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Time-dependent generator coordinate method study of fission: Mass parameters
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Collective mass tensors derived in the cranking approximation to the adiabatic time-dependent Hartree-Fock-
Bogoliubov (ATDHFB) method are employed in a study of induced fission dynamics. Together with a collective
potential determined in deformation-constrained self-consistent mean-field calculations based on nuclear energy
density functionals, the mass tensors specify the collective Hamiltonian that governs the time evolution of the
nuclear wave function from an initial state at equilibrium deformation, up to scission and the formation of
fission fragments. In an illustrative calculation of low-energy induced fission of 228Th, 230Th, 234U, and 240Pu, we
compare the nonperturbative and perturbative cranking ATDHFB mass tensors in the plane of axially symmetric
quadrupole and octupole deformations, as well as the resulting charge yields.
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I. INTRODUCTION

Models based on the generator coordinate method (GCM)
[1] have successfully been applied to studies of both low-
energy spectroscopic properties and fission dynamics in a
single theoretical framework. The time-dependent version of
this method (TDGCM), in particular, can describe the entire
process of induced fission from some initial state through
a complex time evolution of collective degrees of freedom,
leading up to scission and the emergence of fission fragments
[2–4]. In the Gaussian overlap approximation (GOA), the
TDGCM is represented by a local Schrödinger equation for
the nuclear wave function in the space of collective coordi-
nates. This equation and, therefore, the description of fission
dynamics are determined by the collective potential and in-
ertia that are typically computed in a self-consistent mean-
field framework based on an energy density functional (EDF)
or effective nuclear interaction. For a particular choice of
collective degrees of freedom such as, for instance, variables
that characterize the elongation, shape, and asymmetry of
the fissioning nucleus, the collective potential is almost com-
pletely (up to the zero-point energy correction) determined by
the diagonal matrix elements of the effective Hamiltonian in
the nonorthogonal basis of static symmetry-breaking product
many-body states. Much more challenging, both conceptually
as well as from a computational point of view, is the collective
inertia tensor.

Two methods have been used to derive the collective
masses for fission: the GCM+GOA and the adiabatic time-
dependent Hartree-Fock-Bogoliubov (ATDHFB). It is well
known that the standard GCM+GOA method does not lead
to the correct collective mass such as, for example, the bare

mass of the nucleus in the simple case of pure translation
[1,4]. The proper collective mass could only be obtained if, in
addition to the collective coordinates, also the corresponding
conjugate momenta were taken into account in the GCM.
However, this means that one has to double the dimension
of the collective space, and this is never done in practical
applications to fission. The alternative has been to use AT-
DHFB collective masses, but even in that case the exact
expression for the collective mass requires the inversion of the
full linear response matrix. For this reason, nonperturbative
and perturbative cranking approximations to the ATDHFB
masses have been derived [5,6] and applied to fission studies.

In the perturbative cranking approximation, the contribu-
tion from time-odd mean fields is neglected, and derivatives
of the single-nucleon and pairing densities with respect to
collective coordinates are calculated perturbatively. The non-
perturbative cranking ATDHFB collective mass tensor can be
computed by explicit numerical evaluation of the derivatives
with respect to collective coordinates. Detailed studies of
spontaneous fission half-lives with the collective mass tensors
calculated using the ATDHFB method both in the perturba-
tive and nonperturbative cranking approximations [7,8] have
shown that the structural properties of the collective mass
crucially determine the dynamics of spontaneous fission. In
a recent comparative analysis of nonperturbative collective
inertias for fission [9], it has been shown that nonperturbative
methods based on both the GCM+GOA and ATDHFB predict
very similar collective masses with a much more complex
structure that those obtained in the perturbative approach.
In both the nonperturbative and perturbative calculations,
the ATDHFB masses were larger than the corresponding
GCM+GOA masses by a factor ≈1.5, almost constant over
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the whole range of axial quadrupole deformation extending to
the region where two separate fragments emerge.

In all applications of the TDGCM framework to induced
fission dynamics, however, only perturbative cranking ATD-
HFB collective masses have been employed so far [10–17].
The goal of this study is to explore differences between
nonperturbative and perturbative ATDHFB collective masses
when used in TDGCM+GOA modeling of low-energy in-
duced fission dynamics. The theoretical framework and meth-
ods are briefly reviewed in Sec. II. The details of the calcu-
lation, the results for deformation energy surfaces, collective
masses, as well as the resulting charge yield distributions for
induced fission of 228Th, 230Th, 234U, and 240Pu are described
and discussed in Sec. III. Section IV contains a short summary
of the principal results.

II. THEORETICAL FRAMEWORK

The particular implementation of the TDGCM+GOA col-
lective Hamiltonian used in the present study is described in
Refs. [15–17], and the computer code employed for mod-
eling the time evolution of the fissioning nucleus is FELIX

(version 2.0) [13]. For completeness, here we include a brief
outline of the model and discuss the basic approximations.

In the TDGCM+GOA framework, induced fission is de-
scribed as a slow adiabatic process determined by a small
number of collective degrees of freedom. Nonadiabatic effects
arising from the coupling between collective and intrinsic de-
grees of freedom are not taken into account. Fission dynamics
is thus governed by a local, time-dependent Schrödinger-like
equation in the space of collective coordinates q:

ih̄
∂g(q, t )

∂t
= Ĥcoll(q)g(q, t ), (1)

where g(q, t ) is the complex wave function of the collective
variables q and time t . For simplicity, we assume axial sym-
metry with respect to the axis along which the two fragments
eventually separate and consider the two-dimensional (2D)
collective space of deformation parameters: quadrupole β2

and octupole β3. The collective Hamiltonian Ĥcoll(q) thus
reads

Ĥcoll(β2, β3)

= − h̄2

2

∑
i j=2,3

∂

∂βi
Bi j (β2, β3)

∂

∂β j
+ V (β2, β3), (2)

where Bi j (β2, β3) and V (β2, β3) denote the inertia tensor and
collective potential, respectively. The inertia tensor is the
inverse of the mass tensor, that is, Bi j (β2, β3) = (M−1)i j .
The adiabatic time-dependent Hartree-Fock-Bogoliubov (AT-
DHFB) method is applied in both the nonperturbative and
perturbative cranking approximations to the calculation of the
mass tensor. In the cranking approximation, the mass tensor
takes the form [6]

MC
i j = h̄2

2q̇iq̇ j

∑
μν

F i∗
μνF j

μν + F i
μνF j∗

μν

Eμ + Eν

, (3)

where

F i

q̇i
= U † ∂ρ

∂qi
V ∗ + U † ∂κ

∂qi
U ∗ − V † ∂ρ∗

∂qi
U ∗ − V † ∂κ∗

∂qi
V ∗ .

(4)
U and V are the self-consistent Bogoliubov matrices, and
ρ and κ are the corresponding particle and pairing density
matrices, respectively. The derivatives of the densities are cal-
culated using the Lagrange three-point formula for unequally
spaced points [5,6]. The cranking expression Eq. (4) can be
further simplified in a perturbative approach [18–22], and this
leads to the perturbative cranking mass tensor

MC p = h̄2M−1
(1)M(3)M

−1
(1) , (5)

where

[M(k)]i j =
∑
μν

〈0|Q̂i|μν〉〈μν|Q̂ j |0〉
(Eμ + Eν )k

. (6)

|μν〉 are two-quasiparticle states and Eμ, Eν denote the corre-
sponding quasiparticle energies. Details of the derivation of
the cranking formulas for the mass tensor can be found in
Ref. [6].

The input for the calculation of the collective mass, that
is, the single-quasiparticle states, energies, and occupation
factors are calculated in a self-consistent mean-field approach
based on nuclear energy density functionals. The map of the
energy surface as function of the quadrupole and octupole
deformations is obtained by imposing constraints on the cor-
responding mass moments:

Q̂2 = 2z2 − r2
⊥ and Q̂3 = 2z3 − 3zr2

⊥. (7)

The deformation parameters β2 and β3 are determined using
the following relations:

β2 =
√

5π

3AR2
0

〈Q̂2〉 and β3 =
√

7π

3AR3
0

〈Q̂3〉, (8)

with R0 = r0A1/3 and r0 = 1.2 fm. The collective potential
V (β2, β3) is obtained by subtracting the vibrational zero-point
energy (ZPE) from the total mean-field energy [23]

EZPE = 1
4 Tr

[
M−1

(2) M(1)
]
, (9)

where the M(k) are given by Eq. (6).
The collective space is divided into an inner region with

a single nuclear density distribution, and an external region
that contains two separated fission fragments. The set of
configurations that divides the inner and external regions
defines the scission hypersurface. The flux of the probability
current through this hypersurface provides a measure of the
probability of observing a given pair of fragments at time
t . Each infinitesimal surface element is associated with a
given pair of fragments (AL, AH ), where AL and AH denote
the lighter and heavier fragments, respectively. The integrated
flux F (ξ, t ) for a given surface element ξ is defined as [13]

F (ξ, t ) =
∫ t

t0

dt ′
∫

{β2,β3}∈ξ

J(β2, β3, t ′) · dS, (10)
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where J(β2, β3, t ) is the current

Jk (β2, β3, t ) = h̄
∑

l∈{2,3}
Bkl (β2, β3)Im

(
g∗ ∂g

∂βl

)
. (11)

The yield for the fission fragment with mass A is defined by

Y (A) ∝
∑
ξ∈A

lim
t→∞ F (ξ, t ). (12)

The set A(ξ ) contains all elements belonging to the scis-
sion hypersurface such that one of the fragments has mass
number A.

In the present study, mean-field energy surfaces are cal-
culated with the multidimensionally constrained relativistic
mean-field (MDC-RMF) model [24–27], using the point-
coupling relativistic energy density functional DD-PC1 [28].
Pairing correlations are taken into account in the BCS approx-
imation with a separable pairing force of finite range [29]:

V (r1, r2, r′
1, r′

2) = G0 δ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ), (13)

where R = (r1 + r2)/2 and r = r1 − r2 denote the center of
mass and the relative coordinates, respectively. P(r) reads

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (14)

The parameters of the interaction were originally adjusted
to reproduce the density dependence of the pairing gap in
nuclear matter at the Fermi surface computed with the D1S
parametrization of the Gogny force [30]. To reproduce the
empirical pairing gaps in the mass region considered in the
present study, the strength parameters of the pairing force
have been increased with respect to the original values by
the following factors: Gn/G0 = 1.12 and Gp/G0 = 1.08 for
neutrons and protons, respectively.

The fission process is described by the time evolution of
an initial wave packet g(q, t = 0) (q ≡ {β2, β3}), built as a
Gaussian superposition of the quasibound states gk ,

g(q, t = 0) =
∑

k

exp

[
(Ek − Ē )2

2σ 2

]
gk (q), (15)

where the value of the parameter σ is set to 0.5 MeV.
The collective states {gk (q)} are solutions of the stationary
eigenvalue equation in which the original collective potential
V (q) is replaced by a new potential V ′(q) that is obtained by
extrapolating the inner potential barrier with a quadratic form.
The mean energy Ē in Eq. (15) is then adjusted iteratively
in such a way that 〈g(t = 0)|Ĥcoll|g(t = 0)〉 = E∗

coll, and this
average energy E∗

coll is chosen ≈1 MeV above the fission
barrier. The TDGCM+GOA Hamiltonian of Eq. (2), with the
original collective potential V (q), propagates the initial wave
packet in time.

The time propagation is modeled using the
TDGCM+GOA computer code FELIX (version 2.0) [13].
The time step is δt = 5×10−4 zs (1 zs = 10−21 s), and the
charge and mass distributions are calculated after 105 time
steps, which correspond to 50 zs. As in our recent calculations
of Refs. [15–17], the parameters of the additional imaginary
absorption potential that takes into account the escape of the
collective wave packet in the domain outside the region of

FIG. 1. Axially symmetric quadrupole-octupole collective po-
tentials in the β2-β3 plane for 228Th, 230Th, 234U, and 240Pu. In each
panel, the energies are normalized with respect to the correspond-
ing value at the equilibrium minimum. The contours join points
on the surface with the same energy, and the separation between
neighboring contours is 2 MeV. The dot-dashed curve is the static,
lowest-energy fission path.

calculation [13] are the absorption rate r = 20×1022 s−1 and
the width of the absorption band w = 6.0. The charge yields
are obtained by convoluting the raw flux with a Gaussian
function of the number of particles [11,16], with a width of
1.6 units.

III. RESULTS AND DISCUSSION

To illustrate the effect of a particular choice of collective
inertia on the fragment distribution, in this section we discuss
results for the process of induced fission of 228Th, 230Th,
234U, and 240Pu. In the first step, a large-scale MDC-RMF
calculation is performed to generate the potential energy
surface, single-nucleon wave functions and occupation factors
in the (β2, β3) plane. The range for the collective variable β2
is 0 � β2 � 7 with a step �β2 = 0.04, while the collective
variable β3 is considered in the interval 0 � β3 � 3.5 with
a step �β3 = 0.05. The relativistic energy density functional
DD-PC1 is used in the particle-hole channel, while particle-
particle correlations are described by the separable pairing
force (13) in the BCS approximation.

The deformation energy surface is determined in a self-
consistent calculation with constraints on the mass multipole
moments Q2 and Q3 Eq. (7), by employing the augmented
Lagrangian method [31]. The mean-field equations are solved
by expanding the nucleon Dirac spinors in the axially de-
formed harmonic oscillator (ADHO) basis with Nf = 20 os-
cillator shells. Reference [25] details the multidimensionally
constrained relativistic mean-field model.

Figure 1 displays the resulting quadrupole- and octupole-
constrained collective potential surfaces of 228Th, 230Th, 234U,
and 240Pu. The vibrational zero-point energies have been sub-
tracted from the total mean-field energies. Only the points in
the collective space that belong to the inner region with a sin-
gle nuclear density distribution are included in the plots. The
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FIG. 2. Square-root determinants of the perturbative-cranking
mass tensor |MC p|1/2, and nonperturbative-cranking mass tensor
|MC |1/2 (in h̄2 MeV−1) of 228Th in the (β2, β3) plane. The dot-
dashed curve is the static, lowest-energy fission path.

scission contour that divides the inner and external regions is
determined by the Gaussian neck operator Q̂N = exp[−(z −
zN )2/a2

N ], where aN = 1 fm and zN is the position of the neck
[32]. We define the pre-scission domain by 〈Q̂N 〉 > 3, and
consider the frontier of this domain as the scission contour.
For 228Th, 230Th, and 234U, the scission line starts from an
elongated symmetric point with β2 ≈ 6, while for 240Pu this
value is somewhat larger. As the asymmetry β3 increases,
the scission profile evolves to smaller β2 deformations for
all four nuclei. The ridge separating the asymmetric and
symmetric fission valleys is more pronounced for 228Th and
230Th, while it is lower for 234U and 240Pu. The dot-dashed
curves correspond to the static, lowest-energy fission paths.

For the two-dimensional quadrupole-octupole collec-
tive space {β2, β3}, the mass tensor is determined by
three independent components: M22, M23, and M33. In
Fig. 2, we plot the square-root determinants |M|1/2 =
(M22M33 − M2

23)1/2 for 228Th. The upper panel displays the
mass tensors calculated using the perturbative cranking for-
mula Eq. (5), while the one determined in the nonperturbative
cranking method of Eq. (3) is shown in the lower panel. Just
as in Fig. 1, only points that belong to the inner region are
included in the plot and the dot-dashed curves denote the
static fission path. The general pattern is similar for all four
nuclei considered in the present study and, in particular, one
notices that in the nonperturbative approach that the values

FIG. 3. The M22 (upper panel) and M33 (lower panel) com-
ponents of the mass tensor of 228Th, as function of the quadrupole
deformation β2 along the static fission path.

of |M|1/2 are enhanced at relatively small deformations and
characterized by isolated peaks in the region of large octupole
deformations β3. Note, however, that these peaks are located
far outside the asymmetric fission valley. The increase of
the collective mass in the region β3 ≈ 0 should weaken the
current in that region,1 thus generally reducing the fragment
distribution for symmetric fission.

To illustrate in more detail the differences between the
perturbative and nonperturbative cranking mass parameters,
in Figs. 3–6 we plot the diagonal components M22 and M33

of the mass tensor, calculated along the static fission paths for
228Th, 230Th, 234U, and 240Pu, as functions of the quadrupole
collective coordinate. Both components calculated using the
perturbative cranking formula display a gradual decrease
with quadrupole deformation along the static fission path,
and we note the oscillations of M22, especially at smaller
deformations. The nonperturbative mass parameters, in par-
ticular M22, exhibit sharp peaks in the region β2 � 1.5. The
spikes occur because of single-particle level crossings near
the Fermi surface, characterized by sudden changes of the
occupation factors of single-particle configurations [6,7]. For
large quadrupole deformations β2 > 1.5, both perturbative
and nonperturbative mass parameters decrease more smoothly
along the static path. It is interesting to note that the per-
turbative M22 is generally larger than the corresponding

1The inertia tensor is defined as the inverse of the mass tensor
[Bi j (β2, β3) = (M−1)i j], and the current Eq. (11) is proportional to
the collective inertia.
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FIG. 4. Same as in the caption Fig. 3 but for 230Th.

nonperturbative mass parameter, while the opposite trend is
observed for the M33 component.

In the second step, we calculate the charge yields for
induced fission of the four nuclei. The initial wave packet
is given by Eq. (15) so that the average energy is 1 MeV
above the fission barrier, and the time evolution is governed
by the collective Hamiltonian (2). Both perturbative and

FIG. 5. Same as in the caption Fig. 3 but for 234U.

FIG. 6. Same as in the caption Fig. 3 but for 240Pu.

nonperturbative cranking collective inertia tensors are used
to evolve the collective wave packet across the potential
energy surface in the β2-β3 plane, and the flux through the
scission contour determines the fission yields as described in
the previous section. Figure 7 displays the resulting charge
yields for induced fission of 228Th, 230Th, 234U, and 240Pu.
The model obviously cannot describe the odd-even staggering
of the experimental charge yields, but otherwise reproduces
the empirical distributions. In general, we notice a reduction
of symmetric yields when the nonperturbative cranking col-
lective inertia are used, thus bringing the results in better
agreement with data. This is due to the increase of the col-
lective mass in the region of small octupole deformations and
the resulting reduction of the flux for symmetric fission. The
effect is very weak in 234U but somewhat more pronounced
for the other three nuclei.

IV. SUMMARY

Nonperturbative cranking ATDHFB collective masses
have been used for the first time in the TDGCM+GOA
description of induced fission dynamics. The mass tensor
determines the adiabatic collective motion of the fissioning
nucleus governed by the Schrödinger equation for the nuclear
wave function in the space of deformation parameters. In an
illustrative calculation of low-energy induced fission of four
actinide nuclei, we have compared the nonperturbative and
perturbative ATDHFB mass tensors in the plane of axially
symmetric quadrupole and octupole deformations, as well
as the resulting charge yields. As noted in previous studies,
the structure of nonperturbative collective masses is much
more complex due to changes in the intrinsic shell structure
across the deformation energy surface, and it is characterized
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FIG. 7. Charge yields for induced fission in 228Th, 230Th, 234U, and 240Pu. The perturbative (MC p) and nonperturbative (MC) cranking
inertia tensors are used in the TDGCM+GOA calculation. The experimental thermal neutron induced fission charge yields are from Ref. [33].

by pronounced isolated peaks located at single-particle level
crossings near the Fermi surface. In the present study, we have
been able to use both nonperturbative and perturbative masses
in modeling the time evolution of an initial collective wave
packet across the scission contour to the region in which sep-
arate fragments emerge. It has been shown that the choice of
the collective mass affects the predicted fragment distribution.
In the example explored here, the choice of nonperturbative
cranking collective mass leads to a reduction of symmetric
charge yields and, generally, to a better agreement with data.
This result motivates further studies and applications of full
cranking ATDHFB masses to fission dynamics by considering
additional collective degrees of freedom such as nonaxial
shape deformations and dynamical pairing.
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