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Transition properties of low-lying states in 28Si probed via inelastic proton and α scattering
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0+, 1−, 2+, and 3− excitations of 28Si are investigated via proton and α inelastic scattering off 28Si.
The structure calculation of 28Si is performed with the energy variation after total angular momentum and
parity projections in the framework of antisymmetrized molecular dynamics (AMD). As a result of the AMD
calculation, the oblate ground and prolate bands, 0+ and 3− excitations, and the 1− and 3− states of the
Kπ = 0− band are obtained. Using the matter and transition densities of 28Si obtained by AMD, microscopic
coupled-channels calculations of proton and α scattering off 28Si are performed. The proton-28Si potentials in
the reaction calculation are microscopically derived by folding the Melbourne g-matrix NN interaction with
the AMD densities of 28Si. The α-28Si potentials are obtained by folding the nucleon-28Si potentials with an α

density. The calculation reasonably reproduces the observed elastic and inelastic cross sections of proton and α

scattering. Transition properties are discussed by combining the reaction analysis of proton and α scattering and
structure features such as transition strengths and form factors. The isoscalar monopole and dipole transitions
are focused.
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I. INTRODUCTION

One of the interesting phenomena concerning nuclear de-
formations in sd-shell nuclei is shape coexistence of oblate
and prolate deformations of 28Si. The ground band of the
0+

1 , 2+
1 , and 4+

1 states was assigned to the oblate band from
experimental data of the quadrupole moment of the 2+

1 state
and in-band E2 transitions. The 0+

2 state is considered to be a
monopole vibration mode on the oblate ground state, whereas
the 3−

1 state is discussed as an octupole vibration of the ground
state. In addition, the excited Kπ = 0+ band starting from the
0+

3 at 6.691 MeV is considered to be a prolate deformation
band. On the theoretical side, structure studies of 28Si with
mean-field [1] and cluster models [2] have suggested coexis-
tence of the oblate and prolate shapes, while modern mean-
field calculations failed to describe the prolate 0+

3 band [3–5].
In these years, calculations with antisymmetrized molecular
dynamics (AMD) [6–8] described the shape coexistence of
28Si and discussed excitations on the oblate and prolate de-
formations. However, assignments of those excited states to
experimental energy levels are remaining issues to be solved.

To clarify deformations and transition properties of these
excited states, experiments of inelastic electron scattering
(e, e′) and proton scattering (p, p′) off 28Si have been per-
formed [9–14]. The work of Ref. [14] discussed transition
densities from the ground state with reaction analysis of
(p, p′) data at the incident energy Ep = 180 MeV combined

with (e, e′) data. Detailed studies were performed mainly for
strongly populated states, but not done yet for weak transi-
tions. For example, the (p, p′) cross sections of the 2+

1 and 3−
1

states were described with a reaction model calculation using
the transition densities reduced from the charge form factors
measured by (e, e′) cross sections. For a consistency check,
the reduced transition densities were found to give consistent
values of B(E2) and B(E3) with those determined by γ -decay
lifetimes.

For 0+ and 1− states, there are no γ -decay data of the
transition strengths. In principle, the transition strengths can
be determined by form factors at low momentum transfer
q. However, electron-scattering data observed for the 0+

2
and 1− states are not enough to determine precise values
of the E0 and isoscalar dipole (IS1) transition strengths. In
the experimental study of (p, p′) at Ep = 180 MeV [14],
a reaction calculation was performed by using the transi-
tion densities reduced from the (e, e′) data and succeeded
in reproducing the cross sections of the 0+

2 state, but not
the 1−

1 (8.89 MeV) state. In the study of (p, p′) at Ep =
65 MeV [13], they tried to describe 1−

1 (8.89 MeV) and 3−
2

(10.18 MeV) cross sections by assuming an octupole Kπ =
0− vibrational band, but the calculation failed to reproduce
the 1−

1 (8.89 MeV) data. For the 0+
3 (6.691 MeV) of the

prolate band, there is almost no data of electron or proton
scattering because of weak population in the inelastic scat-
tering.
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In these two decades, inelastic α scattering (α, α′) has
been extensively investigated to obtain information about
excited states. Especially, the (α, α′) reaction has been utilized
as a sensitive probe for isoscalar monopole (IS0) and IS1
transitions of excited states as well as giant resonances in
various nuclei [15–32]. It is also a useful tool to search
for new cluster states because cluster excitations often have
strong inelastic transitions [20,33–38]. Along this line, (α, α′)
experiments at Eα = 130 and 386 MeV have been performed
for various Z = N nuclei in the sd-shell region, and provided
(α, α′) cross-section data of the 0+

2 , 0+
3 , and 1− states of 28Si

[32]. Now, it is an important issue to investigate transition
properties of excited states with analysis of the (α, α′) data
combining them with (e, e′) and (p, p′) data as well as B(Eλ)
values determined by γ decays.

In our previous studies [39,40], we have achieved micro-
scopic coupled-channels (MCC) calculations of α scattering
off 12C and 16O and succeeded to reproduce the (α, α′)
cross sections of various excited states by using matter and
transition densities of the target nuclei calculated with AMD
[41–43]. We have performed similar MCC calculations of
proton scattering for the 2+

1 states of various Z �= N nuclei in
a light-mass region [44] and have shown that this approach is
applicable for proton and α scattering off stable and unstable
nuclei.

In this study, we apply the MCC approach to 28Si for
calculation of proton and α scattering. In our MCC cal-
culations, the Melbourne g-matrix NN interaction are used
to construct proton-nucleus and α-nucleus potentials in a
microscopic folding model (MFM). An important feature of
this effective NN interaction is that there is no adjustable
parameter because it was derived based on bare nucleon-
nucleon interactions. The original MFM with the Melbourne
g-matrix interaction was developed and applied to proton-
nucleus elastic scattering successfully in Ref. [45], and its
simplified version has been applied systematically to proton-
nucleus [46–48] and α-nucleus [49] elastic scattering. Very
recently, this framework was applied to MCC calculations
of proton and α inelastic processes using the microscopic
matter and transition densities obtained by structure model
calculations [39,40,44,48,50].

One of the advantages of the present approach is that one
can discuss inelastic processes of different hadron probes, pro-
ton and α, in a unified treatment of a microscopic description.
Another advantage is that there is no adjustable parameter
in the reaction part as mentioned above. Once matter and
transition densities are given as structure inputs, one can
obtain the (p, p′) and (α, α′) cross sections at given energies
without ambiguity. Owing to this straightforward procedure
from structure inputs to output cross sections, one can judge
validity of a given structure input via proton and α cross
sections even if electric data are not accurate enough to check
the input.

In the present paper, we investigate properties of the 0+,
1−, 2+, and 3− excitations of 28Si via inelastic proton and α

scattering with the MCC calculation. A main focus is low-
energy IS0 and IS1 excitations from the ground state. As
for a microscopic description of structure of 28Si, we use an
AMD model. Since the main concern in this paper is inelastic-

scattering processes, we focus only on the oblate ground band,
the lowest prolate bands, and 1− and 3− excitations on the
oblate state. In this paper, we start a version of AMD adopted
in Ref. [6], that is, variation before angular-momentum pro-
jection with fixed nucleon spins. This version was used to
describe the oblate and prolate shape coexistence in N = 14
isotopes including 28Si. We improve the previous calculation
to variation after the angular momentum and parity projec-
tions (VAP) for calculation of the ground and excited states
of 28Si. With the obtained wave functions, we investigate
structure properties such as transition strengths and densities
as well as form factors. For the use of target densities in the
MCC calculation, theoretical transition densities obtained by
the AMD calculation are renormalized to fit experimental data
of electric transition strengths and/or charge form factors so
as to reduce possible ambiguity from the structure model as
much as possible.

The paper is organized as follows: The next section de-
scribes frameworks of structure and reaction calculations: the
AMD framework for structure of the target nucleus 28Si and
the MCC approach for proton-28Si and α-28Si scattering. The
AMD result for structure properties is shown in Sec. III, and
proton- and α-scattering cross sections obtained by the MCC
calculation are discussed in Sec. IV. Combining electric prop-
erties and hadron inelastic scattering, transition properties of
excited states are discussed in Sec. V. Finally, a summary is
given in Sec. VI.

II. METHOD

In this section, the methods of structure and reaction
calculations are explained. For the structure part, a VAP
version of AMD is applied to 28Si. The reaction calculations
of proton and α scattering off 28Si are performed with the
MCC approach by using the AMD densities of 28Si, as done
in Refs. [39,40,44]. For details, the reader is referred to the
previous works and references therein.

A. Antisymmetrized molecular dynamics calculation
for structure of 28Si

An AMD wave function of an A-nucleon system is given
by a Slater determinant of single-nucleon Gaussian wave
functions as

�AMD(X ) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi = φX iχiτi, (2)

φX i (r j ) =
(

2ν

π

)3/4

exp[−ν(r j − X i )
2]. (3)

Here A is the antisymmetrizer, and ϕi is the ith single-
particle wave function written by a product of spatial φX i ,
nucleon-spin χi, and isospin τi wave functions. In the present
calculation of 28Si, we choose proton up (p ↑), proton down
(p ↓), neutron up (n ↑), neutron down (n ↓) for the nucleon-
spin and isospin wave functions. �AMD(X ) is specified by the
set of parameters X = {X 1, X 2, . . . , X A}. Here parameters X i

describe centroid positions of single-nucleon Gaussian wave
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packets and are treated as variational parameters indepen-
dently for all nucleons. This wave function is the same as that
used in the previous AMD study of 28Si in Ref. [6]. Using this
model wave function, we perform energy variation after total-
angular-momentum and parity projections (VAP). Namely, the
set of parameters {X i} (i = 1, . . . , A) for each Jπ state are
determined by the energy variation for the Jπ -projected AMD
wave function PJπ

MK�AMD(X ) (PJπ
MK is the angular-momentum

and parity projection operator) as

δ

〈
PJπ

MK�AMD(X )
∣∣H ∣∣PJπ

MK�AMD(X )
〉

〈
PJπ

MK�AMD(X )
∣∣PJπ

MK�AMD(X )
〉 = 0. (4)

Here H is the Hamiltonian operator consisting of the one-body
kinetic term ti, two-body veff-2

i j and three-body veff-3
i jk terms of

effective nuclear interactions, and the Coulomb force vCoulomb
i j ,

H =
∑

i

ti − TG +
∑
i< j

veff−2
i j +

∑
i< j<k

veff−3
i jk +

∑
i< j∈Z

vCoulomb
i j ,

(5)

where TG is the center-of-mass (c.m.) kinetic-energy term
and subtracted from the total Hamiltonian. Note that the c.m.
motion can be exactly removed from the wave function in the
AMD framework.

All the parameters for the Gaussian width and effective
nuclear interactions are the same as those of Ref. [6] as
follows: The width parameter ν = 0.15 fm−2 is used. For
effective nuclear interactions used in the structure calculation,
the MV1 (case 1) central force [51] supplemented by a spin-
orbit term of the G3RS force [52,53] is used. The Bartlett,
Heisenberg, and Majorana parameters of the MV1 force are
b = h = 0 and m = 0.62, and the spin-orbit strengths are
uI = −uII = 2800 MeV. The Coulomb force is also included.

B. Microscopic couple-channels calculation of proton and
α scattering off 28Si

Elastic and inelastic cross sections of proton and α scat-
tering off 28Si are calculated with the MCC approach as done
in Refs. [39,40,44]. The diagonal and coupling potentials for
the nucleon-nucleus system are microscopically calculated
by folding the Melbourne g-matrix NN interaction [45] with
densities of the target nucleus. The matter and transition
densities of 28Si obtained by AMD are used as structure inputs
for the target nucleus,

The Melbourne g matrix is an effective interaction contain-
ing the density and energy dependencies, which are derived by
solving a Bethe-Goldstone equation in a uniform nuclear mat-
ter with a bare NN interaction of the Bonn B potential [54].
This interaction was constructed in Ref. [45] and examined
by systematic investigations of proton elastic and inelastic
scattering off various nuclei at energies from 40 to 300 MeV
in Refs. [46–48]. In the present MCC calculation of proton
scattering, the spin-orbit term of the potential is not taken into
account to avoid complexity.

The α-nucleus potentials are obtained in an extended
nucleon-nucleus folding (NAF) model [49] by folding the
nucleon-nucleus potentials with an α density. For the α

density, we adopt the one-range Gaussian distribution given in
Ref. [55]. In the NAF model, energy and density dependencies
of the g-matrix NN interaction are taken into account only in
the folding process of the target density. The validity of the
NAF model for α elastic scattering is discussed in Ref. [49],
and it was successfully applied to α inelastic processes in
Refs. [39,40].

III. RESULTS OF STRUCTURE CALCULATION OF 28Si

The 0+
1 state with an oblate shape is obtained by energy

variation with the Jπ = 0+ projection. 1− and 3− excitations
on the oblate ground state are obtained by energy variation
with the 1− and 3− projections, respectively. We label the
1− state as 1−

IS1 because of its significant IS1 transition
strength. The 3− state corresponds well to the experimental
3−

1 (6.879 MeV) state, as discussed later, and is labeled as
3−

1 . A vibration 0+ excitation of the ground state, which we
label as 0+

vib, is obtained by the 0+-projected energy variation
for orthogonal component to the 0+

1 state. A prolate 0+ state
is obtained as a local minimum with the 0+-projected energy
variation. This state is assigned to the bandhead state of the
prolate band and labeled as 0+

pro. As a result of VAP, we obtain
five AMD wave functions for 0+

1 , 1−
IS1, 3−

1 , 0+
vib, and 0+

pro,
which are labeled as �AMD(X (n) ) with the index n = 1, . . . , 5
for the five states. These AMD wave functions �AMD(X (n) )
(n = 1, . . . , 5) are regarded as the intrinsic wave functions for
the corresponding states.

Density distributions of the intrinsic wave functions
�AMD(X (n) ) are shown in Fig. 1. The ground state has an
approximately oblate shape with the deformation parameter
β = 0.28 [Fig. 1(a)]. The 0+

vib state is expressed by linear
combination of the oblate and spherical wave functions shown
in Figs. 1(a) and 1(b), respectively, and regarded as a vibration
0+ excitation built on the oblate ground state. In addition
to the oblate state, the prolate deformation with β = 0.41 is
obtained for the 0+

pro state as shown in Fig. 1(c). It constructs
a prolate rotational band. In the intrinsic density of the 1−

IS1
state in Fig. 1(d), one can see formation of an α cluster at
the nuclear surface. This state is interpreted as an Kπ = 0−
excitation mode generated by α-cluster motion on the oblate
state. The 3−

1 state shows a triangle deformation on the oblate
state.

To calculate energy spectra and wave functions of Jπ =
0+, 1−, 2+, 3−, and 4+ states, we superpose configura-
tions by using the five AMD wave functions �AMD(X (n) )
(n = 1, . . . , 5) obtained for 0+

1 , 1−
IS1, 3−

1 , 0+
vib, and 0+

pro.
Namely, to express the Jπ

k states, the Jπ eigen wave functions
PJπ

MK�AMD(X (n) ) projected from the basis wave functions
�AMD(X (n) ) (n = 1, . . . , 5) are superposed as

�
(
Jπ

k

) =
∑
n,K

c(n)
K

(
Jπ

k

)
PJπ

MK�
(n)
AMD, (6)

where coefficients c(n)
K (Jπ

k ) of the linear combination are deter-
mined by diagonalization of the norm and Hamiltonian matri-
ces 〈PJπ

MK�
(n)
AMD|PJπ

MK ′�
(n′ )
AMD〉 and 〈PJπ

MK�
(n)
AMD|H |PJπ

MK ′�
(n′ )
AMD〉,

respectively. As a result of the superposition of the
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FIG. 1. Density distribution of intrinsic wave functions before
the parity and angular-momentum projections for the 0+

1 , 0+
vib, 0+

pro,
1−

IS1, and 3−
1 states of 28Si obtained by AMD. The density projected

onto X -Z , Y -Z , and Y -X planes are shown in the left, middle, and
right panels, respectively. Here, intrinsic axes are chosen as 〈ZZ〉 �
〈YY 〉 � 〈XX 〉 and 〈XY 〉 = 〈Y Z〉 = 〈ZX 〉 = 0. The deformation pa-
rameters (β, γ ) calculated from the values of 〈ZZ〉, 〈YY 〉, and 〈XX 〉
are shown in each panel.

Jπ
k -projected wave functions, the final wave functions for

the 0+
1 , 1−

IS1, 3−
1 , 0+

vib, and 0+
pro states and their rotational

band members are obtained. The binding energy of 28Si is
calculated to be 213.3 MeV, which somewhat underestimates
the experimental value 236.53 MeV.

Note that the angular-momentum and parity projections as
well as the c.m. motion are properly treated in the micro-
scopic way in the present AMD framework. The configuration
mixing and K mixing are taken into account by the K and n
summation in Eq. (6). Rotations, in-band structure changes,
and also vibrations are described with the projections and the
configuration mixing. The expectation values of an O for the
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FIG. 2. Energy spectra of 28Si. (left) Calculated energy spectra
of the ground and prolate bands, 0+

vib and 3−
1 excitations of the

ground band, and the Kπ = 0− band of the 1−
IS1 and 3−

2 states. (right)
Experimental spectra corresponding to the theoretical states.

Jπ
k state are calculated for the final wave functions as〈

�
(
Jπ

k

)∣∣O∣∣�(
Jπ

k

)〉
, (7)

and the matrix elements for the Jπ
k → J ′π ′

k′ transition are given
as 〈

�
(
Jπ

k

)∣∣O∣∣�(
J ′π ′

k′
)〉
. (8)

Based on analyses of intrinsic structure and transition
strengths, we classify the obtained energy levels into the
ground band of the 0+

1 , 2+
1 , and 4+

1 states, the vibration states
of the 0+

vib and 3−
1 states, the prolate band of the 0+

pro, 2+
pro,

and 4+
pro states, and the Kπ = 0− band of the 1−

IS1 and 3−
2

states. The calculated energy spectra are shown in Fig. 2
and compared with the experimental data. Values of the
calculated excitation energies and root-mean-square radii as
well as experimental energies are listed in Table I. The radial
distribution of matter density is shown in Fig. 3. Excited states

TABLE I. Excitation energies and root mean square radii of 28Si.
Calculated values obtained by AMD and experimental values are
listed. The theoretical 0+

vib and 0+
pro are assigned to the experimental

0+
2 and 0+

3 states. Assignment of the theoretical 2+
pro, 4+

pro, 1−
IS1, and

3−
2 states are tentative. The experimental energies are from Ref. [56].

The experimental data of the point-proton rms radius of the ground
state is R = 3.010(24) fm from the experimental charge radius [57].

Expt. AMD

Jπ Ex (MeV) Jπ Ex (MeV) R (fm)

0+
1 0 0+

1 0.0 3.17
0+

2 4.98 0+
vib 5.4 3.17

0+
3 6.691 0+

pro 5.2 3.31
2+

1 1.779 2+
1 2.1 3.22

2+
2 7.32 2+

pro 6.0 3.34
2+

3 7.42
4+

1 4.618 4+
1 4.1 3.23

(4+
3 ) 9.16 4+

pro 7.8 3.34
1−

1 8.95 1−
IS1 15.3 3.29

1−
2 9.93

3−
1 6.879 3−

1 11.1 3.28
(3−

2 ) 10.18 3−
2 16.7 3.29
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FIG. 3. Matter densities of the 0+, 2+, 1−, and 3− states of 28Si
calculated with AMD.

in the prolate and Kπ = 0− bands have larger matter radii than
the states in the ground band. However, the state dependence
of matter densities is not so large and may give only minor
contribution to inelastic scattering of these states.

The result of the E0, E2, E3, and IS1 transition strengths
are listed in Table II. As for the ground band, the calculation
gives strong in-band transitions of 2+

1 → 0+
1 and 4+

1 → 2+
1

consistently with the experimental B(E2) values. For the
prolate band, the experimental levels of the 0+

3 (6.691), 2+
2

(7.32 MeV), and 4+
3 (9.16 MeV) are assigned to the rotational

band members because the E2 transition from 4+
3 (9.16 MeV)

is the strongest to the 2+
2 (7.32 MeV) state. However, the

observed E2 transition from 4+
3 is fragmented also to the 2+

3
(7.42 MeV) state, which suggests significant state mixing of
the prolate 2+ state. In the present calculation, we obtain the
prolate band members, 0+

pro, 2+
pro, and 4+

pro, with almost no
fragmentation of the 2+

pro state. The calculated B(E2; 4+
pro →

2+
pro) is consistent with a sum of the experimental strengths

for the two states, 2+
2 (7.32 MeV) and 2+

3 (7.42 MeV). As for
the 0+

vib state, the calculation gives a slightly higher energy
than the 0+

pro state. The energy ordering of the 0+
vib and 0+

pro

states is not consistent with the experimental data of the 0+
2 at

4.98 MeV and the 0+
3 at 6.69 MeV, which are assigned to the

vibration and prolate states, respectively.
The calculated E0 transition strength of 0+

1 → 0+
vib is re-

markably large and agrees with the experimental B(E0) value
for the 0+

2 (4.98 MeV) reduced from the (e, e′) experiment.
On the other hand, for the 0+

pro state, we obtain a relatively
weak E0 transition because of the shape difference from
the ground state. It should be commented that the value of
B(E0; 0+

1 → 0+
pro) is sensitive to the relative energy between

the 0+
vib and 0+

pro states. In the present case, the 0+
vib and

0+
pro states almost degenerate with each other. This accidental

degeneracy somewhat enhances the B(E0; 0+
1 → 0+

pro) via the
state mixing. It means that the predicted value of B(E0; 0+

1 →
0+

pro) may contain model ambiguity and should be checked by
experimental observables of inelastic scattering, as discussed
later.

As for the negative-parity states 1−
IS1, 3−

1 , and 3−
2 , the

calculation tends to overestimate the experimental excitation
energies, but it gives reasonable result for inelastic transitions
compared with γ -decay and (e, e′) data of the 1−

1 (8.95 MeV),
3−

1 (6.88 MeV), and 3−
2 (10.18 MeV) states. The calculation

obtains the strong E3 transition to the 3−
1 state with the

triangle shape on the oblate deformation, which is consistent
with the observed B(E3) value of 3−

1 (6.88 MeV).
The 1−

IS1 state is characterized by the significant IS1 tran-
sition, which is induced by the Kπ = 0− excitation mode be-
tween mass-asymmetric clusters; that is, the α-cluster motion
against the 24Mg core. It is consistent with the theoretical
work of Ref. [8] which discussed the remarkable IS1 tran-
sition of the 1− state in the Kπ = 0− band. The calculated
IS1 transition strength of 1−

vib → 0+
1 is in reasonable agree-

ment with the experimental B(IS1) value of the 1−
1 (8.95

MeV) reduced from the (e, e′) experiment. Therefore, we
tentatively assign the 1−

IS1 state to the 1−
1 (8.95 MeV) state.

However, it should be noted that the 1−
2 (9.93) state in the

experimental spectra can be another candidate for the 1−
IS1

state because the IS1 transitions observed by (e, e′) [9,14] for
the 1−

1 (8.95 MeV) and 1−
1 (9.93 MeV) states are almost the

same order as shown later. The α-cluster excitation constructs
the Kπ = 0− band consisting of the 1−

IS1 and 3−
2 states. The

calculated E3 transition of 3−
2 → 0+

1 is consistent with the
(e, e′) data for the 3−

2 (10.18 MeV) state.
For the use of the MCC calculation, transition densi-

ties ρ tr (r) are calculated with the obtained AMD wave
functions as done in Ref. [39]. To reduce model am-
biguity from the structure calculation, the obtained tran-
sition densities are renormalized by adjusting the calcu-
lated Eλ transition strength Btheor (Eλ) to the observed
strength Bexpt (Eλ) as ρ tr (r) → f trρ tr (r) with the factor f tr =√

Bexpt (Eλ)/Btheor (Eλ). The renormalization factors are de-
termined for the 2+

1 → 0+
1 , 2+

1 → 0+
1 , 0+

2 → 2+
1 , 0+

3 → 2+
1 ,

and 3−
1 → 0+

1 transitions with the Bexpt (Eλ) values of γ -decay
lifetimes, and 0+

2 → 0+
1 and 1−

1 → 0+
1 with the Bexpt (Eλ)
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TABLE II. The Eλ ad IS1 transition strengths of 28Si calculated with AMD and the experimental values measured by γ -decay lifetimes and
electron scattering. For the IS1 transition strengths of the 1− → 0+ transitions, the values of B(IS1)/4 are shown. Values of the renormalization
factor ftr are determined by the ratio of the experimental value Bexpt (Eλ) to the calculated value Bcalc(Eλ) as ftr = √

Bexpt (Eλ)/Bcalc(Eλ). For
the 3−

2 → 0+
1 transition, ftr = 1.40 is chosen to fit the inelastic form factors of the (e, e′) data [9]. The experimental data B(Eλ) are values

reduced from γ -decay lifetimes [56] and the (e, e′) data [9,14].

Expt. AMD

B(Eλ) [56] (e, e′) [9,14] B(Eλ) ftr

B(E0) (e2 fm4)
0+

2 → 0+
1 4.71 0+

vib → 0+
1 4.0 1.08

0+
3 → 0+

1 0+
pro → 0+

1 0.7
B(IS1)/4 (e2 fm6)
1−

1 → 0+
1 18.7 1−

1 → 0+
1 34 0.75

B(E2) (e2 fm4)
2+

1 → 0+
1 67(3) 55.7 2+

1 → 0+
1 46 1.21

2+
2 → 0+

1 1.87(0.76) 1.26 2+
2 → 0+

1 0.03
2+

3 → 0+
1 0.82(0.09) 0.90

0+
2 → 2+

1 48(3) 0+
vib → 2+

1 79 0.78
0+

3 → 2+
1 1.3(0.1) 0+

pro → 2+
1 15.6 0.29

4+
1 → 2+

1 82.8(9.1) 4+
1 → 2+

1 87
4+

3 → 2+
1 0.4(0.1) 4+

pro → 2+
1 0.01

4+
3 → 2+

2 152(20) 4+
pro → 2+

pro 236
4+

3 → 2+
3 56.1(9.1)

3−
1 → 1−

1 3−
1 → 1−

1 4.7
3−

2 → 1−
1 3−

2 → 1−
1 75

B(E3) (e2 fm6)
3−

1 → 0+
1 615(70) 553(107) 3−

1 → 0+
1 366 1.30

3−
2 → 0+

1 78(20) 3−
2 → 0+

1 76 1.40
B(E0) (e2 fm4)
4+

1 → 0+
1 2734 4+

1 → 0+
1 2500

values reduced by the (e, e′) experiment. The adopted values
of f tr are listed in Table II. For the 3−

2 → 0+
1 transition,

f tr = 1.40 is chosen so as to fit the charge form factors. For
other transitions, the original transition densities are used as
is without renormalization.

The renormalized form factors for positive- and negative-
parity states are compared with experimental data in Figs. 4
and 5, respectively. The inelastic form factors of the 0+

vib,
2+

1 , 3−
1 , and 3−

2 states are reproduced reasonably by the
calculation after the renormalization. For the 1− state, the
observed form factors of 1−

1 (8.95 MeV) and 1−
2 (9.93 MeV)

measured by (e, e′) experiment are similar to each other. The
result of the 1−

IS1 state is in reasonable agreement with the
form factors of the two 1− states and suggests a possible
assignment to either of these two states. For the 2+

pro state, the
calculation predicts considerable suppression of the inelastic
transitions because of structure difference between the oblate
and prolate bands. However, the observed form factors of the
2+

2 (7.32 MeV) state is larger by two orders of magnitude
than the calculation. Not only the magnitude but also the q
dependence of the observed form factors are different from
the calculation. This suggests that the prolate 2+ state may
contain significant mixing of other 2+ components beyond the
present framework. In other words, the inelastic transition of
0+

1 → 2+
2 probes the mixing component rather than the prolate

2+ component. It contrasts with the E2 transition from the

4+
3 state, whose dominant contribution is by the prolate 2+

component.
The renormalized transition densities are shown in Fig. 6.

The transition densities from the ground state to the 0+
vib and

0+
pro states [Fig. 6(a)] show a similar r behavior having two

nodes at almost the same positions though the amplitude for
the 0+

pro is much smaller. In comparison of the transition den-
sities for the 3−

1 and 3−
2 states, one can see a quite different r

behavior between the two 3− states [Fig. 6(d)]: The transition
density to the 3−

1 state has a node at 2.5 fm and remarkable
amplitudes in the outer region, while that to the 3−

2 has
amplitudes in the inner region without a node. This difference
can be observed in the form factors shown in Fig. 5. The
calculated form factors show different dip positions between
the 3−

1 and 3−
2 states and seem consistent with the (e, e′) data.

IV. RESULTS OF PROTON AND α SCATTERING

The MCC calculations of proton scattering at incident
energies Ep = 65, 100, and 180 MeV and α scattering at
incident energies Eα = 120, 130, 240, and 400 MeV are
performed by using the matter and renormalized transition
densities obtained by AMD. In the MCC calculations, we take
into account λ = 0, 1, 2, 3 transitions between the 0+

1 , 0+
vib,

0+
pro, 1−

IS1, 2+
1 , 2+

pro, 3−
1 , and 3−

2 states and use the experimental
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FIG. 4. Elastic and inelastic form factors of positive-parity states
of 28Si. The inelastic form factors obtained by AMD are renormal-
ized by f 2

tr with the factor ftr listed in Table II. The experimental data
are those measured by electron scattering in Refs. [9,10,14].

excitation energies following the assignments to the 0+
1 , 0+

2
(4.98 MeV), 0+

2 (4.98 MeV), 2+
1 (1.779 MeV), 2+

2 (7.32 MeV),
1−

1 (8.95 MeV), 3−
1 (6.879 MeV), and 3−

2 (10.18 MeV) states,
respectively. To see the CC effect, the one-step calculation
of the distorted-wave Born approximation (DWBA) is also
performed. In the following discussions of the calculated
cross sections, we use labels of 0+

1,2,3, 1−
1 , 2+

1,2, and 3−
1,2

corresponding to the above assignments unless otherwise
noted.

A. Elastic scattering

In Fig. 7, the elastic proton- and α-scattering cross sec-
tions are shown compared with the experimental data. The
calculation reasonably reproduces amplitudes of the (p, p)
cross sections at Ep = 65, 100, and 180 MeV and qualita-
tively describes diffraction patterns, although it is not precise
enough to reproduce dip structure at large angles mainly
because the spin-orbit potentials are ignored in the present
calculation. At higher energies, even the cross sections around
the peaks are undershot for the same reason. For α scatter-
ing, the calculation successfully reproduces amplitude and
diffraction patterns of the elastic cross sections at Ep = 240
and 400 MeV. For lower energies, agreement with the data is
reasonable but the observed data are not sufficiently precise
for detailed discussions and are even inconsistent between
different experiments.
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FIG. 5. Inelastic form factors of negative-parity states of 28Si.
The inelastic form factors obtained by AMD are renormalized by
f 2
tr with the factor ( ftr) listed in Table II. The experimental data

measured by electron scattering are from Refs. [9,10,14]. In panel
(a) for the 3−

1 state, triangles indicate the experimental data of the
sum of the 3−

1 (6.879 MeV) and 4+
2 (6.888 MeV) contributions, and

circles indicate the 3−
1 (6.879 MeV) data evaluated by subtracting the

4+
2 (6.888 MeV) contribution from the sum [9].

B. Inelastic scattering of proton

Figure 8 shows the (p, p′) cross sections of the 0+
2,3,

2+
1,2, 1−

1 , and 3−
1,2 states. Results of the CC (solid lines) and

DWBA (dashed lines) calculations are shown together with
the experimental data. One can see that the CC effect in
proton scattering is generally minor in this energy range. For
the 0+

2 , 2+
1 , 3−

1 , and 3−
2 states, the CC calculation reasonably

reproduces amplitudes and diffraction patterns of the (p, p′)
cross sections at forward peaks. It also describes the observed
1−

1 cross sections qualitatively, but the agreement with the
experimental data is not satisfactory. For the 2+

2 state, the
calculation fails to reproduce the experimental data: the cal-
culated cross sections are smaller than the data by two orders
of magnitude, consistently with the underestimation of the
form factors. This result suggests again possible mixing of
other component with the prolate component in the 2+

2 state.
As for the 0+

3 state, there is only a few data of (p, p′) cross
sections at Ep = 180–185 MeV. In the (p, p′) experiment at
Ep = 180 MeV, weak production of the 0+

3 state has been
observed. From the peak hight in the observed spectrum
shown in Fig. 1 of Ref. [14], one can roughly estimate the
0+

3 cross section at θc.m. = 20◦ as 1
4 of the 0+

2 cross section. In
the experiment at Ep = 185 MeV [11], the upper limit of the
0+

3 cross section at θc.m. = 4◦ was reported. These two data are
plotted for order estimation of the 0+

3 cross sections in Fig. 8.
The data seem to be consistent with the calculated 0+

3 cross
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FIG. 6. Transition densities of rank λ = J transitions from the
ground state to Jπ states. The theoretical values calculated with AMD
are renormalized by ftr listed in Table II.

sections at Ep = 180 MeV, but the quality of the data is not
enough to clarify the transition properties of the 0+

3 state.

C. Inelastic scattering of α

The calculated cross sections for α inelastic scattering
at Eα = 120, 130, 240, and 400 MeV are shown in Fig. 9
compared with experimental data for Eα = 120 [59], 130
[32], 240 [19], and 386 MeV [32]. One can see that the
CC effect is significant in the 0+

2 state and non-negligible in
the 3−

1 state, while it is relatively minor in the 0+
3 , 2+

1 , 1−
1 ,
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FIG. 7. Cross sections of elastic proton and α scattering off 28Si
calculated with the CC calculation for proton incident energies Ep =
65, 100, 180 MeV and α incident energies Eα = 120, 130, 240, and
386 MeV. The experimental data are (p, p) cross sections at Ep =
65 MeV [13], 100 MeV [58], and 180 MeV [14], and (α, α) cross
sections at Eα = 120 MeV [59,60], 240 MeV [19], and 386 MeV
[29].

and 3−
2 cross sections. The CC effect becomes weaker as the

incident energy increases, as expected. The CC calculation
successfully reproduces the 0+

2 , 2+
1 , and 3−

1 cross sections with
good description of amplitudes and diffraction patterns in a
wide energy range. It also describes well the experimental
cross sections of the 0+

3 state at Ep = 130 MeV and those
of the 3−

2 state at Eα = 120 MeV. These results support the
validity of the present MCC approach and the accuracy of the
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FIG. 8. Proton inelastic-scattering cross sections at incident energies Ep = 65, 100, 180 MeV obtained by the CC and DWBA calculations.
Experimental data are cross sections at Ep = 65 MeV [13], Ep = 100 MeV [12], Ep = 180 MeV [14], and Ep = 185 MeV [11]. For the
experimental data of the 0+

3 cross sections, the upper limit of the 0+
3 cross section at θc.m. = 4◦ from Ref. [11] and a quarter of the 0+

2 cross
section. at θc.m. = 20◦ evaluated from the observed spectrum shown in Ref. [14] are shown. See text.
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FIG. 9. α inelastic-scattering cross sections at incident energies Eα = 120, 130, 240, and 400 MeV obtained by the CC and DWBA
calculations. Experiment data are (α, α′) cross sections at Eα = 120 MeV [59], 130 MeV [32], 240 MeV [19], and 386 MeV [32].

adopted transition densities. For 1− states, the calculated 1−
1

cross sections reasonably agree with the experimental cross
sections of the 1−

1 (8.9 MeV) state and also coincides with
those of the 1−

2 (9.93 MeV) state. However, the experimental
data are available only for low incident energies and not
enough to draw a definite conclusion for assignment of the
theoretical 1− state.

V. DISCUSSION

In the previous sections, we showed the calculated results
of form factors, p scattering, and α scattering and compared
them with the observed data. In this section, we discuss
transition properties of excited states by combining these

results of inelastic scattering as well as structure features such
as transition strengths.

For the 0+
2 , 2+

1 , and 3−
1 states, details of transition prop-

erties such as Eλ transition strengths and form factors are
experimentally known. The present calculation reasonably
reproduces the experimental values of B(Eλ). After fine tun-
ing by the renormalization, the experimental form factors are
described well by the calculation. The MCC calculation with
renormalized transition densities reproduces successfully α

inelastic scattering in a wide energy range and reasonably
describes the observed data of proton inelastic scattering. It
should be stressed that we can obtain consistent results for
electric and hadron scattering within a microscopic frame-
work and confirm the applicability of the present MCC ap-
proach. Combining the structure analysis, these states are
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understood as the 0+, 2+, and 3− excitations built on the
oblate ground state.

For the 0+
3 state, there is no experimental information

from electric probes such as form factors. Using the calcu-
lated transition density, which gives the strength B(E0; 0+

1 →
0+

3 ) = 0.7 e2 fm4, the present MCC calculation reproduces
the α inelastic cross sections of the 0+

3 state. It gives a result
being consistent with the experimental observations of proton
inelastic scattering. It should be commented again that the
predicted transition strength may contain model ambiguity
from state mixing of the vibration and prolate 0+ modes.
However, radial behavior (r dependence) of the 0+ transition
density is rather stable against such the state mixing and,
therefore, the ambiguity may exist only in the overall factor of
the 0+

1 → 0+
3 transition density. From the successful result for

reproduction of the α inelastic-scattering data, we can say that
the predicted value B(E0; 0+

1 → 0+
3 ) = 0.7 e2 fm4 is likely to

be reasonable.
For 1− states, inelastic form factors have been experimen-

tally observed for the 1−
1 (8.9 MeV) and 1−

2 (9.93 MeV) states,
but low-q data are not enough to determine the IS1 transition
strength with high precision. In the structure calculation of
AMD, the 1−

IS1 is obtained and regarded as the IS1 mode
induced by α-cluster excitation on the oblate ground state.
Since the calculated form factors are consistent with the
experimental data observed for the 1−

1 (8.9 MeV) and 1−
2

(9.93 MeV) states, a possible assignment of this IS1 mode is
either of the experimental 1− states. Another possibility is that
the IS1 mode is fragmented into the two 1− states. The MCC
calculation qualitatively describes proton-scattering data of
the 1−

1 (8.9 MeV) state but the agreement is not sufficiently
accurate. As for α scattering, the calculated cross sections of
the 1−

IS1 state are in reasonable agreement with the (α, α′) data
of the 1−

1 (8.9 MeV) state and also with the data of the 1−
2

(9.93 MeV) state. In the present analysis, we cannot conclude
which assignment is more likely.

The 3−
2 state is obtained as a member of the Kπ = 0− band

built on the 1−
IS1 state in the present calculation. The calculated

form factors can be adjusted to the observed data of the 3−
2

(10.18 MeV) with a renormalization factor. For proton and
α inelastic scattering, the 3−

2 cross sections obtained by the
MCC calculation correspond well to the experimental cross
sections observed for the 3−

2 (10.18 MeV) state. From this
correspondence, the 3−

2 (10.18 MeV) is considered to be a
member of the Kπ = 0− band constructed on the IS1 mode,
which is generated by the α-cluster excitation of the ground
state.

The present calculation describes the shape coexistence of
the oblate and prolate deformations. The prolate deformation
constructs the rotational band of the 0+

pro, 2+
pro, and 4+

pro states.
In the experimental energy spectra, there are two candidates
for the prolate 2+ state as the 2+

2 (7.32 MeV) and 2+
3 (7.42

MeV) states. The calculated B(E2; 4+
pro → 2+

pro) of the in-band
transition agrees well with a sum of the observed strengths
B(E2; 4+

3 → 2+
2 ) and B(E2; 4+

3 → 2+
3 ), suggesting that the

prolate 2+ state is likely to be fragmented into two 2+ states
via mixing with other 2+ components. In the present calcu-
lation for the 2+

pro state, inelastic transitions from the ground
state are strongly suppressed because of the shape difference

between the initial and final states. As a result, weak form
factors and inelastic scattering are obtained for the 2+

pro state.
However, the observed form factors and proton-scattering
cross sections of the 2+

2 state are considerably large as two
orders of magnitudes as the calculation. In other words, the
significant form factors and proton inelastic cross sections can
be understood as experimental signals of mixing of the other
2+ component, which is beyond the present structure model
calculation.

VI. SUMMARY

Transition properties of 0+, 1−, 2+, and 3− states of 28Si
were investigated via proton and α inelastic scattering. The
structure calculation was performed with the energy variation
after total angular-momentum and parity projections in the
AMD framework. In the AMD calculation, the oblate ground
and prolate bands, 0+ and 3− excitations, and the 1− and 3−
states of the Kπ = 0− band were obtained. The calculation
reasonably reproduced the transition properties such as tran-
sition strengths and form factors.

Using the matter and transition densities of 28Si obtained
by the AMD calculation, the MCC calculations of proton
and α scattering off 28Si are performed. The proton-28Si
and α-28Si potentials are microscopically derived by folding
the Melbourne g-matrix NN interaction with the 28Si and α

densities. To reduce possible ambiguity from the structure
model, the theoretical transition densities were renormalized
to fit the B(Eλ) for the use of the MCC calculation. The
MCC calculation reasonably reproduces the observed elastic
and inelastic cross sections of proton and α scattering. From
the analysis of inelastic scattering combined with structure
properties, we assigned the theoretical states to the observed
levels.

The 2+
1 , 0+

2 , and 3−
1 states are understood respectively as

the oblate ground band member, vibration 0+ and 3− excita-
tions built on the oblate ground state. The MCC calculation
reproduces well the proton and α inelastic cross sections of
these states in a wide energy range of Ep = 65–180 MeV
and Eα = 120–400 MeV. It should be stressed that consistent
results for electron, proton, and α scatterings are obtained
within a microscopic framework. These results prove the
applicability of the present MCC approach for proton and α

inelastic processes.
For the 0+

3 state in the prolate band, the calculated E0
transition strength is relatively weak compared with that of
the 0+

2 state because of the shape difference between the
oblate ground (initial) and prolate (final) states. The predicted
strength, B(E0; 0+

1 → 0+
3 ) = 0.7 e2 fm4, is supported by the

observed cross sections of α scattering. It is also consistent
with the proton scattering.

In the structure calculation, the Kπ = 0− band of the 1−
and 3− states is constructed from the IS1 mode, which is
induced by the α-cluster excitation of the oblate ground state.
From the analysis of form factors and inelastic scattering,
the 3− state corresponds to the 3−

2 (10.18 MeV) state in the
experimental spectra. The 1− state is likely to be assigned to
either of the 1−

1 (8.9 MeV) or 1−
2 (9.93 MeV) states, but we

cannot draw a conclusion in the present analysis.
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An advantage of the present MCC approach is that we can
discuss electron, proton, and α inelastic scattering within a
unified treatment of microscopic descriptions. Another merit
is that there is no adjustable parameter in the reaction part.
For given densities of a target nucleus, we can obtain the
(p, p′) and (α, α′) cross sections at given energies without pa-
rameter tuning. Owing to such the straightforward connection
between structure inputs and output cross sections, validity
of a structure input can be examined via proton and α cross
sections, even if electric data are not accurate enough. It has
been proved that analysis of proton and α inelastic scattering
with the MCC calculation using the microscopic structure

calculation is a useful tool to investigate properties of excited
states.
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