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Formation of superheavy nuclei in 36S + 238U and 64Ni + 238U reactions
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We describe the capture, fusion, fission, and evaporation residue formation cross sections of superheavy nuclei
within the proposed earlier two-stage dynamical model. The approaching of the projectile nucleus to the target
nucleus is described in the first stage of the model. In the second stage, the evolution of the system formed
after the touching of the projectile and target nuclei is considered. The evolution of the system on both stages
is described by the Langevin equations. The transport coefficients of these equations for the shape degrees of
freedom are calculated within the microscopic linear-response theory. The mutual orientation of the colliding
ions, the tunneling through the Coulomb barrier in the entrance channel and the shell effects in the potential
energy on both stages of the calculations are taking into account. The obtained results are compared with the
available experimental data and other theoretical predictions.
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I. INTRODUCTION

One of the most interesting and intensively developing
branches of nuclear physics is the synthesis of superheavy
elements (SHEs). Unfortunately, reactions in which two nu-
clei that are spherical in the ground state collide with each
other (the cold fusion reactions) have exhausted themselves.
Further studies of superheavy elements involve the hot fusion
reactions, in which a spherical projectile nucleus interacts
with a heavy deformed target nucleus.

The theoretical models of such reactions have to take into
account the shell structure of colliding nuclei (in order to
reproduce the nonspherical shape of the target nucleus in the
ground state). Also, the initial orientation of the target nucleus
relative to the line, connecting the centers of mass of colliding
nuclei, should be taken into account. Finally, the possibility of
deformation of the nuclei during the collision must be taken
into account.

In the present paper, the reactions 36S + 238U → 274Hs
and 64Ni + 238U → 302120 are investigated by using the two-
stage dynamic stochastic model [1–3]. These reactions differ
significantly from each other by the ratio of the masses
and charges of the colliding nuclei. It is well known that,
with increasing mass asymmetry of colliding nuclei, there
is a noticeable increase in the compound nuclei formation
cross section. Thus, the comparison of calculated results
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for the considered reactions with the experimental data al-
lows us to judge the ability to apply the developed model
to the analysis of a wider range of the SHE formation
reactions.

II. THE MODEL

In the model used here, the time evolution of the sys-
tem is described by the Langevin equations [4,5] for the
collective coordinates q and corresponding momenta p. For
the compact system the collective parameters consist only
of shape (deformation) parameters, q ≡ (α, α1, α4). Param-
eters α, α1, α4 are deformation parameters used in the shape
parametrizations based on the Cassini ovaloids [6]. Parameter
α is responsible for the total elongation of the shape, α1 for the
mass asymmetry, and α4 for the neck radius. The examples of
nuclear shapes are shown in Fig. 1.

For the entrance channel, the collective parameters are the
parameters of deformation of the target αt and projectile αp,
the distance r between the centers of mass of colliding ions,
and the orientation angle θt between the symmetry axis of the
deformed target and the line connecting centers of mass of
the colliding nuclei, q ≡ (r, αt , αp, θt ). For α < 0.5 and all
αi = 0 the Cassini ovaloids are very close to spheroids. Thus,
in the entrance channel, only spheroidal deformations of the
target and projectile are taken into account.

The deformation energy E (t )
def and E (p)

def of colliding ions
and Edef of the combined system at T = 0 are defined
within the macroscopic-microscopic method [7], Edef =
ELDM + δE . The shell correction δE to the liquid drop
energy was calculated by the approach, as proposed by
Strutinsky [8,9].
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FIG. 1. The nuclear shapes versus α and α1 at α4 = −0.2 (dotted
lines), 0.0 (solid lines), and 0.2 (dashed lines).

The Langevin equations for q and p [4,5] are

dqμ

dt
= (m−1)μν pν,

d pμ

dt
= −∂F (q, T )

∂qμ

− 1

2

∂ (m−1)νσ

∂qμ

pν pσ

− γμν (m−1)νσ pσ + gμνξν. (1)

Here a convention of summation over repeated indices ν, σ is
used. The quantity γμν is the tensor of friction coefficients and
mμν is the mass tensor,

At both stages of calculations the friction γμν and inertia
mμν tensors for the shape degrees of freedom are calculated
within the linear-response approach and local harmonic ap-
proximation [10,11]. In this approach many quantum effects
such as shell and pairing effects, and the dependence of the
collisional width of the single-particle states on the excitation
energy, are taken into account. For slow collective motion the
tensors of friction γμν and inertia mμν can be expressed in
terms of first and second derivatives of the Fourier transform
χμν (ω) of the response function,

χμν (ω) =
∑

k j

ξ 2
k j

nT
k − nT

j

h̄ω − E−
k j + i�k j

Fμ

k jF
ν
jk

+
∑

k j

η2
k j

nT
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Fμ

k jF
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jk, (2)

γμν = −i
∂χμν (ω)

∂ω

∣∣∣
ω=0

, mμν = 1

2

∂2χμν (ω)

∂ω2
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ω=0

. (3)

The precise expressions for the friction are

γμν = 2h̄
∑

k j

(
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)
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and
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(5)

Here Ek, Ej are the energies of quasiparticle states in the
ABCS-approximation, E−

k j ≡ Ek − Ej , E+
k j ≡ Ek + Ej , nT

k ≡
1/[1 + exp(Ek/T )], ηk j = ukυ j + u jυk , ξk j = uku j − υkυ j ,
where uk, υk are the coefficients of the Bogoliubov-Valatin
transformation. The operator Fμ, whose matrix elements Fμ

k j
appear in Eqs. (4) and (5), is the derivative of the single-
particle Hamiltonian with respect to the deformation param-
eter qμ. The quantity �k j is the average width of the two-
quasiparticle states, �k j = [�(Ek,�, T ) + �(Ej,�, T )]/2.
The calculation of �k j for the system with pairing is explained
in detail in Ref. [12]. One of us (F.I.) apologizes very much
for the misprints in expressions for γμν and mμν , given in
Ref. [13].

F (q, T ) in Eq. (1) is the free energy of the system. For
the shape degrees of freedom, it is calculated as the sum of
the liquid drop energy and the shell corrections (including the
corrections to the pairing energy) for neutrons and protons,

F (q, T ) = FLDM (q) + δF (n)(q, T ) + δF (p)(q, T ), (6)

with

FLDM (q) = ELDM (q) − ãT 2. (7)

The damping of the shell corrections with the temperature was
calculated according to Ignatyuk prescription [14],

δF (q, T ) = δE (q, T = 0)e−aT 2/Ed , Ed = 20 MeV. (8)

The temperature T was related to the local excitation (dissi-
pated) energy E∗(q) by the energy conservation condition at
each time step of integration of Eqs. (1),

E∗(q) = Ex − 1

2

∑
μν

(m−1)μν pμ pν − Vpot = aT 2. (9)

Here Ex is the initial excitation energy, see below. For the
level-density parameters ã and a we use the approximations
from Ref. [15]:

ã(A) = αA + βA2/3BS, (10)

where BS is the ratio of nuclear surface to the surface of
spherical nucleus, and α and β are constants, and

a(A, E∗) = ã(A)[1 + δE (T = 0)(1 − e−E∗/Ed )/E∗]. (11)

Here the level-density parameter a(A, E∗) clearly contains the
shell effects. We do not subtract the pairing gap � from E∗
since the pairing effects are already included both into δE
and E∗.

The energy (6) depends only on the parameters of the shape
of the nucleus. It does not depend on the distance between
ions or their orientation in space. In the entrance channel the
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nuclear VGK(q) and Coulomb VCoul(q) interactions between
the ions should be added to the free energy (6),

F I (q, T ) = F (t )(q, T ) + F (p)(q, T ) + VCoul(q) + VGK(q).
(12)

The friction provides the dissipation of collective motion
energy into internal energy. The fluctuations in the system are
described by the random force gμνξν . Here ξν is a random
number with the following properties:

〈ξν〉 = 0,

〈ξμ(t1)ξν (t2)〉 = 2δμνδ(t1 − t2). (13)

The magnitude of the random force gμν is expressed in
terms of diffusion tensor Dμν , Dμν = gμηgην , which is related
to the friction tensor γμν via the modified Einstein relation
Dμν = T ∗γμν , where T ∗ is the effective temperature [16],

T ∗ = h̄�

2
coth

h̄�

2T
. (14)

The parameter � is the local frequency of collective motion
[16]. The minimum of T ∗ is given by h̄�/2.

The total energy of the system is fixed at the initial stage,

Etot = E (t )
g.s. + E (p)

g.s. + Ec.m.. (15)

Here E (t )
g.s., E (p)

g.s. are the ground-state energies of the target and
projectile, Ec.m. = ElabAp/(Ap + At ) is the energy of relative
motion of target and projectile, calculated in the center-of-
mass system, and Ap and At are, correspondingly, the mass
numbers of the target and projectile. By introducing the Q
value of the reaction,

Q ≡ E (t )
g.s. + E (p)

g.s. − E (t+p)
g.s. , (16)

the total energy can be written as

Etot = E (t+p)
g.s. + Ex with Ex = Ec.m. + Q. (17)

Ex is the excitation energy of the system above the ground
state of the compound nucleus formed after fusion of target
and projectile. Ex is fixed by the initial conditions and does
not depend on time. The calculations in the present work were
carried out for the few values of Ex mentioned below.

Some terms of Eqs. (1) should be determined twice, ones
for the first, and ones for the second stage of calculations.
Such terms we denote by the upper indexes (I) and (II),
respectively.

A. The entrance channel

In the entrance channel, we describe the process of colli-
sion of an initially spherical projectile nucleus and a deformed
target nucleus. During the approaching process the projectile
also gets deformed (spheroidal).

To fix the shape of such a system (Fig. 2), it is necessary
to use at least four parameters (four collective coordinates),
q ≡ (r, αt , αp, θt ).

The potential energy of the system in the entrance channel
includes the energy of the Coulomb [17] and nuclear inter-
actions [18], adopted for the collision of the deformed nuclei
[5,19], its rotational energy [20], as well as the deformation

FIG. 2. Collective coordinates of the system, which consist of
two separated nuclei. The shape of the system is determined by four
parameters, namely, by the distance r between the centers of mass
of the colliding nuclei, by the deformation parameters of the target
(αt ) and projectile (αp) nuclei, and by the orientational parameter
θt , which is an angle between the symmetrical axis of the deformed
in the ground-state target nucleus and the line connecting centers of
mass of the colliding nuclei.

energy of each nuclei,

V I
pot = VCoul + VGK + EI

rot + E (t )
def + E (p)

def . (18)

The method for the calculation of the Coulomb interaction
energy, developed in Ref. [17], takes into account both the
deformation and the orientations of the ions. The calculation
of the nuclear interactions VGK is explained in Ref. [21]. The
angular moment L in the rotational energy is considered as a
fixed parameter.

The dependence of the potential energy of the system on
the parameter r is shown in Fig. 3. The dotted horizontal
lines in this figure are the reaction energies Ex = 57.7, 47.3,
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FIG. 3. The potential energy V I
pot (18) of colliding ions

36S + 238U and 64Ni + 238U in the fusion channel for L = 0, θt = 0
(solid) and θt = 90o (dashed). Dotted horizontal lines are the reaction
energy Ex = Ecm + Q.
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41.6, 35.8 MeV for the 36S + 238U reaction, and Ex = 64.1,
45.1, 33.5, 23.2 MeV for the 64Ni + 238U reaction, at which
the fission and quasifission of the composite systems with
Z = 108, 120 were investigated in Ref. [22]. From this figure,
it is clear that the height of the Coulomb barrier depends very
much on the orientation of the target nucleus.

The initial value of r is chosen by the requirement that the
nuclear interaction can be neglected and the Coulomb interac-
tion between ions does not depend on their deformations and
mutual orientation. The value r = 50 fm used in this paper
satisfies these criteria well. The initial orientation of the target
nucleus is distributed randomly, and the initial shape of the
target nucleus corresponds to its ground state. At the initial
moment of time, the movement in the system occurs only
along the radial coordinate.

Starting with the initial value of collective variables and
solving the equations of motion (1), one can determine the
shape parameters of the system and the corresponding mo-
mentum at the next moments of time.

The exchange of energy between the collective and the
single-particle degrees of freedom in the system being con-
sidered is induced both by the relative motion of colliding
nuclei and by their deformation. Quantitatively, the exchange
of energy is characterized by the mass and friction tensors.

The deformation of target and projectile are determined by
one parameter, αt or αp. Thus, all four collective parameters
in the entrance channel are “orthogonal” to each other, i.e.,
the mass and inverse-mass tensors are diagonal with respect
to all four parameters. The diagonal components of the mass
tensor describe the inertia of the system with respect to the
motion along the corresponding degrees of freedom; namely,
inertia of the system with respect to the radial motion is
described by its reduced mass M, the inertia of the system with
respect to the deformation of each of the nucleus is described
by mass mI

μν tensors of the isolated deformed nucleus [they
were specified above in Eq. (5)], the inertia of the system
with respect to the rotation of the deformed target nucleus
is described by its rigid-body moment of inertia Jt arbitrarily
oriented in space.

To determine components of the friction tensor we use the
equation

γμν = γ fus
μν + δμαt δαt νγ

I
αt αt

+ δμαpδαpνγ
I
αpαp

. (19)

The first term γ fus
μν in this equation is determined in accordance

with the surface-friction model [19]. It depends on relative
motion of the colliding nuclei. The second and third terms are
components of the friction γ I

αμ tensor of isolated deformed
target and projectile nuclei [specified above in Eqs. (4)]. So,
in the same way as done in Ref. [23], diagonal components
of the friction tensor responsible for energy dissipation during
the deformation of each of the nuclei are summed with the
corresponding components obtained in the linear-response
theory.

Due to the presence in the Langevin equations of the
random force term, starting the calculation from the same
point in the space of deformation parameters, one can get an
infinitely large number of possible variants of the evolution of
the system (similar to the trajectories of a Brownian particle

in the space of collective coordinates describing the state of
the system).

For the fixed value of the angular momentum of the sys-
tem, L, the heights of Coulomb barriers will be different for
different trajectories. Part of the trajectories will be reflected
by the Coulomb barrier. Part of the trajectories Nbar (L) will
overcome the barrier. Knowing the initial number of tra-
jectories N (L) with angular momentum L, we can find the
probability and cross sections [partial σbar (L) and full σbar]
of crossing the Coulomb barrier:

Pbar (L) = Nbar (L)/N (L),

σbar (L) = (π/k2)(2L + 1)Pbar (L), (20)

σbar =
∑

L

σbar (L),

where k2 is given by k2 = 2MEc.m./h̄2 with M being the
reduced mass in the entrance channel and Ec.m. being the
incident energy in the center-of-mass frame. The first-stage
calculations are stopped at the moment when the system
passes through the Coulomb barrier or reaches the internal
turning point for the subbarrier fusion. The values of the
deformation parameters of the system, as well as the values
of potential, kinetic, and internal energy, are recorded. So,
the distance between the centers of mass of the colliding
nuclei r depends on the point at which the system crossed
the Coulomb barrier. With this information, we begin to
describe the evolution of a highly deformed system formed
after touching of the initial nuclei.

B. Transition procedure

The system formed after the touching of colliding nuclei
is a highly deformed mass-asymmetric system with a well-
pronounced neck. To describe the shape of such systems,
one needs to introduce at least three parameters that are
responsible for the thickness of the neck, the distribution of
the mass relative to the neck, and the elongation of the entire
system. In the shape parametrization used in the present work
and based on Cassini ovaloids, we consider three deformation
parameters α, α1, α4 that regulate the total elongation, the
mass asymmetry, and the neck radius, respectively.

The two of these parameters (α, α1) can be found from
the requirement that elongation and the mass asymmetry of
the compact system are the same as that of two ions at the
touching point. Unfortunately, the neck parameter for the
touching system is not defined. So, it was assumed in Ref. [24]
that the compact system attains the shape that corresponds to
the minimum of deformation energy with respect to α4 (for
given α and α1). The demonstration of the definition of α4 by
such a procedure is presented in Fig. 4.

To set the initial values for the momenta we transform the
kinetic energy in the r direction into the kinetic energy in α

direction, E (rr)
kin = p2

α/2mαα (α, α1, α4). The rest of the initial
kinetic energy is shared randomly between the α1 and α4

degrees of freedom.

C. The evolution of combined system

After the initial parameters of the mono-system are set, we
start solving the Langevin equations (1). The potential energy
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FIG. 4. The deformation energy Edef at T = 0 of the combined
system formed in the reaction 64Ni + 238U as a function of the param-
eters α4 and α (α1 is fixed by the mass asymmetry of 64Ni + 238U)
system. The dashed line corresponds to fixed distance r = 14.4 fm
between the centers of mass of ions for the nose-to-nose touching
configuration, and the solid line (r = 12.55) corresponds to side-
to-side configuration (see Fig. 3). The circle marks the point where
potential energy is minimal with respect to variations of α4.

of the system included in these equations is the sum of the
deformation and rotation energies,

V II
pot = Edef + EII

rot. (21)

Tensors γμν and mμν [Eqs. (4) and (5)] characterize com-
pletely the inertia and friction properties of the combined
system.

After the start of calculations, all collective parameters of
the system can change, directing it either to the ground state
or to the scission line. The main change, however, is along
with the mass asymmetric coordinate α1. The outcome of the
Langevin equations depends very much on how much the
mass asymmetric coordinate has changed before the fission.

If masses of separated parts of the system did not change
much from the masses of colliding ions, then the deep-
inelastic collisions occur. If the masses change much, then
such events correspond to fission or quasifission events. The
latter differ from each other in how close the system came to
the ground state before the separation occurred.

In the Figs. 5 and 6 we show the dependence of deforma-
tion energy (L = 0) of synthesized nuclei 302120 and 274Hs
on the parameters α è α1 (α4 = 0). The initial deformation of
the mono-system for 302120 and 274Hs is marked by circles.
Possible directions of its evolution are shown by arrows. It is
clearly seen that, in the case of 274Hs, the system has more
chances to come to the ground state compared with 302120.

During the evolution of the combined system, the total
energy Etot is shared between the local potential, kinetic, and
excitation energies:

Etot = Vpot (q) + Ekin(q) + E∗(q). (22)

Taking into account Eq. (17) for Etot , the local excitation
energy is brought to the form

E∗(q) = Ex − [
Vpot (q) − E (t+p)

g.s.

] − Ekin(q). (23)
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α 1α

FIG. 5. The dependence of the potential energy of the system
302120 on the parameters α and α1 (α4 = 0). The circle shows
the approximate position of the initial point of evolution of the
mono-system formed in the reaction 64Ni + 238U. The arrows show
the possible directions of evolution of the mono-system: dot: deep-
inelastic collision, dashes: quasifission, solid: fission.

Note that the local excitation energy E∗(q) does not coincide
with Ex. The probability of particles or γ -quanta emission
and the kinetic energies of emitted particles is defined mainly
by the local excitation energy E∗(q). With some probability,
the system could also avoid fission and form the evaporation
residue. This event is realized if the system being near the
ground state will reduce its excitation energy by evaporating
light particles (primarily neutrons) or emitting γ rays. The
probability of these processes is estimated in the framework
of the statistical model [15] at each step of the integration of
Langevin equations (1).
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FIG. 6. The same as in Fig. 5, but for the 274Hs nucleus, formed
in the reaction 36S + 238U.
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FIG. 7. The deformation energy of 274Th at T = 0 minimized
with respect to α4. The white line marks the position of the fission
barrier.

We calculate the evolution of the compact system either
until it crosses the fission barrier (white line in Fig. 7) back
and splits into two fragments or until it gets deexcited by
the emission of light particles and γ rays and forms the
evaporation residue.

To form the evaporation residue, the system should release
the excitation energy by the evaporation of light particles
and γ quanta. We describe the particle evaporation from
an excited nucleus by the statistical method proposed in
Ref. [15], see also Ref. [20]. On each step of the integra-
tion of Langevin equations by the hit-and-miss method, we
check if the particle was emitted and what kind of partible
was emitted. The expressions for the evaporation widths � j

( j ≡ n, p, d, t, 3He, α) and �γ are given in Ref. [15]. In
particular, for the probability Pn of emitting neutron within
the time step �t of integration of Langevin equations one can
find

Pn = �t
∫ E∗

n −Bn

0
P(En)dEn, (24)

where P(En) is the probability of emitting a neutron with a
certain energy En per time and energy units,

P(En) = (2sn + 1)mn

π2h̄3ρ0(E∗
0 )

σinv (En)Enρn(E∗
n − Bn − En). (25)

Here, ρ0 and ρn are the level densities in the primary nu-
cleus and the nucleus formed after neutron emission; sn,
mn, Bn are the spin of the emitted neutron, its mass, and
its binding energy, respectively; σinv (En) is the cross section
for the absorption of a neutron with kinetic energy En by
the considered nucleus; E∗

n = E∗ − �n; E∗
0 = E∗ − �0; E∗

is the compound-nucleus excitation energy; and �n and �0

are the pairing gaps for the residual and the primary nucleus,
respectively. The probability Pn for the 274Hs nucleus is shown
in Fig. 8(a). After finding the sum of probabilities to evaporate
any particle (total probability), which is calculated in the
same way as demonstrated here for neutrons (24), by the
hit-and-miss method we determine which particle, if any, was
evaporated. For this, we generate a random number ξ between
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FIG. 8. (a) The probability P(En) [Eq. (25)] of neutron emission
per time unit as a function of neutron kinetic energy En for a few
values of excitation energy E∗ of compound nucleus 274Hs. (b) The
dependence of the number of trajectories that stay at the ground-state
region (α � 0.1) after emission of 1, 2, 3, 4, and 5 neutrons on the
excitation energy E∗ of the compound nucleus. The initial excitation
energy E∗ = 47.3 MeV is marked by the circle.

zero and unity and compare it with the total probability. If
this random number is smaller than the total probability, it is
assumed that a particle is emitted at the current step of solving
Langevin equations. The kind of a particle is determined
again at random proportionally to the known probability of
evaporation of any particle. Then, knowing the dependence of
the particle evaporation probability on its kinetic energy, we
again randomly choose its kinetic energy. As one can see from
Fig. 8(a), the most probable kinetic energy of the evaporated
neutrons is close to 1–2 MeV.

If some particle is emitted, the binding energy of this parti-
cle is subtracted from the excitation energy of the system, the
deformation energy, and the transport coefficient are replaced
by these for smaller particle number. The calculations show
that, at high value of Ex, Ex ≈ 50 MeV up to 4 to 5 neutrons
can be emitted.

During the evolution of the system from the touching con-
figuration, it has a very high probability to split into two pieces
and form the product of quasifission. A very few trajectories
would reach the ground-state deformation. Some of them
could decrease their excitation energy by light particles or
gamma emissions. The dependence of the probability to come
to the ground state on the number of evaporated neutrons
will be discussed in the next section. Here we illustrate the
deexcitation process and evaporation residue formation in the
reaction 36S + 238U → 274Hs for the case when trajectories
come to the ground state without evaporation of any par-
ticles with their initial energy Ex = 47.3 MeV. Figure 8(b)
demonstrates the deexcitation process. The “survived” nuclei
could reduce the excitation energy by the first evaporation of
neutron. Since the kinetic energy of first emitted neutron is
not fixed but distributed around some most probable value,
see Fig. 8(a), after neutron emission, one gets the distribu-
tion of events around the most probable excitation energy
E∗ = 38.7 MeV [first peak on the right in Fig. 8(b)]. The
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excitation energy after evaporation of the first neutron is still
high, the main fraction of nuclei would fission, the rest would
emit the second neutron and form the second peak on the
right in Fig. 8(b) with the most probable excitation energy
E∗ = 31.0 MeV. The process of fission and neutron emission
would continue until the excitation energy becomes smaller
than the fission barrier. In this case, one can say that the
evaporation residue was formed. The number of trajectories
that formed the evaporation residue in the case of 274Hs is by
13–15 orders of magnitude smaller than the initial number of
trajectories that reached the ground state.

Knowing probability of the system formed after collision
of the initial nuclei to form the compound nucleus (fusion pro-
cess), PCN(L), and the probability for the compound nucleus
to survive against fission, Wsur (L), one can calculate fusion
σfus and evaporation residue formation σer cross sections:

σfus =
∑

L

σfus(L) =
∑

L

σbar (L)PCN(L) (26)

and

σer =
∑

L

σer (L) =
∑

L

σbar (L)PCN(L)Wsur (L), (27)

where σfus(L) and σer (L) are fusion and evaporation residue
formation partial cross sections, respectively.

To have reliable results (at least 105 events of evaporation
residue formation) we should calculate about 1018–1024 tra-
jectories (the number of trajectories depends on the reaction
and its energy). Of course, it is impossible to run such a
number of trajectories. So, we use some simplified proce-
dure. In the entrance channel, we consider 106 trajectories.
Approximately 10% of these would reach the touching point.
In other words, at the beginning of the second stage of
calculations we have 105 trajectories. We run each trajectory
ten times. So, initially, at the beginning of the second stage
of calculation, we have again 106 trajectories. The majority
of these trajectories would undergo fission (cross the line
α = 1.0). We continue the calculations until only 10% would
remain at the compact shape. Then, from the endpoint of each
of the survived 105 trajectories, using data of its coordinates
and momenta, we start the calculations ten times. So, we
again have 106 trajectories. Repeating this procedure, again
and again, we finally obtain 105 events of evaporation residue
formation.

III. RESULTS AND DISCUSSIONS

In the present work we consider the fusion-fission process
in reactions 36S + 238U → 274Hs and 64Ni + 238U → 302120.
The calculations of the entrance channel provide for these re-
actions the Coulomb barrier penetration cross sections. Their
values should be close to the values of the capture cross
sections obtained in experiments. It should be noted that the
probability of capture is determined by the probability that
fission or quasifission events occur during the reaction. And it
does not include the probability of a deep-inelastic scattering
process, which, in principle, can occur at the second stage
of the reaction. Therefore, the cross sections of the system
crossing the Coulomb barrier obtained at the end of the first
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FIG. 9. The Coulomb barrier penetration cross sections (solid
line) for the reaction (a) 36S + 238U and (b) 64Ni + 238U as function
of the reaction energy Ex = Ec.m. + Q. Closed circles are the experi-
mental data on capture cross sections [22]. The cross sections of the
fission of the compact system, corresponding to the fragment mass
asymmetry A/2 ± 20 are shown by the dashed line (calculations) and
open circles (experimental data [22]).

stage of calculation may be slightly larger than the capture
cross sections.

Figure 9 gives the cross sections of the Coulomb barrier
penetration, and the cross sections of the almost-symmetric
(with the ratio of the masses of fragments A/2 ± 20) fission
and quasifission of the system, formed after touching of the
initial nuclei. For comparison, the corresponding experimen-
tal data [22] are also presented. It can be seen that the the-
oretical calculations agree rather well with the experimental
data.

It would be interesting to know which contribution to
fission events comes from true fission and which contribution
comes from quasifission. For this we calculated the number
of trajectories that cross the barrier (for 274Hs see white line
in Fig. 7) from outside. As one could expect, this number is
very small, only 10−4 for 274Hs and from 10−6 to 10−5 for
302120 depending on the excitation energy Ex. Thus, almost
all contributions to the mass distributions of fission fragments
in fusion-fission reactions with SHEs comes from the quasi-
fission process.

The fraction of trajectories that do not undergo quasifission
immediately and can reach the region of the ground-state
deformation is very small. Such trajectories can be considered
as leading to the fusion of the colliding ions. During further
evolution, the mono-system can evaporate few neutrons or
γ rays. So, the compound nucleus will be a set of different
isotopes with different excitation energies.

The values of fusion cross sections (events reaching
the ground state), for all considered energies of
reaction 36S + 238U → 274−xHs +xn and 64Ni + 238U →
302−x120 +xn, are given in Fig. 10.

The obtained results for the fusion cross sections and the
excitation energies of the corresponding isotopes can be used
for calculation of the evaporation residues formation cross
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for the reaction 36S + 238U → 274−xHs +xn and 64Ni + 238U →
302−x120 +xn, on the number of emitted neutrons.

sections. The summed over all isotopes values of the fusion
cross sections and the evaporation residue formation cross
sections are given in Fig. 11.

The first superheavy element with Z = 108, 266Hs, was
synthesized at GSI, Darmstadt [25] in the so-called cold
fusion reaction 58Fe + 208Pb → 266Hs with the doubly magic
208Pb as a target. The excitation energy of the compound
system in this reaction was rather low 18 ± 2 MeV and only
one neutron was emitted during the deexcitation process. For
the three observed events, the production cross section σer =
19±18

11 pb was deduced.
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FIG. 11. (a) The dependence of the total fusion cross sections
of the isotopes obtained in the reactions 36S + 238U → 274Hs and
64Ni + 238U → 302120 on the initial excitation energy Ex . The tri-
angles are the results from Ref. [28] at Ex = 29.0 MeV (�) and
Ex = 33.2 MeV (�). (b) The evaporation residues formation cross
sections for the same reactions. The up (�) and down (�) triangles
mark the data obtained in Ref. [28]. The right triangle, the stars, and
the left triangle are the results from Refs. [29] (�), [26] (�), and
[27,30] (�).

The heavier superheavies Z = 114−118 were produced
at the Joint Institute for Nuclear Research in Dubna in the
so-called warm fusion reactions. In these reactions, the initial
excitation of the compound nucleus was of the order of
30–40 MeV, consequently, up to 4 to 5 neutrons were emitted
and the residue formation cross section was much lower as
compared with the cold fusion reactions. For the comparison
of our calculated results for 274Hs, we choose the available ex-
perimental results from similar reactions 34S + 238U → 272Hs
at Ex = 38.5 MeV [26] and 26Mg + 248Cm → 270Hs, at Ex =
44 MeV and Ex = 52.1 MeV [27]. The last reaction is more
mass-asymmetric than calculated here, so the higher values of
σer than ours should be expected.

As one can see from the top part of Fig. 11(b) both
experimental and calculated results grow with the increasing
excitation energy Ex. The calculated results for 36S + 238U →
274Hs reaction are on average by one order of magnitude
smaller than the experimental cross sections from the reac-
tions mentioned above.

The calculated data for the 64Ni + 238U → 302120 reaction
are shown in the bottom part of Fig. 11. As one could
expect, the fusion cross section for 302120 is a few orders
of magnitude smaller than that of 274Hs. Consequently, the
evaporation residue formation cross section σer for 302120 is
also much smaller than that of 274Hs.

For the comparison we show the results of time-dependent
Hartree-Fock plus Langevin approach for hot fusion reactions
[28] for more mass-asymmetric combinations of the target
and projectile, 254Fm + 48Ca, PCNWsur = 302 × 10−13 at Ex =
29.0 MeV [up-triangle in Fig. 11(b)] and 248Cm + 54Cr,
PCNWsur = 2.47 × 10−13 at Ex = 33.2 MeV (down-triangle).
To bring the probabilities shown in Table 1 of Ref. [28] to
the same dimension as our calculated cross sections we have
multiplied the probabilities of Ref. [28] by the factor π/k2, see
Eq. (20). Unfortunately, in Ref. [28] the results of calculations
are presented only for the case L = 0, one term in the sum
[see Eq. (27)]. The account of higher orbital momenta should
increase the value of this sum. Thus, the calculations within
the model of Ref. [28] for higher orbital momenta are very
much desirable.

The right triangle � shows the evaporation residue cross
section calculated for the reaction 64Ni + 238U → 302120 at
Ex = 36 MeV in dynamical (up to compound nucleus forma-
tion) statistical (survival probability calculations) model [29].
The left triangle � is the evaporation residue cross section
calculated in the recent work [30] for the same reaction at
Ex = 38 MeV within the microscopic-macroscopic approach
[31] with the effective single-particle potentials obtained for
the SHE from the self-consistent HFB calculations. Our cal-
culated results [open circles in Fig. 11(b)] are in the middle
between the calculations of Ref. [28–30], which is quite
reasonable.

IV. CONCLUSIONS

In the present work, reactions that differ from each other by
the ratio of the masses of colliding nuclei almost twice were
studied. We have applied a dynamical approach to calculate
the evolution of the system starting from the approaching of
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the colliding ions to each other and up to fission (quasifission)
of the system, formed after touching of the initial nuclei or
up to the evaporation residue formation. The calculated evap-
oration residue formation cross sections for Hassium isotopes
are by one order of magnitude smaller as compared with the
existing experimental data. Thus, the values of the fusion cross
sections and the evaporation residues formation cross section
obtained for the reaction 64Ni + 238U → 302−x120 +xn should
be considered with the same accuracy. Our results are in
between the calculated results by Sekizawa (2019), Zagrebaev

(2008), and Adamian (2020). According to our results, the
most favorable energy of 64Ni ions should be close to Ec.m. =
300 MeV.
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