
PHYSICAL REVIEW C 101, 064611 (2020)

Low-energy 11Li +p and 11Li +d scattering in a multicluster model
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The 11Li +p and 11Li +d reactions are investigated in the continuum discretized coupled channel (CDCC)
method with a three-body description (9Li +n+n) of 11Li. I first discuss the properties of 11Li, and focus on E1
transition probabilities to the continuum. The existence of a 1− resonance at low excitation energies is confirmed,
but the associated E1 transition from the ground state does not have an isoscalar character, as suggested in
a recent experiment. In a second step, I study the 11Li +p elastic cross section at Elab = 66 MeV in the CDCC
framework. I obtain a fair agreement with experiment, and show that breakup effects are maximal at large angles.
The breakup cross section is shown to be dominated by the 1− dipole state in 11Li, but the role of this resonance
is minor in elastic scattering. From CDCC equivalent 11Li +p and 11Li +n potentials, I explore the 11Li +d cross
section within a standard three-body 11Li +(p + n) model. At small angles, the experimental cross section is
close to the Rutherford scattering cross section, which is not supported by the CDCC. A five-body (9Li +n+n) +
(p + n) calculation is then performed. Including breakup states in 11Li and in the deuteron represents a numerical
challenge for theory, owing to the large number of channels. Although a full convergence could not be reached,
the CDCC model tends to overestimate the data at small angles. I suggest that measurements of the 9Li +p elastic
scattering would be helpful to determine more accurate optical potentials. The current disagreement between
experiment and theory on 11Li +d scattering also deserves new experiments at other energies.
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I. INTRODUCTION

Since the discovery of halo nuclei [1], the physics of
exotic nuclei attracted much interest in the nuclear physics
community [2,3]. Halo nuclei are characterized by a low
separation energy of the last nucleon(s), and therefore by an
unusually large radius. More generally, exotic nuclei, which
are at the limit of stability, present short lifetimes, and are
essentially studied through reactions.

The recent advances of radioactive beams opened many
new perspectives in the physics of exotic nuclei. In parallel
it becomes more and more necessary to develop theoretical
models, which can help in the interpretation of the data.
Among the various theories, the continuum discretized cou-
pled channel (CDCC) method [4,5] is well suited for reactions
involving exotic nuclei. In the CDCC method, the continuum
of the projectile is taken into account. This effect was first
shown in d+ nucleus data, owing to the low binding energy of
the deuteron [4]. The CDCC formalism was then successfully
applied to reactions involving weakly bound nuclei such as
11Be [6] or 6He [7].

The first variant of the CDCC method considered a two-
body projectile (typically d = p + n) on a structureless target.
More recently, it was extended to three-body projectiles [7],
and even to two-body projectile and target [8]. The present
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works addresses the 11Li +p and 11Li +d reactions, which
have been experimentally investigated recently [9,10]. One of
the main conclusions drawn in Refs. [9,10] is the presence of
a dipole resonance in 11Li. The authors measured the elastic
cross section, together with an inelastic cross section to a
broad 1− resonance of 11Li.

The main goal of the present work is to analyze both
systems in a common framework, i.e., with the same 11Li
wave functions, and with the same 9Li+nucleon interaction.
For this purpose, I use a three-body 9Li +n+n model to
describe 11Li, and apply the CDCC theory for the scattering
cross sections. Using a common approach for 11Li +p and
11Li +d , however, requires a generalization of the CDCC
method to three-body + two-body systems. This extension
raises significant numerical difficulties, but can be performed
with modern computing facilities. The 11Li +p reaction was
recently investigated by Matsumoto et al. [11] in the CDCC
formalism. The authors, however, do not consider 11Li +d
scattering and essentially focus on a possible Feshbach res-
onance in the 9Li +n+n system.

The text is organized as follows. In Sec. II, I discuss the
11Li three-body model and, in particular, E1 transitions to the
continuum. Section III is devoted to the CDCC formalism
which is presented in a way which is valid for any number
of constituents. In Secs. IV and V, I show the 11Li +p and
11Li +d cross sections, respectively. I also discuss equiva-
lent potentials. The conclusion and outlook are presented in
Sec. VI.
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II. THREE-BODY DESCRIPTION OF 11Li

A. Outline of the hyperspherical method

The hyperspherical method is well adapted to three-body
systems (see for example, Ref. [12]), even for scattering states
[13]. I consider a three-body nucleus, made of a core (the spin
is neglected) and of two neutrons. The nucleon number and
the charge of the core are denoted as A1 and Z1e, respectively.
There are three possible sets of scaled Jacobi coordinates
(x, y) (see Refs. [12,14] for more information). I choose

x = 1√
2

(r3 − r2), y =
√

2A1

A1 + 2

(
r1 − r2 + r3

2

)
, (1)

where r1, r2, and r3 are the coordinates of the core and of the
neutrons. This choice permits a natural symmetry of the wave
functions regarding the exchange of the two neutrons.

In these coordinates, the 11Li Hamiltonian is given by

H0 = − h̄2

2mN
(�x + �y) +

∑
i< j

Vi j, (2)

where mN is the nucleon mass, and Vi j are two-body potentials
(n + n and 9Li +n). The hyper-radius ρ and the hyperangle α

are defined as

ρ2 = x2 + y2, α = arctan
y

x
, (3)

and the wave function in angular momentum j and parity π is
expanded as

� jmπ = ρ−5/2
∞∑

K=0

∑
γ

χ
jπ
γ K (ρ)Y jm

γ K (	5ρ ). (4)

In this definition, K is the hypermoment, and γ =
(
x, 
y, 
, S) represents a set of quantum numbers [15]. The
summation over K is truncated at a maximum value Kmax.
The hyperspherical harmonics Y jm

γ K depend on five angles
	5ρ = (	x,	y, α); they are defined in Ref. [15]. In Eq. (4),
the hyper-radial functions χ

jπ
γ K (ρ) are obtained from a set of

coupled differential equations(
− h̄2

2mN

[
d2

dρ2
− LK (LK + 1)

ρ2

]
− E

)
χ

jπ
γ K (ρ)

+
∑
K ′γ ′

V jπ
γ K,γ ′K ′ (ρ) χ

jπ
γ ′K ′ (ρ) = 0, (5)

where LK = K + 3/2 and where V jπ
γ K,γ ′K ′ (ρ) are the coupling

potentials, determined from the matrix elements of the two-
body potentials in Eq. (2) between hyperspherical harmonics.

In the present work, I am looking for square-integrable
solutions of Eq. (5). I expand the hyper-radial functions over
a set of N basis functions ui(ρ) as

χ
jπ
γ K (ρ) =

N∑
i=1

c jπ
γ Kiui(ρ). (6)

In practice, I choose Lagrange functions [16] which allow a
simple and accurate calculation of matrix elements, and which
have been used in previous works [17,18].

B. Description and properties of 11Li

The n + n potential is the central part of the Minnesota
potential with the exchange parameter u = 1 [19]. The 9Li +n
potential is chosen as in Ref. [20], and reproduces various
properties of 10Li, such as the scattering length. Notice that
this potential contains a forbidden state for the s and p3/2

partial waves. To avoid spurious three-body states in the
solution of Eq. (5), a supersymmetric transformation [21] is
applied. As in Ref. [17], I scale the 9Li +n potential by a factor
1.0051 to reproduce the 11Li two-neutron binding energy
S2n = 0.378 MeV [22]. For the basis functions ui(ρ), I use
a Gauss-Laguerre mesh with N = 20 and a scale parameter
h = 0.3 fm. I adopt Kmax = 20 for the ground state, which
guarantees the convergence of the energy and of the rms
radius. Using a 9Li radius of 2.43 fm [23], I find a 11Li
rms radius of 3.12 fm, in fair agreement with experiment
3.16 ± 0.11 fm [24].

The structure and the E1 distribution of 11Li have been pre-
viously discussed [17]. In the present work, I want to address
the E1 distribution more precisely. A recent experimental
work on 11Li +p scattering [9] suggests the existence of a
low-energy 1− resonance in 11Li, and that the E1 transition
probability to the ground state should have an isoscalar char-
acter. According to the authors, this property arises from the
halo structure of 11Li.

Let me start with a microscopic interpretation of the E1
transitions. At the long-wavelength approximation, the E1
operator is given, in a A-nucleon model, by

ME1
μ = e

A∑
i=1

(
1

2
− tiz

)
r′

iY
μ

1 (	′
i ), (7)

where r′
i = ri − Rc.m., ri being the space coordinate of nucleon

i, and Rc.m. the center-of-mass coordinate. Subtracting the
c.m. coordinate ensures the Galilean invariance of the opera-
tor. In this microscopic description, tiz is the isospin projection
(tiz = +1/2 for neutrons and tiz = −1/2 for protons). The first
term is called isoscalar (it does not depend on isospin) and
exactly vanishes for E1 transitions. The second term is the
isovector contribution which is essentially responsible for E1
transitions. If the isospin of the initial and final states is T = 0,
the isovector term also vanishes. A typical example is 16O
and the 12C(α, γ ) 16O reaction. Using the long wavelength
approximation with T = 0 wave functions provides exactly
zero for E1 transitions. These transitions, however, play an
important role in the capture reaction, and are due to small
T = 1 components [25].

When I adapt definition (7) to a nonmicroscopic model
involving NC clusters with charges Zk , I have

ME1
μ = e

NC∑
k=1

Zkr′
kY

μ
1 (	′

k ), (8)

where r′
k are now defined from the space coordinates of

the clusters. In a two-cluster model with nucleon numbers
(A1, A2) and charges (Z1e, Z2e), this leads to the well-known
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definition

ME1
μ = e

(
Z1

A1
− Z2

A2

)
rY μ

1 (	r ), (9)

where r is the relative coordinate between the clusters. In the
present three-body model, involving a core and two neutrons,
the dipole operator is, at the long wavelength approximation
[15],

ME1
μ = eZ1

√
2

A1(A1 + 2)
yY μ

1 (	y). (10)

This form does not explicitly include isoscalar and isovector
terms, as this wording is specific to the microscopic def-
inition (7). However, the operator (10) is directly deduced
from Eq. (7) and, therefore, is associated with an isovector
contribution, since the isoscalar term vanishes.

The E1 transition probabilities between an initial state Jiπi

and a final state Jjπ f are defined as

B(E1, Jiπi → Jf π f n)

= 2Jf + 1

2Ji + 1
|〈�Jjπ f n‖ME1‖�Jiπi〉|2. (11)

As in Ref. [17], a smooth E1 distribution dB(E1)/dE is ob-
tained by folding the discrete B(E1) with a Gaussian function
centered at Ec.m. (the width is σ = 0.3 MeV, close to the
experimental resolution). Here, Jiπi corresponds to the ground
state, and Jjπ f n to the final pseudostates. The E1 distribution
computed with Eq. (10) has been presented in Ref. [17]. It
presents a peak around Ec.m. = 0.5 MeV, associated with a
dipole resonance, and is qualitatively in agreement with the
experimental data [26] (Ec.m. is the energy with respect to the
9Li +n+n threshold).

Recently, Tanaka et al. [9] have measured the elastic and
inelastic 11Li +p cross sections at Elab = 66 MeV. This work
suggests a dipole resonance at Ex = 0.8 MeV, in good agree-
ment with the theoretical prediction. According to Tanaka
et al., the dipole transition should have an isoscalar com-
ponent, due to the halo nature of 11Li. I have tested this
hypothesis by extending the definition of the E1 operator
beyond the long wavelength approximation. The E1 operator
then reads, in a microscopic model [27],

ME1
μ = e

A∑
i=1

(
1

2
− tiz

)
r′

iY
μ

1 (	′
i )

(
1 − (kγ r′

i )
2

10

)

+ i
ekγ

4mN c

A∑
i=1

(
1

2
− tiz

)
r′

iY
μ

1 (	′
i )r

′
i · p′

i, (12)

where pi is the momentum of nucleon i, and kγ is the photon
momentum (a spin-dependent term is neglected). With this
generalization, isoscalar transitions are possible. However
they are not expected to be important since (kγ ri )2 is small
(the photon energies are of the order of a few MeV). I have
estimated the isoscalar component in the present three-body
model, with the first term of definition (12). In hyperspherical
coordinates, the dipole operator (10) is therefore comple-

0

60

120

180

0 1 2 3 4

(a)

Li 

0

0.5

1

1.5

0 1 2 3 4

x1000

(b)

(e
fm

/
M

e
V

)

FIG. 1. 11Li 1− phase shift (a) (see Ref. [17]) and E1 distribution
(b). In (b), the dashed line represents the contribution of Eq. (13)
only. The solid and dotted lines are obtained with the full E1 oper-
ator, and with the long-wavelength approximation (10), respectively.
Ec.m. is the energy with respect to the 9Li +n+n threshold.

mented by an additional term

ME1,add.
μ = − 1

10

(√
2

A1(A1 + 2)
kγ y

)2

ME1
μ . (13)

Figure 1(a) presents the 1− 9Li +n+n three-body phase
shift, as calculated in Ref. [17]. The E1 distribution is shown
in Fig. 1(b) with the first-order term (dotted line) and with the
full operator (solid line). The presence of a dipole resonance
around Ec.m. = 0.5 MeV is consistent in both figures, and
seems well established from experiment (breakup [26] and
inelastic scattering [9]). However, Fig. 1(b) shows that the
contribution of higher-order terms (dashed line) is negligible.
The present three-body calculation therefore confirms the
existence of a dipole resonance at low energies (let me em-
phasize that the only parameter, a scaling factor of the 9Li +n
potential, is adjusted on the ground-state energy), but does not
support the interpretation of an isoscalar character. This is not
surprising since the next-order term is proportional to (kγ r)2.
Even if typical radii of halo nuclei are larger than in stable
nuclei, the factor kγ = Eγ /h̄c is of the order of 0.01 fm−1,
and makes the correction quite small. Of course this argument
could not be true in T = 0 nuclei, since the leading term of
the E1 operator exactly vanishes.

III. BRIEF OVERVIEW OF THE CDCC THEORY

Originally, the CDCC method has been developed to
describe d + nucleus scattering [4]. Owing to the low
breakup threshold of the deuteron, elastic scattering cannot be
satisfactorily described if breakup effects are neglected. The
basic idea of the CDCC method is to simulate breakup effects
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FIG. 2. Cluster configurations and coordinates for 3 + 1 (a) and
3 + 2 (b) systems.

by approximations of the deuteron continuum, referred to as
pseudostates (PS). These PS correspond to positive eigenval-
ues of the Schrödinger equation associated with the projectile.
They do not have a specific physical meaning but represent an
approximation of the continuum. The CDCC formalism was
very successful to reproduce various d + nucleus data.

With the advent of radioactive beams, the CDCC method
turned out to be a useful tool to analyze reactions involving
exotic nuclei [28]. As for the deuteron, the neutron or pro-
ton separation energy of exotic nuclei is low, and breakup
effects are expected to play an important role in reactions.
The original CDCC formalism was developed for two-body
projectiles on structureless targets [5,29]. This is well adapted
to the scattering of typical two-body nuclei, such as d , 7Li,
11Be on heavy targets. The formalism was then extended
to three-body projectiles such as 6He [7] or 9Be [18], and
to systems involving two-body projectile and target, such as
11Be +d [8].

The goal of the present work is to analyze recent 11Li +p
and 11Li +d data [9,10] in the CDCC framework. A realistic
description of 11Li requires a three-body 9Li +n+n model, as
discussed in Sec. II. On the other hand, the 11Li +d reaction
also involves the deuteron, which should be described by a
p + n structure. Previous calculations on 11Be +d in a four-
body CDCC model [8,30] have shown that these calculations
lead to a large number of channels (up to several thousands),
but provide an excellent description of elastic scattering.

Let me consider a system of two nuclei described by a
set of internal coordinates ξi (see Fig. 2), and by an internal
Hamiltonian Hi. For a two-body system, I have

ξi = ri,

Hi = − h̄2

2μi
�i + v12(ri ), (14)

where μi is the reduced mass and v12(ri) a (real) nucleus-
nucleus potential. In a three-body system

ξi = (x, y),

Hi = − h̄2

2mN
(�x + �y) + v12(x) + v13(x, y) + v23(x, y).

(15)

The starting point of all CDCC calculations is to solve the
Schrödinger equation associated with the colliding nuclei, i.e.,

Hi �
jmπ

k = E jπ
k �

jmπ

k , (16)

where

�
jmπ

k = r−1gjπ

k (r) [Y
(	) ⊗ χ s] jm for a 2-body system

= ρ−5/2
∑
γ K

χ
jπ
γ Kk (ρ)Y jm

γ K (	ρ ) for a 3-body system.

(17)

In Eq. (16), index k refers to the excitation level. Energies
with E jπ

k < 0 correspond to physical states, and E jπ
k > 0

correspond to PS.
Let me now consider the Hamiltonian of the projectile +

target system, which reads

H = H1 + H2 + TR +
∑

i j

Vi j (R, ξ1, ξ2), (18)

where R is the relative coordinate (see Fig. 2) and Vi j are
optical potentials between the fragments. In 11Li +p, I need
9Li +p and n + p optical potentials, whereas 11Li +d require
the additional 9Li +n and n + n potentials. The total wave
function is expanded over a set of PS as

�JMπ =
∑
cLI

uJπ
cLI (R) ϕJMπ

cLI (	R, ξ1, ξ2), (19)

where index c stands for c = ( j1, k1, j2, k2), L is the relative
angular momentum and I the channel spin. The channel
functions ϕJMπ

cLI are defined from the internal wave functions
of the projectile and target as

ϕJMπ
cLI (	R, ξ1, ξ2)

= [[
�

j1
k1

(ξ1) ⊗ �
j2
k2

(ξ2)
]I ⊗ YL(	R)

]JM
. (20)

The summations over the spins j1, j2 and over the excitation
levels k1, k2 are controlled by truncation parameters jmax and
Emax (which can be different for the target and for the pro-
jectile). The radial functions uJπ

cLI (R) in Eq. (19) are obtained
from a set of coupled equations[

− h̄2

2μ

(
d2

dR2
− L(L + 1)

R2

)
+ E j1

k1
+ E j2

k2
− E

]
uJπ

cLI (R)

+
∑
c′L′I ′

V Jπ
cLI,c′L′I ′ (R) uJπ

c′L′I ′ (R) = 0, (21)

where μ is the reduced mass, and where the coupling poten-
tials V Jπ

cLI,c′L′I ′ (R) are defined from the matrix elements

V Jπ
cLI,c′L′I ′ (R) = 〈

ϕJMπ
cLI

∣∣∑
i j

Vi j

∣∣ϕJMπ
c′L′I ′

〉
, (22)
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and involve integration over ξ1, ξ2, and 	R. The calculation of
these coupling potentials is simple for two-body projectiles on
structureless targets (see, for example, Ref. [31]). For three-
body projectiles, the calculations are far more complicated
[7]. Here, I still go beyond this situation, since I consider a
three-body projectile 11Li = 9Li +n+n on a two-body target
d = p + n. Some technical information is given in the Ap-
pendix.

The most challenging part of CDCC calculations, however,
is not the calculation of the coupling potentials. The main
problem is that system (21) may involve several thousands of
coupled equations, and must be solved for each Jπ . In practice
I use the R-matrix method with a Lagrange mesh [32,33]. This
approach provides the scattering matrices, and therefore the
scattering cross sections.

IV. THE 11Li +p SCATTERING

A. Conditions of the calculation

The coupled-channel system (21) is solved with the R-
matrix method and Lagrange functions [32,33]. Typically I
use a channel radius a = 25 fm with 50 basis functions. Small
variations of these conditions do not bring any significant
change in the cross sections. I use the Koning-Delaroche po-
tential [34] (referred to as KD) for 9Li +p, and the Minnesota
interaction [19] for n + p. Of course the KD global potential is
not fitted on 9Li +p data, which do no exist, and is therefore
not expected to provide an excellent description of 11Li +p.
To assess the sensitivity of the cross sections, I also use
the Chapel Hill [35] parametrization (referred to as CH) for
9Li +p. The Coulomb potential is treated exactly. In contrast
with Ref. [11], who use the JLM potential, I do not introduce
any renormalization factor in the coupling potentials.

The 11Li wave functions are described in Sec. II. I include
pseudostates for j = 0+, 1−, 2+, 3− up to a maximum energy
Emax = 10 MeV, which provides an excellent convergence.
The Kmax values are 20,17,14,13, respectively [the number of
components in Eq. (4) rapidly increases with j and Kmax].
These states are illustrated in Fig. 3. As in all CDCC cal-
culations, only bound states (and narrow resonances) can
be associated with physical states. Other states are used to
simulate the 9Li +n+n continuum, and depend on the choice
of the basis. Converged calculations, however, should not
depend on the 11Li basis.

B. 11Li +p cross sections

The convergence of the elastic cross section at ELi =
66 MeV (Ec.m. = 5.5 MeV) is illustrated in Fig. 4(a). A linear
scale is used to highlight the differences between the calcu-
lations. For θ � 90◦, the cross section is weakly sensitive to
breakup effects. At large angles, however, the single-channel
calculation, involving the 11Li ground state only, provides
large cross sections, in contradiction with experiment [see
Fig. 4(b)]. Including more 11Li partial waves reduces the cross
section at large angles. The 2+ pseudostates play the dominant
role, whereas j = 1− is less important. The cross sections for
jmax = 2 and jmax = 3 are almost superimposed, which shows
that the calculation is converged.

-1
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)
FIG. 3. Pseudostate energies of 11Li for j = 0+, 1−, 2+, 3− with

the Lagrange basis defined in Sec. II B.

The dashed line in Fig. 4(a) is obtained with jmax = 3, but
limiting the pseudostates to Emax = 5.5 MeV. In other words,
open channels only are included in the expansion (19). At
large angles, the role of closed channels is therefore not neg-
ligible, as shown by the solid and dashed black curves (both
with jmax = 3). This confirms the conclusion of Ref. [36], i.e.,
that closed channels cannot be neglected to obtain converged
cross sections.

I compare the CDCC results with experiment in Fig. 4(b).
The solid black curve is the same as in Fig. 4(a). With the same
conditions ( jmax = 3, Emax = 10 MeV), I test the influence of
two other inputs of the calculation. The dashed line is obtained
with the 9Li +p CH interaction [35]. None of the available
global parametrization provides 9Li +p precise potentials and,
strictly speaking, should not be used for light nuclei such as
9Li. However, since no scattering data exist, the tradition in
the literature is to use these compilations. The comparison
between KD and CH illustrates the precision that I may expect
from the choice of the 9Li +p interaction.

The other input of the calculation is the 11Li basis. In
order to reduce the computer times, I have used a smaller
basis for 11Li : N = 15, h = 0.25 fm. This does not affect
the 11Li ground state, but changes the continuum spectrum
shown in Fig. 3 (the density is lower). Keeping jmax = 3 and
Emax = 10 MeV provides the dashed line of Fig. 4(b). Again
the effect is weak (a few percents at maximum) and shows
up for θ > 100◦ only. This smaller basis will be used for the
five-body 11Li +d calculations, where reducing the number of
PS is a critical issue.

In Ref. [9], the existence of a dipole resonance in 11Li was
suggested from an inelastic measurement 11Li(p, p′). Excita-
tion functions in different angular ranges show a peak around
Ex ≈ 0.8 MeV. From a theoretical point of view, however,
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FIG. 4. 11Li +p cross sections divided by the Rutherford cross
sections at Elab = 66 MeV (Ec.m. = 5.5 MeV). (a) Convergence
with respect to jmax. The dashed line corresponds to the trunca-
tion energy Emax = 5.5 MeV, where closed channels are neglected.
(b) Comparison of the CDCC cross sections with optical model (OM)
calculations using the KD and CH 11Li +p potentials. The dashed
line is obtained with a smaller 11Li basis (see text). The experimental
data are taken from Ref. [9].

since the 1− resonance discussed in Sec. II is quite broad,
an inelastic cross section cannot be defined rigorously. Conse-
quently, in order to provide a link between the maximum in the
E1 distribution (see Fig. 1) and the scattering process, I have
computed the integrated breakup cross section. The breakup
cross section to a pseudostate n is defined from the scattering
matrices as

σ n
BU(E , En) = π

2k2

∑
Jπ

(2J + 1)
∑

L

∣∣U Jπ
ω,nL

∣∣2
, (23)

where ω is the entrance channel, and L is the relative angular
momentum, which may take several values for pseudostates
with j > 0. Equation (23) gives the breakup cross section
to a specific pseudostate at the breakup energy En. To de-
rive a smooth curve, I use a standard folding method [17]
with a Gaussian factor f (Ex, En) (the width σ is chosen as
σ = 0.3 MeV [17]). This leads to the total cross section

σBU(E , Ex ) =
∑

n

f (Ex, En)σ n
BU(E , En), (24)

where Ex is the 9Li +n+n three-body energy. The breakup
cross section (24) is shown in Fig. 5, where I separate
the contributions of the different partial waves in 11Li. As

0
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60

80

0 1 2 3 4 5

 (
m

b
)

Li 

FIG. 5. 11Li +p breakup cross sections at Elab = 66 MeV
(Ec.m. = 5.5 MeV) for different j values.

expected from the E1 distribution of Fig. 1, the breakup
cross section presents a maximum near Ex = 0.8 MeV for
j = 1−. This is supported by the experimental inelastic cross
sections of Ref. [9]. The j = 0+ contribution is small but
the j = 2+ component is dominant for Ex � 2 MeV. The 2+
three-body phase shift presents a broad structure between 1
and 4 MeV [17]. In the discretized continuum approximation,
this structure shows up as broad peaks, which are visible in
Fig. 5 but which do not correspond to physical states.

C. 11Li +p and 11Li +n equivalent potentials

As mentioned before, CDCC calculations involve a large
number of channels. It is, however, possible to simulate these
large-scale calculations by equivalent optical potentials. The
procedure follows Refs. [8,37], and provides potentials which
approximately reproduce the multichannel CDCC calcula-
tions. Having this equivalent optical potential, it is important
to assess its accuracy to reproduce the CDCC elastic cross
section.

The 11Li +p equivalent potential Veq(R) is shown in
Fig. 6(a), where I also plot the KD potential for the sake of
comparison. The general shapes of the real and imaginary
terms are similar for both potentials. The real component is
a typical volume term, and the imaginary part corresponds
to a surface absorption. The inset of Fig. 6(a) focuses on
radial distances near the barrier, where the sensitivity of the
cross section is the largest. As expected, the role of breakup
channels in CDCC is to reduce the barrier, and to increase the
absorption at the surface. This effect can be seen in Fig. 6(b),
where the cross sections are presented. Although this global
parametrization is not fitted on exotic nuclei such as 11Li, the
calculation with the 11Li +p KD global potential reproduces
fairly well the data up to θ ≈ 100◦, but strongly deviates at
large angles. The cross section obtained with the equivalent
CDCC potential (solid curve) is in excellent agreement with
the full CDCC calculation (dotted curve), which shows that
the potential of Fig. 6(a) provides a good approximation of
the CDCC model.

I complement this study with the 11Li +n scattering at the
same energy. The goal is twofold: (i) to test the KD global
potential for neutrons; (ii) to define a 11Li +n equivalent
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FIG. 6. (a) Real and imaginary equivalent 11Li +p potentials
with the CDCC (black curves). The KD potentials are shown in
red. (b) Corresponding cross sections obtained with the potentials
(solid lines) and with the full CDCC calculations (dotted line). The
experimental data are taken from Ref. [9].

potential which, together with the 11Li +p potential discussed
before, will be used to investigate 11Li +d scattering.

Figure 7 contains the potentials (a) and cross sections (b)
at Ec.m. = 5.5 MeV. The conclusions are similar to those of
Fig. 6. Breakup effects have an important role around R ∼ 4 −
6 fm. The KD global potential provides a similar cross section,
but only predicts one minimum. The equivalent potential gives
a cross section very close to the original CDCC calculation.

V. THE 11Li +d SCATTERING

The dipole resonance observed in the 11Li +p inelastic
cross sections [9] was first suggested in a 11Li +d experiment
[10]. In addition to the broad nature of this dipole resonance,
which makes theoretical models rather complicated, the low
breakup threshold of the deuteron requires a 3 + 2 model.
The principle of the CDCC formalism remains unchanged
with respect to 11Li +p (3 + 1 model) but the calculations
are much longer since (i) the coupling potentials involve
multidimension integrals (see Appendix), (ii) the number of
channels in the coupled system (21) is the product of the
numbers of pseudostates in 11Li and in d . Having a full
convergence of the cross sections, in a wide angular range,
is therefore a challenge.

I have started this exploratory study by using a conven-
tional CDCC approach, where the breakup of 11Li is simulated
by the equivalent 11Li +p and 11Li +n potentials defined
in Sec. IV C. In this way, I deal with a standard CDCC

1

10

100

1000

0 30 60 90 120 150 180

Li = 5.5 MeV

m
b

/
sr

(b)

-70
-60
-50
-40
-30
-20
-10

0

0 2 4 6

real

imaginary

(a)

Li 

 (
M

e
V

)

-8

-6

-4

-2

0

4 5 6 7 8

FIG. 7. See caption to Fig. 6 for 11Li +n.

calculation which only includes deuteron pseudostates. The
cross section is presented in Fig. 8, with the experimental
data of Ref. [10]. As for 11Li +p, I adopt a linear scale
to highlight the convergence of the calculation. I include
deuteron partial waves up to jmax = 6, and the maximum
energy is Emax = 20 MeV. At small angles (θ � 30◦), the
calculation converges rapidly. The data are consistent with
a maximum around θ ≈ 60◦, which is supported by theory,
but the experimental amplitude is lower by a factor 5. Above
θ ≈ 60◦, the experimental oscillation is reproduced by the
calculation, but the convergence with respect to the deuteron
angular momentum is slow.

The full 3 + 2 cross sections are displayed in Fig. 9. As
these calculations, involving 11Li and d breakup simultane-
ously, are extremely time consuming, I first consider single

0

10

20

30

0 30 60 90 120 150 180

Li 0

2

4

FIG. 8. 11Li +d elastic cross section at Elab = 55.3 MeV with
the 11Li +p and 11Li +n equivalent potentials. The labels indicate
the jmax value in the deuteron. The experimental data are taken from
Ref. [10].
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FIG. 9. 11Li +d elastic cross sections at Elab = 55.3 MeV. The experimental data are taken from Ref. [10]. (a) Only 11Li breakup is
included. (b) Only deuteron breakup is included. (c) Convergence of the full five-body calculation. (d) Comparison of the CDCC calculation
with the Rutherford cross section and with the optical potential of Ref. [10].

breakup. Figure 9(a) includes 11Li breakup only, the deuteron
remaining in the ground state. Again, the calculation predicts
a maximum near θ ≈ 60◦, but the amplitude is overestimated.
As for 11Li +p, the role of j = 1− is minor, but j = 2+ PS
significantly modify the cross section.

In Fig. 9(b), the 11Li breakup is neglected, and partial
waves up to jmax = 4 are included in the deuteron. Clearly,
increasing jmax reduces the amplitude of the peak but the
calculation still overestimates the data. Figure 9(c) illustrates
the various possibilities. When breakup effects are included
in 11Li and in d , the amplitude is reduced, but the small
experimental values around θ ≈ 60◦ cannot be reproduced.
Of course, the convergence is not fully achieved. To keep
calculations within reasonable limits, I have set jmax = 2 for
11Li, and jmax = 4 for the deuteron. With these conditions, the
number of 11Li +d states is 1100, and the size of the coupled-
channel system (21) is close to 9000 when the channel spin
I and the orbital momentum L are taken into account. At
the moment, it is virtually impossible to go beyond these
values, but increasing the CDCC basis might slightly reduce
the amplitude of the peak.

In order to analyze the CDCC results, I show in Fig. 9(d)
(logarithmic scale) the Rutherford cross section, and the cross
section computed with the optical potential of Ref. [10]. Sur-
prisingly the experimental data are close to a pure Rutherford
scattering. The optical potential of Ref. [10] nicely reproduces
the data. This potential is compared to the CDCC equivalent
potential in Fig. 10. The main difference between them is that
the CDCC predicts a larger range for the real and imaginary

parts. In the single-channel approximation (grey lines), the
range of the imaginary part is slightly smaller than in the
full calculation. In a reaction involving two fragile nuclei, it
seems natural that their interaction extends to large distances.
However the optical potential which fits the data is charac-
terized by a fairly short range. This apparent contradiction
certainly deserves more experimental studies, in particular at
other scattering energies.
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FIG. 10. Real (solid line) and imaginary (dashed line) 11Li +d
equivalent potential compared to the optical potential of Ref. [10].
The grey lines correspond to the single-channel calculation. The inset
presents a zoom on the imaginary potential at large distances.
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VI. CONCLUSION

The main goal of this work is the simultaneous investiga-
tion of 11Li +p and 11Li +d scattering at low energies. 11Li
and the deuteron have a low breakup threshold, which makes
the continuum quite important. In both reactions, I have used
the same three-body model for 11Li. I paid a special attention
to E1 transitions and I extended a previous calculation of
the E1 distribution [17] by considering a correction to the
long-wavelength approximation. This correction could give
rise to isoscalar E1 transitions, as suggested in Refs. [9,10]
on the basis of a large 11Li radius. However, if I confirm the
existence of a dipole resonance at low energies, the isoscalar
part of the E1 matrix element is negligible, owing to the low
photon energies.

For the 11Li +p elastic scattering, the CDCC calculation re-
produces the experiment fairly well. The role of the 9Li +n+n
continuum can been seen at large angles (θ > 90◦), small
angles being weakly sensitive. Notice that the calculations
depend on a 9Li +p potential, which is available from global
parametrizations only. Experimental data on 9Li +p elastic
scattering would be helpful to derive a more accurate optical
potential.

From the CDCC formalism, I have determined 11Li +p
and 11Li +n equivalent potentials. The goal is to use them
in 11Li +d scattering with the additional deuteron breakup.
The comparison of these equivalent potentials with the global
potential of Ref. [34] shows that the main difference is in the
range. This result is not surprising since the large radius of
11Li, as well as its low binding energy, are not considered in
global parametrizations.

The theoretical description of 11Li +d is a difficult chal-
lenge. The incident energy of 11Li is almost the same as in
11Li +p (55.3 MeV) and the c.m. energy is therefore almost
double. In spite of this, the 11Li +d data are compatible
with a pure Rutherford scattering, as shown in Fig. 9(d). I
have investigated the 11Li +d system in two ways: in the
former, I use a standard three-body model using 11Li +p and
11Li +n interactions, and in the latter I extend the CDCC
formalism to five bodies, with 11Li described as 9Li +n+n.
Both approaches provide qualitatively similar cross sections.
At small angles (θ � 60◦), the apparent peak in the data is
present in the calculation, but its amplitude is much larger.
Increasing the number of pseudostates reduces the amplitude,
but it remains overestimated.

The five-body calculation is a numerical challenge, owing
to the very large number of channels. It is difficult to get
a perfect convergence although my calculation should not
be far from convergence. Of course such calculations have
shortcomings: (i) the 9Li +p and 9Li +n optical potentials
are not experimentally known, (ii) antisymmetrization effects
between the neutrons of 11Li and of the deuteron are ne-
glected, (iii) at these low energies, the 9Li +p and 9Li +n Pauli
forbidden states may play a role.

On the experimental side, data so close to Rutherford
scattering are unexpected. The authors of Ref. [10] fit these
data with an optical potential presenting a short range. This is
illustrated in Fig. 10, where I compare the CDCC equivalent
potential with the optical model of Ref. [10]. As for 9Li +p

scattering, more data on 11Li +d , especially at small angles,
would be welcome to confirm the short-range of the 11Li +d
potentials.
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APPENDIX: CALCULATION OF THE COUPLING
POTENTIALS

The calculation of the coupling potentials (22) is briefly
presented in this Appendix. I consider systems made of a
three-body projectile and, either of a structureless target (re-
ferred to as “3 + 1”), or of a two-body target (referred to
as “3 + 2”). Calculations associated with 2 + 2 systems have
been described in Ref. [8].

The matrix elements (22) involve three or six terms for 3 +
1 and 3 + 2 systems, respectively. I consider one of this po-
tentials, V11, associated with the Jacobi coordinates of Fig. 2.
Consequently I consider V11(R + αy1) for 3 + 1 systems and
V11(R + αy1 + βr2) for 3 + 2 systems. Coefficients α and β

are related to the masses of the fragments. This potential is
expanded in multipoles: for 3 + 1 systems, I have

V11(R + αy1) = 1√
4π

∑
λ

Vλ(R, y1)Y 0
λ

(
	y1

)
, (A1)

whereas 3 + 2 potentials are expanded as

V11(R + αy1 + βr2) = 1√
4π

∑
λλ1λ2

Vλλ1λ2 (R, r1, r2)

× [
Yλ1 (	y1 ) ⊗ Yλ2 (	r2 )

]λ

0 . (A2)

In these expansions, I assume that the z axis is along the R
direction. The multipole components Vλ and Vλλ1λ2 can be
computed by numerical integration of the potentials over the
angles.

Then, inserting expansion (A1) in the coupling potentials
(22) provide, for 3 + 1 systems

V Jπ
cc′ (R) =

∑
λ

CJπ (λ)
L j1,L′ j′1

∑
γ γ ′

D
j1 j′1(λ)
γ γ ′

∑
KK ′

F
j1 j′1(λ)

γ K,γ ′K ′ (R), (A3)

where coefficients CJπ (λ)
LI,L′I ′ are given by

CJπ (λ)
LI,L′I ′ = (−1)I ′+L+J Î L̂λ̂−1

{
I L J
L′ I ′ λ

}
〈YL‖Yλ‖YL′ 〉,

(A4)

and are common to all CDCC calculations, independently
of the projectile and target descriptions (in the case of a
structureless target the channel spin is I = j1). I use the
notation x̂ = √

2x + 1.
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Coefficients D
j1 j′1(λ)
γ γ ′ are typical of 3 + 1 systems and are

defined as

D
j1 j′1(λ)
γ γ ′ = (−1)
+S+ j′1+λ 
̂ ĵ′1

{
j1 
 S

′ j′1 λ

}

× 〈[
Y
x

(
	x1

) ⊗ Y
y

(
	y1

)]
∥∥Yλ

(
	y1

)∥∥
× [

Y
′
x

(
	x1

) ⊗ Y
′
y

(
	y1

)]
′ 〉
δ
x
′

x
δSS′ , (A5)

where the condition 
x = 
′
x arises from the choice of the

Jacobi coordinates. Functions F are also associated with 3+1
systems; they are given by

F
j1 j′1(λ)

γ K,γ ′K ′ (R) =
∫∫

χ
j1
γ K (ρ)χ j′1

γ ′K ′ (ρ)Vλ(R, ρ sin α)

×�K

x
y

(α)�K ′

′

x

′
y
(α) cos2 α sin2 α dα dρ,

(A6)

where �K

x
y

(α) are functions depending on the hyperangle
(see Refs. [8,32] for more information). In this expression,
the quadrature over the hyperangle α is performed numeri-
cally. The hyper-radial functions χ

j1
γ K (ρ) are expanded over

Lagrange functions, and the integration over ρ is therefore
straightforward.

Equation (A3) is associated with a specific term (V11) of the
total potential V11 + V21 + V31. I compute the matrix elements
of V21 and V31 by using other choices of the Jacobi coordinates.
The corresponding coupling potentials are therefore computed
with (A3) followed by a transformation using the Raynal-
Revai coefficients [14]. This method was already adopted in
Refs. [18,38].

The extension of 3 + 2 systems is new. It can be extended
from the previous equation in a systematic way. In that case,

the target has a two-body structure and its wave function is
given by Eq. (17). The coupling potentials (A3) are general-
ized as

V Jπ
cc′ (R) =

∑
λ

CJπ (λ)
LI,L′I ′

∑
γ γ ′λ1λ2

D̄
j1 j2, j′1 j′2(λλ1λ2 )
γ 
2,γ ′
′

2

×
∑
KK ′

F̄
j1 j2, j′1 j′2(λλ1λ2 )

γ K
2,γ ′K ′
′
2

(R), (A7)

where coefficients D̄ are given by

D̄
j1 j2, j′1 j′2(λλ1λ2 )
γ 
2,γ ′
′

2
= ĵ1 ĵ2 Î ′λ̂

⎧⎨
⎩

j1 j2 I
λ1 λ2 λ

j′1 j′2 I ′

⎫⎬
⎭

× 〈[
Y
2 ⊗ χs

] j2∥∥Yλ2

∥∥[
Y
′

2
⊗ χs

] j′2 〉D j1 j′1(λ1 )
γ γ ′ .

(A8)

The functions F̄ are now defined as

F̄
j1 j2, j′1 j′2(λλ1λ2 )

γ K
2,γ ′K ′
′
2

(R)

=
∫∫∫

χ
j1
γ K (ρ)gj2


2
(r2)Vλλ1λ2

× (R, ρ sin α, r2)χ j′1
γ ′K ′ (ρ)gj′2


′
2
(r2)�K


x
y
(α)

×�K ′

′

x

′
y
(α) cos2 α sin2 α dα dρ dr2, (A9)

which means that an additional integration over r2 is required.
Again, the two-body radial functions gj2


2
(r2) are expanded

over a Lagrange mesh, and the associated quadrature is sim-
ple. As for 3 + 1 systems, the use of Raynal-Revai coefficients
permits a similar calculation for the other components of the
potential V21,V31,V22, and V32. An extension to 3 + 3 systems
is feasible by adopting the same technique, and by using a
double Raynal-Revai transformation.
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