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Ground state properties of Zn, Ge, and Se isotopic chains in covariant density functional theory
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A systematic investigation of the ground state deformation, the physical properties (two-neutron separation
energy and neutron, proton, and charge radii), and the possibility of nuclear shape coexistence in Zn, Ge, and Se
isotopes was performed using the relativistic Hartree-Bogoliubov formalism using density-dependent zero- and
finite-range NN interactions. Shape coexistence does not show up clearly in Zn isotopes. However, it is clear in
most of the Ge and Se isotopes; the two coexistence minima are axial and triaxial in the case of Ge, while both
are axial in the case of Se. Along all these chains one can see the existence of several transition points, where the
ground state shape suddenly changes. This sudden change affects the evolution of the physical properties. The
density of states near the Fermi level is a key factor in determining the ground state minima. Both point-coupling
and meson-exchange models give similar results with few exceptions. A very good agreement is found with the
available experimental data. The SU(3) proxy provides a reasonable prediction of the deformation value in the
middle of the isotopic chain.
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I. INTRODUCTION

One of the most interesting phenomena in recent years for
the nuclear community is the shape coexistence and shape
phase transition in the ground state of atomic nuclei along
isotopic chains. Many successful studies have been performed
both theoretically, using different models, and experimentally
in the near past to study this phenomena.

Covariant density functional theory has been successfully
applied to many isotopic chains. Namely, it has been used to
study Ru and Mo [1], Kr [2,3], Zr and Sr [3], Pb [4], and Pd,
Xe, Ba, Nd, Sm, Gd, and Dy [5]. The obtained results were
reasonable and close to experimental data.

In Ref. [6] the author uses relativistic mean-field theory
(RMFT) without pairing to calculate the binding energy, the
charge quadrupole moment, and the root-mean-square radius
of Ge and Zn isotope chains. However, the author does not use
constrained calculations and impose axial symmetry, thus he
cannot accurately locate the ground state minimum. In fact the
author himself suggests the necessity of triaxial calculations.
Another similar study was performed in Ref. [7] to study
Zn isotopes using RMFT. However, in this study pairing
correlations were taken into account by means of BCS theory.

There are many nuclear structure models used to study
the nuclear properties and shape transitions such as complete
spectroscopy and Coulomb excitation, the interacting boson
model (IBM), relativistic and nonrelativistic models using
Hartree-Fock-Bogolibov (HFB), and self-consistent Hartree-
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Fock models [8–18]. In this regard, a realistic description of
the structural evolution and shape coexistence in Ge, Se, and
Zn isotopes has been addressed earlier in many theoretical
studies within different frameworks. Toh et al. studied the
shape coexistence of Ge and Se with complete spectroscopy
and Coulomb excitation, by calculating the means of multiple
Coulomb excitation, and used it to determine the properties
of nuclear states [19]. Garcia-Ramos and Heyde studied the
shape evolution and shape coexistence in Po isotope chains
using the interacting boson model with configuration mixing
[20]. They obtained the IBM Hamiltonian and calculated
excitation energies, B(E2)’s, electric quadrupole moments,
nuclear radii and isotopic shifts, quadrupole shape invariants,
wave functions, and deformations. Their results agree with the
experimental data for all the studied observables [21].

Nomura et al. [22] studied the shape transitions and shape
coexistence in the Ge and Se isotopes within the IBM with
the microscopic input from a self-consistent mean-field cal-
culation based on the Gogny-D1M energy density functional.
They discussed the potential energy surface, the ground state
properties, and the pairing energy for protons and neutrons
in Ge and Se isotopes. The Gogny-D1M energy surfaces
predict the coexistence between the prolate and oblate shapes
in the lightest nuclei in both isotopic chains. For shapes
around N = 40, coexistence between spherical and γ -soft
(i.e., the energy does not change with the value of γ ) shapes
is observed, When the neutron number increases towards the
N = 50 shell closure, weakly deformed prolate shapes are
obtained. On the other hand, for 52 � N � 62, a number of
nuclei exhibiting γ -soft shapes (which means the nucleus
shape changed smoothly in the isotopic chain) and coexis-
tence between prolate and oblate shapes are observed [22].
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He also studied the shape evolution in Kr isotopes using the
same models but with input coming from a self-consistent
mean-field calculation based on the Gogny energy density
functional and relativistic HFB with DD-PC1 and DD-ME2
parametrizations. For neutron-deficient isotopes there is no
notable difference between relativistic and collectivistic mod-
els. However, they provide different prediction for neutron-
rich isotopes [2].

This article is organized as follows. In Sec. II a theoretical
framework of the RHB formalism is presented. In Secs. III,
IV, and V, the calculations of potential energy surfaces and
physical properties are discussed and compared to available
experimental data and the results from other models. A sum-
mary and conclusions are presented in Sec. VI.

II. THEORETICAL FRAMEWORK

For the present investigation, the self-consistent relativistic
Hartree-Bogoluibove (RHB) model with a density-dependent
finite-range meson-exchange model and a density-dependent
zero-range point-coupling model is used [23–27]. These mod-
els provide a very successful and excellent description of
different ground states and excited state properties over the
entire nucleic chart [24,28–38]. The present investigation uses
the very successful, density-dependent point-coupling DD-
PC1 [23] and nonlinear meson-nucleon coupling NL3* [39]
parameters.

A. The meson-exchange model

The meson-exchange model is defined by the standard
Lagrangian density with medium dependence vertices [40]:

L = ψ[γ (i∂ − gωω − gρ �ρ�τ − eA) − m − gσ σ ]ψ

+ 1
2 (∂σ )2 − 1

2 mσ
2σ 2 − 1

4�μν�
μν + 1

2 m2
ωω2

− 1
4
�Rμν �Rμν + 1

2 m2
ρ �ρ2 − 1

4 FμνFμν, (1)

where m is the bare nucleon mass and ψ denotes the Dirac
spinors. The masses mσ , mω, and mρ are those of the σ

meson, the ω meson, and the ρ meson, with the corresponding
coupling constants for the mesons to the nucleons being
gσ , gω, gρ , respectively, and e is the charge of the proton.
These coupling constants and unknown meson masses are the
Lagrangian Eq. (1) parameters. Here, 
μν , �Rμν , and Fμν are
the field tensors of the vector fields ω, ρ, and the photon.

This linear model was first introduced by Walecka [41,42];
however, this simple model does not provide a quantitative
description of a nuclear system [43,44] with interaction terms
that are only linear in the meson fields. For a realistic descrip-
tion of complex nuclear system properties one can introduce
either a nonlinear self-coupling or a density dependence in the
coupling constants.

For the nonlinear self-coupling, one has to add the follow-
ing term to the Lagrangian:

U (σ ) = 1
2 m2

σ σ 2 + 1
3 g2σ

3 + 1
4 g3σ

4; (2)

for scalar mesons this has turned out to be crucial [43]. This
model has been successfully used in a number of studies
[40,45–47]. We have used the recently proposed parameter

set NL3* [39], which is a modern version of the widely used
parameter set NL3 [46]. It improves the description of the
ground state properties of many nuclei over the parameter set
NL3 and provides a simultaneously excellent description of
excited states with collective character in spherical as well
as in deformed nuclei. From the Lagrangian density, one can
easily obtain the Hamiltonian density, which for the static
case reads

H =
A∑

i=1

ψ
†
i (αp + βm)ψi

+ 1

2

[
(∇σ )2 + m2

σ σ 2
] − 1

2

[
(∇ω)2 + m2

ωω2
]

− 1

2

[
(∇ρ)2 + m2

ρρ
2] − 1

2
(∇A)2

+ [gσ ρsσ + gω �jμωμ + gρ �jμ · �ρμ + e jpμAμ]. (3)

We have also introduced the isoscalar-scalar density, the
isoscalar-vector current, the isovector-vector current, and the
electromagnetic current:

ρs(r) =
A∑

i=1

ψ i(r)ψi(r), (4)

jμ =
A∑

i=1

ψ i(r)γμψi(r), (5)

�jμ =
A∑

i=1

ψ i(r)�τψi(r), (6)

�jpμ =
Z∑

i=1

ψ
†
i (r)γμψi(r), (7)

where the summation is performed only over occupied orbits
in the Fermi sea of positive energy states

B. The point-coupling model

The effective Lagrangian density for the density-dependent
point-coupling model [23,48,49] that includes the isoscalar-
scalar, isoscalar-vector, and isovector-vector four-fermion in-
teractions is given by

L = ψ̄ (iγ .∂ − m)ψ

− 1

2
αs(ρ̂)(ψ̄ψ )(ψ̄ψ ) − 1

2
αV (ρ̂)(ψ̄γ μψ )(ψ̄γμψ )

− 1

2
αTV (ρ̂)(ψ̄ �τγ μψ )(ψ̄ τ̃ γμψ )

− 1

2
δS (∂vψ̄ψ )(∂vψ̄ψ ) − eψ̄γ · A

1 − τ3

2
ψ. (8)

It contains the free-nucleon Lagrangian and the point-
coupling interaction terms, and in addition to these two,
the model includes the coupling of the proton to the elec-
tromagnetic field. The derivative terms in Eq. (8) account
for the leading effects of finite-range interactions that are
crucial for a quantitative description of the nuclear properties.
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FIG. 1. Potential energy surfaces of even-even Zn isotopes from the neutron number (34 � N � 66) as functions of the quadrupole
deformation, obtained from triaxial RHB calculations with constrained quadrupole deformation. The effective interactions used are NL3*.
The surfaces are scaled such that the ground state has a 0 MeV energy.

The Hamiltonian can be written as

H =
A∑

i=1

ψ
†
i (αp + βm)ψi

− 1

2
(∇A)2 + 1

2
e jμp Aμ

+ 1

2

[
αSρ

2
s + αV jμ jμ + αTV �jμ · �jμ + δSρs�ρs

]
. (9)

The functional form of the point-couplings chosen is

αi(ρ) = ai + (bi + cix)e−dix (i = S,V, TV ), (10)

where x = ρ/ρsat, and ρsat denotes the nucleon density at
saturation in symmetric nuclear matter. In the present work,
we have used the recently developed density-dependent point-
coupling interaction DD-PC1 [23].

In the present investigation, the triaxial RHB model with
a separable pairing model is used [50,51]. In the presence of
pairing the single-particle density matrix is generalized to two
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FIG. 2. Similar to Fig. 1, but using the DD-PC1 parametrization.

densities [52]: the normal density ρ̂ and the pairing tensor k̂.
The RHB energy density functional is then given by

ERHB[ρ̂, k̂] = ERMF[ρ̂] + Epair[k̂], (11)

where ERMF[ρ̂] is given by

ERMF[ψ, ψ̄, σ, ωμ, �ρμ, Aμ] =
∫

d3rH, (12)

and the Epair[k̂] is given by

Epair[k̂] = 1

4

∑
n1n′

1

∑
n2n′

2

k∗
n1n′

1
〈n1n′

1|V PP|n2n′
2〉kn2n′

2
. (13)

The index n refers to the original basis, and 〈n1n′
1|V PP|n2n′

2〉
are the matrix elements of the two-body pairing interaction.
The effective interaction in the pp channel, in r space has
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TABLE I. Nuclei with two ground state minima for Zn isotopes.
Locations of the ground state minima are indicated by (β0, γ 0 ). In
the second column, NL3* results are shown, while DD-PC1 results
are shown in the third column.

Nucleus NL3∗ DD-PC1

64Zn (0.20, 0◦ and 0.20, 60◦) (0.25, 60◦) and (0.25, 0◦)
88Zn (0.25, 60◦) (0.25, 60◦) and (0.25, 0◦)

the form

V PP(r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r)P(r′), (14)

where

R = 1√
2

(r1 + r2),

r = 1√
2

(r1 − r2),

(15)
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FIG. 3. Quadrupole deformation parameters β20 (a) and γ (b) for
even-even Zn isotopes using NL3*, DD-PC1, SU(3)-proxy, and
experimental data [60] as a function of the neutron number (N).
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FIG. 4. Two-neutron separation energy for even-even Zn iso-
topes using NL3* (circles), DD-PC1 (squares), and experimental
data [61] (stars) as a function of the neutron number (N).

being the center of mass and the relative coordinates, respec-
tively. The form factor P(r) is of the Gaussian shape:

P(r) = 1

(4πa2)3/2
e−r2/2a2

. (16)

The two parameters G = 728 MeV fm3 and a = 0.644 fm of
this interaction are the same for protons and neutrons. It is
derived in Refs. [53–56] by a mapping of the 1S0 pairing gap
of infinite nuclear matter to that of the Gogny force D1S [57].

C. Numerical details

We perform constrained calculations on the total energy
using the triaxial RHB framework, to enable us to locate
a global ground state minimum and track the evolution of
the ground state shape through the specified isotopic chains.
The covariant density functional theory (CDFT) equations are
solved on the basis of an isotropic three-dimensional har-
monic oscillator in Cartesian coordinates. The truncation of
the basis is performed in such a way that all states belonging
to the shells up to fermionic NF = 14 and bosonic NB =
20 are taken into account. The constrained calculations are
performed by imposing constraints on both axial and triaxial
mass quadrupole moments.

The method of quadratic constraints uses an unrestricted
variation of the function

〈Ĥ〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)
2
, (17)

where 〈Ĥ〉 is the total energy, 〈 ˆQ2μ〉 denotes the expectation
values of mass quadrupole operators,

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2, (18)

q2μ is the constrained value of the multipole moment, and
C2μ is the corresponding stiffness constant [52]. Moreover, the
quadratic constraint adds an extra force term,

∑
μ=0,2 λμQ̂2μ,
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to the system, where

λμ = 2C2μ(〈Q̂2μ〉 − q2μ) (19)

for a self-consistent solution. This term is necessary to force
the system to a point in deformation space different from a
stationary point. The augmented Lagrangian method [58] has
also been implemented in order to resolve the problem of
convergence of the self-consistent procedure, which diverges
while increasing the value of the stiffness constant C2μ used in
the procedure. Using this procedure we can locate the ground
state deformation for the even-even nuclei in this study. In
performing this calculation, β is taken from 0 to 0.5 in steps
of 0.05 and γ is take from 0 to 60 in steps of 5.

In addition, we calculate the value of several physical
observables at the ground state deformation. These observ-
ables are the following: the two-neutron separation energy, the
nucleon radius, and the charge radius.

The two-neutron separation (S2n) is the energy needed to
remove two neutrons from a nucleus, and it is given by

S2n(N ) = BE
(

A
ZXN

) − BE
(

A
ZXN−2

)
. (20)

The nuclear charge radius plays a key role in studying
the character of the nucleus and testing theoretical models of
nuclei. It is calculated using the proton radius:

Rc =
√

R2
p + 0.64, (21)

where is 0.64 is related to the finite volume of the proton
(volume correction).

For a comprehensive description of the nuclei under con-
sideration and their spectra beyond mean field must be ap-
plied, and the calculation of the potential surface energy
serves only as the first step. However, this is beyond the scope
of the current article.

III. ZN ISOTOPES

A. Triaxial symmetry

Potential energy surfaces for Zn isotopes using both NL3*
and DD-PC1 are presented in Figs. 1 and 2, respectively.

The shape coexistence in Zn isotopes is very limited among
the even-even isotopes considered in this study. It can be
seen from DD-PC1 calculations that the coexistence is only
in two nuclei; namely: 64,88Zn, which correspond to neutron
numbers 34 and 58, respectively. For NL3*, it predicts the
shape coexistence just in 64Zn. Each parametrization predicts
a different shape for N = 34. While NL3* predicts a prolate
shape, DD-PC1 predicts an oblate one. The difference comes
from the fact that this nucleus has two competing minima, pro-
late and oblate as shown in Table I. For each parametrization,
the deepest minimum is different. However, the difference in
energy between these two minima in both cases is around
0.5 MeV.

For 88Zn, only DD-PC1 predicts a shape coexistence, with
two axial minima. One of them is prolate and the other is
oblate. Both of the two minima are located around β2 = 0.20.
However, the oblate minimum is found to be slightly deeper in
both nuclei. Most of the deformed Zn isotopes in the middle
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FIG. 5. Neutron (a), proton (b), and charge (c) radii for even-
even Zn isotopes in triaxial symmetry using NL3* (circles), DD-PC1
(squares), and experimental data (stars) (experimental data are taken
from Ref. [62]) as a function of the neutron number (N).

of the chain are prolate, while the isotopes on either side of
the chain are found to be oblate.

Locations of the ground state minimum were extracted
from the potential energy surfaces (PESs) and plotted in
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FIG. 6. Potential energy surfaces of even-even Ge isotopes from the neutron number (34 � N � 62) as functions of the quadrupole
deformation, obtained from triaxial RHB calculations with constrained quadrupole deformation. The effective interactions used are NL3*.
The surfaces are scaled such that the ground state has a 0 MeV energy.

Fig. 3. It can be seen that results obtained by NL3* and
DD-PC1 are in general in agreement with each other. It is
worth noting that there are no triaxial minima found in any
of our calculations. However, one can argue that for several

nuclei there is a softness in the γ deformation, and thus we
cannot completely ignore the possibility of a triaxial ground
state. This can be clearly seen for 68,72,86,90Zn. It is worth
noting that, at both neutron-deficient and neutron-rich sides
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FIG. 7. Similar to Fig. 6, but within the DD-PC1 parametrization.

of the chain, the oblate shape is dominant, while at the middle
of the chain the prolate shape is the dominant one. There
are several points of shape change: oblate-spherical (N =
40), spherical-prolate (N = 42), prolate-spherical (N = 50),
spherical-prolate (N = 52), and prolate-oblate (N = 58). In

all these points of transition we do not find an oblate-prolate
transition. All of the transitions go through a spherical shape.
These shape transitions lead to the expectation of several
sudden changes in the value of the physical observables, as
we see later on.
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TABLE II. Nuclei with two ground state minima for Ge isotopes.
Locations of the two ground state minima are indicated by (β0, γ 0 )
for the NL3* parametrization. The first minimum is the deepest
minimum.

Nucleus First minimum (β0, γ 0 ) Second minimum (β0, γ 0 ) � E

66Ge (0.25, 60◦) (0.25, 0◦) 0.29
72Ge (0.00, 0◦) (0.20, 60◦) 0.18
90Ge (0.25, 30◦) (0.25, 60◦) 0.09

In Fig. 3 we compare our results with the newly developed
SU(3)-proxy [59] and experimental data. Although there are
some differences in the values of β2, all models follow a
similar general trend. One of the most interesting features of
the SU(3)-proxy model is the shape transition. The authors
of Ref. [59] state that if the value of γ is less than 30 then
the nucleus has a prolate shape, and if it is greater than 30
then the shape will be oblate. In comparison with the results
in Fig. 3, one can see that SU(3)-proxy does not predict
an oblate ground state shape; it only predicts spherical and
prolate shapes. We can see a perfect agreement in the middle
of the isotopic chain, between N = 40 and N = 56. For N >

56, we have total disagreement; our calculations predict an
oblate shape while SU(3)-proxy predicts a prolate shape. In
the beginning of the chain, the situation is similar; we have
an oblate shape while SU(3)-proxy predicts a prolate shape.
However, for N = 34, our results and those obtained with
SU(3)-proxy agree. In addition, we compare our results with
experimental data [60]; the results are in good agreement on
both sides of the isotopic chain, and difference occurs only at
limited points.

In addition, we compute the average deviation between
NL3*, DD-PC1, and SU(3)-proxy with the experimental data
for β deformation. In all three cases the average deviation is
about 0.05. This number is the same as the step size for the cal-
culations mentioned previously. Thus our results are in good
agreement with both experimental data and SU(3)-proxy.

B. Physical properties

1. Two-neutron separation energy

In Fig. 4, the two-neutron separation energy is plotted
as a function of the neutron number. At a first glance, we
see that S2n decreases smoothly as the number of neutrons
increases in the Zn isotopic chain. A sudden change appears
at neutron magic number N = 50 in both NL3* and DD-PC1
calculations. In energy terminology one can claim that the
energy necessary to remove two neutrons from a nucleus

TABLE III. Same as Table II, but using the DD-PC1 parametriza-
tion. The first minimum is the deepest minimum.

Nucleus First minimum (β0, γ 0 ) Second minimum (β0, γ 0 ) � E

66Ge (0.25, 60◦) (0.25, 0◦) 0.42
72Ge (0.00, 0◦) (0.20, 60◦) 0.37
90Ge (0.25, 30◦) (0.25, 60◦) 0.08
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FIG. 8. Similar to Fig. 3, but for Ge isotopes.

(Z, Nmagic) is much higher than that needed to remove two
neutrons from the nucleus (Z, Nmagic+2), which breaks the
regular trend. In addition, an abrupt decrease in S2n at N = 42
is observed. This sudden change is referred to as the shape
transition of the ground state from spherical at N = 40 to
prolate at N = 42. Also one can notice at the low neutron
side of the chain there is a bit of disagreement between our
results and the experimental one. For N = 40 the reason for
discrepancy is due to different predictions between CDFT
and experimental data; CDFT predicts a spherical shape but
experimental data predicts deformed shape. However, as we
move along the chain this discrepancy disappears.

The average deviation between our calculations and exper-
imental data is found to be around 2 MeV. This deviation lies
within the acceptable errors for CDFT predictions.

2. Neutron, proton, and charge radii

In Fig. 5(a), the neutron radius changes smoothly with
the neutron number N . However, NL3* and DD-PC1 show
sudden changes in the neutron radius that can be explained
by the change in shape and the fact that N = 50 is a magic
number. Figures 5(b) and 5(c) show the proton and charge
radii, respectively. One can see several sudden changes in
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FIG. 9. Single-neutron energy levels of 90Ge as a function of β2

deformation. Solid (black) curves correspond to levels with positive
parity, and (red) dashed curves denote levels with negative parity.
The dot-dashed (green) curves correspond to the Fermi levels. The
panels on the left and the right display prolate (γ = 0◦) and oblate
(γ = 60◦) axially symmetric single-particle levels, respectively. In
the middle panel of the figure, neutron levels are plotted as functions
of γ for a fixed value of the axial deformation |β2| at the approximate
position of the mean-field minimum.

the proton radius located at N = 42, 50, and 58, which can
be attributed to the points of shape change mentioned in the
previous part. In the proton subsystem the sudden change
in the radius is strongly affected by the changing ground
state deformation contrary to the neutron subsystem. Good
agreement with experimental data is found.

IV. GE ISOTOPES

A. Triaxial symmetry

Figures 6 and 7 display PESs of the even-even 66−94Ge iso-
topes for NL3* and DD-PC1 parametrizations, respectively.
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FIG. 11. Two-neutron separation energy for even-even Ge iso-
topes using NL3* (circles), DD-PC1 (squares), and experimental
data [61] (stars) as a function of the neutron number (N).

Nuclei that possess two ground state minima are listed in
Tables II and III; these nuclei are 66,72,90Ge. Both NL3* and
DD-PC1 predict the same two minima for these nuclei. We
can see that results obtained from both parametrizations are
very close.

The remaining nuclei has only one minimum. The shape
of the ground state in 68,70Ge becomes oblate. Thus we have
an oblate-spherical shape transition from N = 38 to N = 40.
With the addition of two more neutrons, N = 42, 74Ge has a
triaxial ground state at β = 0.25 and γ = 30 and also has a
shape transition from spherical to triaxial. For 76,78,80,84Ge the
minimum is a prolate and the value of β2 decreases from 0.2
to 0.15, leading to a spherical shape for 82Ge. Also in 86−94Ge
there is a triaxial minimum with β = 0.25.

In Fig. 8 our results are compared with the SU(3)-proxy
predictions and experimental data. The predicted γ values are
identical in the middle of the isotopic chain from N = 44 to
N = 56. The disagreement in the ground state shape, as in
the Zn case, is found to be in the beginning and at the end
of the isotopic chain. The most obvious point is that SU(3)-
proxy does not predict any oblate shape in the ground state,
but predicts a triaxial shape at N = 44 and 46.

Thus our results are in good agreement with both ex-
perimental data [60] and SU(3)-proxy, where the average
deviation is found to be 0.05.

It is interesting to look at one specific case, which is N =
40. This nucleus has two ground state minima, and the deepest
one as mentioned previously is spherical. This is causing a
difference as compared with experimental data. However, this
difference is due to shape coexistence for 72Ge. The second
minimum has a deformation of β2 = 0.2, and that is very close
to the experimental value with less than 0.50 MeV higher than
the spherical minimum.

The occupation of the single-particle states and the density
of states near the Fermi level play an important role in
the determining of the nuclear ground state deformation. To
understand this role we plotted the single-particle energy level
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FIG. 12. Similar to Fig. 5, but for Ge isotopes.

of 90Ge for neutron and proton subsystems in Figs. 9 and
10, respectively. One can see in both figures that the magic
number shell gap is more pronounced in the oblate case than
in the prolate case (N = 50, Z = 28). In addition, the density
of states near the Fermi level for the oblate case is higher than
that for the prolate case. One can also notice that the density

of states in the middle panel that corresponds to β2 = 0.25 is
higher in the vicinity of γ = 30.

Thus one can conclude that the density of states plays an
important role in determining the ground state deformation.
This feature is very similar to the one seen in the calculations
of the fission barrier height. In Fig. 10 of Ref. [63], the authors
showed that the height of the fission barrier is reduced due to
triaxiality and that was connected to higher density of states
for triaxial solution. It was also mentioned in an earlier article
by Strutinsky [64].

B. Physical properties

1. Two-neutron separation energy

The two-neutron septation energy is plotted as a function
of the neutron number (N) in Fig. 11. One can notice a smooth
change in S2n with N , except for N = 52, where we can see
a sharp change in S2n, and this sharp jump can be attributed
to two factors. The first one is due to the magic number
N = 50, which as we know separation energy increases near
magic numbers. The second factor is the sudden change in
the ground state shape from prolate in 76,78,80Ge (N = 46, 48,
50) to spherical in 82Ge (N = 52). There is good agreement
between our calculations and the results that were obtained in
experiments [61]; the average deviation between our results
and experimental data is about 0.50 MeV.

2. Neutron, proton, and charge radii

Figures 12(a) and 12(b) show the radii of neutrons and
protons obtained from NL3* and DD-PC1 parametrizations
are in agreement with each other with small deviations. One
can notice a sharp change in both the neutron radius (Rn)
and the proton radius (Rp) at N = 52. This sharp change can
be attributed to the sudden transition from a spherical shape
in 82Ge (N = 50) to a deformed shape in 84Ge (N = 52).
NL3* predicts larger values of Rp compared with the ones
obtained using DD-PC1 at N = 36. This difference comes
from the different locations of the ground state minima. This
ground state has axial minima with β = 0.3 in NL3*, whereas
DD-PC1 predicts it to have triaxial minima with β = 0.25.
To verify this, we can notice there is no significant difference
between the radii of neutrons and protons obtained from NL3*
and DD-PC1 at N = 34, which is because the prediction of
the ground state minima are the same in NL3* and DD-PC1
parametrizations.

Figure 12(c) shows the charge radius for Ge isotopes; it has
behavior identical to that of the proton radius discussed in the
previous paragraph.

V. SE ISOTOPES

A. Triaxial symmetry

Figures 13 and 14 display the potential energy sur-
faces for even-even 68−96Se using both NL3* and DD-PC1
parametrizations, respectively.

Tables IV and V list all the nuclei that have shape coex-
istence, which are 68,70,74,86−96Se. It can be seen that NL3*
predicts an oblate minimum to be the deepest one, and the
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FIG. 13. Similar to Fig. 6, but for Se isotopes using NL3*.

second minimum is a prolate minimum except for 74Se, which
has a spherical second minimum. The results obtained from
DD-PC1 are in agreement with those from NL3* calculations
within one major difference in 88,90Se, where the deepest
minimum is a prolate shape and the second minimum is an

oblate shape. However, the difference in energy between these
minima, both for NL3* and DD-PC1, is less than 400 KeV.

Finally, the ground state has one minimum in
72,76,78,80,82,84Se. This minimum is a prolate shape at β = 0.25
in 72Se, and it is an oblate shape in 76,78,80,82,86Se with
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FIG. 14. Similar to Fig. 13, but using the DD-PC1 parametrization.

different values of β varying from 0.15 to 0.2. In 84Se the
shape of the ground state changes suddenly to spherical.

In Fig. 15, as expected, we get a good agreement with
the SU(3)-proxy model in the middle of the isotopic chain
and total disagreement on both sides of the chain. However,
here we have a very interesting case. On the neutron-rich
side of the chain, shape coexistence is present. If one takes

the second minimum into consideration, we notice that the
results are in full agreement with the SU(3)-proxy predictions.
In addition, we compare our results with experimental data
[60]; the results are in good agreement along the chain, and
the average deviation is about 0.05.

Similar to 90Ge, we plot single-particle states for 90Se
for neutron and proton subsystems in Figs. 16 and 17,
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TABLE IV. Nuclei with two ground state minima for Se isotopes.
Locations of the two ground state minima are indicated by (β0, γ 0 )
for the NL3* parametrization. The first minimum is the deepest
minimum.

Nucleus First minimum (β0, γ 0 ) Second minimum (β0, γ 0 ) � E

68Se (0.25, 60◦) (0.25, 0◦) 0.37
70Se (0.30, 60◦) (0.25, 0◦) 1.07
74Se (0.20, 60◦) (0.00, 0◦) 0.27
86Se (0.15, 0◦) (0.15, 60◦) 0.15
88Se (0.2, 60◦) (0.2, 0◦) 0.18
90Se (0.25, 60◦) (0.25, 0◦) 0.38
92Se (0.25, 60◦) (0.25, 0◦) 0.87
94Se (0.25, 60◦) (0.25, 0◦) 0.92
96Se (0.25, 60◦) (0.25, 0◦) 1.10

respectively. 90Se has two minima with an energy difference
of 0.38 MeV. The deepest minimum is the oblate shape that
corresponds to γ = 60. We see that in the vicinity of the
Fermi level that, for γ = 60, the density of states are higher
than for γ = 0, in both proton and neutron subsystems. In
addition one can notice that the N = 50 shell gap and Z = 28
are larger for the oblate shape than for the prolate shape.
Thus one would expect the prolate minimum to be deeper as
shown by our results. For the neutron subsystem the states
near the Fermi level drive the deformation up, but in the proton
subsystem the state just below the Fermi level does not effect
the deformation.

B. Physical properties

1. Two-neutron separation energy

One can see in Fig. 18 that the two-neutron separation
energies (S2n) for Se isotopes obtained from NL3* and DD-
PC1 are in agreement with each other. There is a sharp change
in S2n at N = 52 that can be attributed to two factors. The first
one is due to the magic number N = 50, because we know
that separation energy increases as it nears magic numbers.
The second factor is the sudden change in the ground state
shape from a spherical shape at N = 50 to a deformed shape
at N = 52. The average deviation between our results and
experimental data is about 0.70 MeV. Thus, our calcula-

TABLE V. Same as Table IV, but using the DD-PC1
parametrization.

Nucleus First minimum (β0, γ 0 ) Second minimum (β0, γ 0 ) � E

68Se (0.25, 60◦) (0.25, 0◦) 0.33
70Se (0.30, 60◦) (0.25, 0◦) 1.42
74Se (0.25, 60◦) (0.00, 0◦) 0.08
86Se (0.15, 0◦) (0.15, 60◦) 0.19
88Se (0.2, 0◦) (0.20, 60◦) 0.14
90Se (0.25, 0◦) (0.25, 60◦) 0.24
92Se (0.25, 60◦) (0.25, 0◦) 0.55
94Se (0.30, 60◦) (0.25, 0◦) 0.40
96Se (0.25, 60◦) (0.25, 0◦) 0.01
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FIG. 15. Similar to Fig. 3, but for Se isotopes.

tions are in agreement with experimental data [61] except at
N = 52.
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The dot-dashed (green) curves correspond to the Fermi levels.
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2. Neutron, proton, and charge radii

There is good agreement in Figs. 19(a) and 19(b) for the
radii of both neutrons and protons obtained from NL3* and
DD-PC1 parametrizations. However, there is small deviation
when the NL3* results show a higher value of neutron radius.
On the other hand, the DD-PC1 results shows a higher value
of proton radius. This difference is attributed to the differences
in shape evolution for the ground state between NL3* and
DD-PC1.

Figure 19(c) shows the charge radii for Se isotopes. One
can see that there is a sharp change in the Rc at N = 52.
This sharp change is attributed to a sudden change of ground
state shape from prolate at N = 50 to spherical at N = 52.
Also as we know that the charge radius increases at magic
numbers, and N = 50 is a magic number. Good agreement
with experimental data is found.
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FIG. 18. Two-separation energy for even-even Se isotopes using
NL3* (circles), DD-PC1 (squares), and experimental data [61] (up
triangle) as a function of the neutron number (N).
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FIG. 19. Similar to Fig. 5, but for Se isotopes.

VI. CONCLUSION

In this article, the relativistic Hartree-Bogoluibove model
has been successfully applied to investigate the shape coexis-
tence and physical properties such as two-neutron separation
energy and neutron and proton radii in the ground state of Zn
(Z = 30, 34 � N � 64) isotopes, Ge (Z = 32, 34 � N � 62)
isotopes, and Se (Z = 34, 34 � N � 62) isotopes.

The functional DD-PC1 was adjusted exclusively to the
experimental masses of a set of 64 deformed nuclei in the
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mass regions A ≈ 150–180 and A ≈ 230–250. NL3* was
fitted to 12 spherical nuclei. Thus the study of transitional
nuclei can be considered as an extrapolation of these two
parametrizations and serves as a test of the universality of
CDFT parametrizations. The good agreement with experi-
ment, in both two-neutron separation energy and ground state
deformation, is a great success of CDFT and is a big step to
support the usage of universal energy density functionals in
the study of nuclear structure.

Shape coexistence was present in the Ge and Se isotopes
and not in the Zn isotopes. No shape coexistence was observed
in the Zn isotopes, and all of the minima were in general axial.
Several shape transitions from prolate to oblate occur through
the chain, but they always pass through the spherical shape.
A very good agreement was found when our results were

compared with the prediction of SU(3)-proxy, especially in
the middle of each isotopic chain. One has to note that SU(3)-
proxy is an approximate, analytic treatment of the Nilsson
model. It is a good approximation to the full set of orbits
in a major shell. It works best for nuclei where microscopic
calculations are found to be challenging.

One can see that the smooth change in the ground state
deformation is connected with a smooth evolution of the
physical properties in the ground state. The sharp jump
in most of the physical properties is observed at N =
50. This sharp jump is due to the change of the ground
state shape in the neighboring nuclei. The density of states
near the Fermi level plays a major factor in determining
the ground state deformation and the possibility of shape
coexistence.
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[24] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.
C 71, 024312 (2005).
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[50] T. Nikšić, N. Paar, D. Vretenar, and P. Ring, Comput. Phys.
Commun. 185, 1808 (2014).

[51] P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).
[52] P. Ring and P. Schuck, The Nuclear Many-Body Problem, edited

by W. Beiglböck (Springer-Verlag, New York, 1980).
[53] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Lett. B 676, 44 (2009).
[54] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Rev. C 79, 064301 (2009).
[55] Y. Tian, Z. Y. Ma, and P. Ring, Phys. Rev. C 80, 024313

(2009).
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