles except for the 6Li
+ 24Mg reaction with the M3Y interaction where underesti-
mation of the data is shown at the backward angle. Chen and
co-workers [27–30] investigated the same set of experimental
data by using DF calculations based upon several density-
dependent and density-independent NN interactions. Without
the scaling factor introduced for the real potentials in their
calculations, fits to the experimental elastic-scattering data
cannot be achieved. It is obvious that my resulting scattering
cross section with the data is on the same footing with those
obtained by them. It seems that the folding model calculations
for the two interested types of S1Y and M3Y effective NN
interactions are valid for all targets at both forward and
backward angles.

For more investigation, the notch technique [47–49] is
performed to explore the sensitivity of the calculated scatter-
ing angular distributions to the radial regions of the derived
real DF potentials for the considered interactions. A localized
perturbation is performed into the generated real DF radial po-
tentials. Then, the notch radially moves through the potential

TABLE III. Best-fit parameters of the semimicroscopic S1Y and M3Y potentials for scattering data.

JR 〈r2〉1/2
R W r JW (MeV 〈r2〉1/2

W

Interaction V0
a (MeV fm3) (fm) (MeV) (fm) a (fm) fm3) (fm) σR (mb) χ 2

6Li + 24Mg

S1Y 56.93 245.35 4.13 27.56 1.062 0.904 132.05 5.12 1598 2.01
M3Y 0.671 245.94 4.12 34.54 0.955 1.079 143.08 5.31 1755 2.19

6Li + 28Si

S1Y 60.68 261.52 4.19 32.24 1.017 0.894 128.11 5.07 1629 2.04
M3Y 0.722 264.65 4.19 32.18 1.020 0.928 131.17 5.16 1686 2.21

6Li + 40Ca

S1Y 56.03 241.47 4.48 32.11 1.036 0.984 118.54 5.57 1991 1.68
M3Y 0.655 240.36 4.47 29.64 1.068 0.978 117.81 5.65 2021 2.12

6Li + 48Ca

S1Y 55.90 240.92 4.53 33.34 1.032 0.922 109.28 5.54 2012 1.47
M3Y 0.648 237.59 4.52 29.96 1.072 0.890 106.96 5.61 2015 1.19

6Li + 58Ni

S1Y 55.62 239.70 4.71 33.10 1.054 0.982 108.49 5.90 2275 2.13
M3Y 0.651 238.60 4.70 33.05 1.050 1.034 109.93 6.01 2363 1.24

6Li + 90Zr

S1Y 57.20 246.54 5.16 31.59 1.117 0.947 100.61 6.49 2728 1.72
M3Y 0.658 241.27 5.15 31.48 1.115 0.989 101.18 6.57 2804 1.28

6Li + 116Sn

S1Y 59.02 254.38 5.47 30.11 1.177 0.915 101.68 6.94 3060 1.16
M3Y 0.640 234.78 5.46 37.46 1.106 0.959 106.67 6.75 3037 1.41

aV0 = NR for M3Y calculations.
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FIG. 4. Radial sensitivity of the differential cross sections of 6Li
elastic scattering from 24Mg, 28Si, 58Ni, and 90Zr at the incident
energy of 240 MeV to the semimicroscopic DF real S1Y and M3Y
potentials. The curves are used to guide the eye.

to discover the influence arising from this perturbation in the
resulted cross sections. Thus, the real part of the DF potentials
is multiplied by factor

f (R; r1, r2, d ) = 1.0 − d exp{−[(R − r1)/r2]2}, (8)

where r1 is varied from 0.0 to 10 fm in 0.5-fm steps. The other
parameters, the width r2, and the amplitude d of the notch are
taken from Ref. [49]. With the fixed perturbation parameters,
the resulted ratio {[χ2(R) − χ2

0 ]/χ2
0 } versus R is used to

judge the sensitivity of the scattering to the radial region as
illustrated in Fig. 4. χ2(R) and χ2

0 , respectively, represent
the resulted best-fit value corresponding to the perturbed and
unperturbed DF real potentials listed in Table III. It can be
seen from Fig. 4 that the peak of the greatest sensitivity lies
at the surface region whereas a negligible effect is apparent in
the internal region. A slow shift of the maximum of sensitivity
to the nuclear surface is explicit as target mass increases. This
figure shows clearly also that the same sensitive regions were
determined for the resulting two DF real potentials. However,
the relative sensitivity notably differed from each other for
light targets rather than heavy ones. Therefore, it can be con-
cluded that the sensitive region determined by the notch test
is nearly model independent. In addition, elastic-scattering
cross sections for the considered scattering reactions are sen-
sitive to the nuclear matter distribution in the surface region.
Furthermore, in analog to what Farid and Hassanain deduced
in Ref. [11], the notch perturbation demonstrates that all the
target nuclei appear effectively black to the 6Li incident ions

inside the interior region of about 4 to 5 fm as the target mass
increases.

It well known that the volume integral of the nuclear
potential may be much better determined by the data than
the potential itself [50]. The volume integral of the OP per
interacting nucleon pair are determined by the relation,

JR,I = 1

APAT

∫
UR,I(R)R2dR, (9)

where UR,I(R) denote the real and imaginary OP parts, respec-
tively. Based upon nucleon-nucleus OP, Gupta and Murthy
[51] suggested a linear equation for the real volume integrals
resulted from the JLM interaction as

JR = −C
(
1 + γ A−1/3

T

)
, (10)

where C = 147 MeV fm3 and γ = 2.0. This formula shows
that JR is target mass dependent and is slowly decreasing as
the target mass increases. On the other hand, for 210-MeV
6Li scattering on 12C, 28Si, 40Ca, 58Ni, and 90Zr, Nadasen
et al. [20] suggested that the volume integrals derived using
a phenomenological WS form factor is dependent upon the
target A−1/3 in the same form as Eq. (10) but with C =
215MeVfm3 and γ ≈ 0.88 for the real part of the OP. The
values of C and γ for the imaginary potentials are 45 MeV
fm3 and 5.9, respectively.

To investigate the target mass number dependence, the JR

and JI values resulted from the generated DF potential using
the S1Y and M3Y effective interactions are compared with
both the relations of Gupta and Murthy [51] and Nadasen
et al. [20] which are represented by the dotted and solid lines,
respectively, in Fig. 5. Moreover, volume integrals obtained by
Chen and co-workers [27–30] for the same interested interac-
tions are also plotted in the figure for comparison. Generally,
it is noted that, over all the interested target mass range, the
volume integral decreases as the target mass increases. It is
clear also that the values of the real volume integrals given
by the S1Y and M3Y potentials are in good agreement with
each other and consistent with those extracted by the work of
Chen and co-workers [27–30]. Moreover, it is observed that,
as the target mass increases, the resultant volume integrals
deviate from Gupta and Murthy [51] prediction to the results
of Nadasen et al. [20]. This behavior is reversed for the values
of volume integrals for the real parts of the OPs obtained with
the phenomenological WS form factors. As seen from the
bottom of Fig. 5, the results of the imaginary volume integrals
agree well with the prediction of Nadasen et al. [20] than the
results of Chen and co-workers [27–30].

The obtained total reaction cross sections σR shown in
Tables I and III are plotted against A1/3

T in Fig. 6. It is evident
that the reaction cross sections have a clear linear behavior
with the cubic root of the target mass number. The results
obtained by using the S1Y and M3Y effective NN interactions
are consistent with those obtained by Chen and co-workers
[27–30] where the CDM3Y6 potentials was used. It is noted
that the S1Y results are in very good agreement with those
obtained by Chen and co-workers [27–30] than obtained by
the M3Y results.
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FIG. 5. The target mass number dependence of the real JR

and imaginary JI volume integrals resulted by the S1Y and M3Y
semimicroscopic potentials. The solid and dashed lines represent the
expression of Nadasen et al. [20] obtained with WS potentials and
the predictions of Gupta and Murthy [51] with microscopic JLM
potentials. For comparison, volume integral obtained by Chen and
co-workers [27–30] are also included.

IV. SUMMARY

Throughout this paper, the angular distributions of 6Li
elastic scattering from 24Mg, 28Si, 40Ca, 48Ca, 58Ni, 90Zr, and
116Sn have been analyzed in the frame of the OM at 240 MeV.
The analysis of the data has been performed in terms of
phenomenological WS form factors as well as the density-
independent semimicroscopic DF model. Successful repro-
duction of the elastic-scattering data is obtained using the
volume WS form factor potentials for all considered reactions.
For the DF calculations, two effective density-independent
NN interactions S1Y and M3Y are used to construct the
real part of the DF potential, whereas the imaginary part is
taken in WS volume form. Furthermore, the experimental data
are used for checking the preferable 6Li density distribution.
For this purpose, four density distributions with rms radii
ranging from 2.195 to 2.444 fm are used for the 6Li nucleus in
the DF calculations. The comparison between results reveals
that the G1T form with a rms radius of 2.36 fm is the best
choice. The derived S1Y semimicroscopic potentials provide
an excellent prediction of the data over the all measured
angular ranges. Successful predictions are also obtained for
M3Y potentials for all targets except the 24Mg target where
a little underestimation at backward angles is noted. It may
be due to an additional absorption included in the imaginary
potential part and because of that 24Mg is strongly deformed
and, hence, coupling to the 2+ state will affect the elastic-
scattering cross sections. The renormalization factor for M3Y

FIG. 6. The total reaction cross sections obtained by the phe-
nomenological WS and DF calculations versus A1/3

T for our interested
reactions. The dashed and dot lines are the least-squares fits to
the results of S1Y and M3Y semimicroscopic DF calculations,
respectively. The total reaction cross sections obtained by Chen and
co-workers [27–30] are also included for comparison.

real OPs (0.64–0.72) is needed in order to reproduce the
data where decreasing the target mass number increases the
renormalization factor. This reduction in the renormalization
is most probably produced by the breakup of the lithium pro-
jectile in the field of the target nucleus. The radial dependence
of the resulted DF real S1Y potential is compared with that
of the M3Y, and the sensitivity of the elastic-scattering cross
section to the two OM potentials as a function of radius is
analyzed by the notch test . Throughout the paper, it is found
that the resulting semimicroscopic real volume integrals for
both S1Y and M3Y potentials have approximately the same
values except small differences shown for the largest two
target masses. It has been observed that, as the target mass
number increases, the real volume integrals for both effective
interactions have a tendency from the predictions of Gupta and
Murthy [51] to Nadasen et al. [20] except for the 28Si target.
Furthermore, the results of the imaginary volume integrals are
spread more closely around the prediction of Nadasen et al.
[20] than the results of Chen and co-workers [27–30]. The
reaction cross sections generated from the OM calculations
indicate an explicit target mass dependence. This result is
quite compatible with that deduced previously [20,27–30].

The main advantage of our paper is to put forward a simple
DF calculation to generate the real OP for analyzing the
elastic-scattering cross sections. Although the part of the DPP
which represents the breakup effect is not shown explicitly in
our calculations, very good results are obtained. According to
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these results, the question arises could the simple S1Y effec-
tive interaction included the DPP effect? Remember that nei-
ther the most famous density-dependent CDM3Y6 effective
interaction nor those using the DPP [27–30] can successfully
fit the above data with NR equal to one. On the other hand,
the study shows that including the higher-order corrections to
the M3Y folding model calculations are necessary. Therefore,

this paper opens the door for the S1Y effective interaction
to play an important role in analyzing such interacting nu-
clei. Moreover, to present another confirmation for success-
ful S1Y predictions, S1Y density-independent DF calcula-
tions are used now to reproduce the electromagnetic B(EL)
values for inelastic-scattering cross sections for the studied
systems.
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