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The ELYO (extended Lee-Yang-Orsay) functional proposed in M. Grasso, D. Lacroix, and C. J. Yang [Phys.
Rev. C 95, 054327 (2017)] belongs to the family of energy-density functionals (EDFs) inspired by effective-field
theories and constrained by ab initio pseudodata. We present here an extension of this EDF which also accounts
for the first p-wave term appearing in the low-density expansion from which it derives. It is shown that this
enrichment of the ansatz on which the functional is based leads to a significant improvement of the description
of neutronic systems, especially in regimes besides the pseudodata set employed to adjust the parameters. As an
illustrative application, the mass-radius relation of neutron stars is considered. In contrast to its initial version,
the new functional predicts values which are qualitatively consistent with recent observations.
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I. INTRODUCTION

EDF theories represent a rich and versatile theoretical
framework in nuclear physics [1]. The description they pro-
vide for nuclear structure and reactions is globally very satis-
factory and covers in practice the whole nuclear chart. How-
ever, nuclear EDFs are built on an empirical basis. Several at-
tempts to link them more tightly with microscopic ingredients
and theories were carried out in different ways. The past years
have seen the emergence of new strategies for developing
EDFs (see, for example, Refs. [2,3] and Ref. [4] for a recent
review). The underlying idea is to implement techniques or
to adapt results [5–10] from chiral effective-field theories
(EFTs) [11–14] and ab initio models, with the primary aim
of rendering the designed EDFs less phenomenological than
the traditional ones generated from Skyrme or Gogny effective
interactions [15–19].

Our group recently proposed several procedures to reduce
the empirical nature of nuclear functionals. The so-called
YGLO (Yang-Grasso-Lacroix-Orsay) functional [8] contains
a resummed formula, in the same spirit as in EFTs [20–22],
to account for the large value of the neutron-neutron scatter-
ing length, together with Skyrme-type velocity- and density-
dependent terms, which guarantee the saturation properties of
symmetric matter and a correct behavior of neutron matter at
all density scales. Some parameters of the resummed term
were linked to the neutron-neutron scattering length so to
reproduce the Lee-Yang expansion that is valid for very dilute
Fermi gases [23,24]. Only seven parameters remained uncon-
strained by this requirement and were adjusted on microscopic
pseudodata available for symmetric and neutron matter.
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Later, an alternative way was proposed to deal with the
large value of the neutron-neutron scattering length and to
reproduce at the same time the equation of state (EOS) of
neutron matter both in the very dilute regime (Lee-Yang
expansion) and close to the saturation density of symmetric
matter (density scales of interest for finite nuclei), without
resorting to a resummation. A new functional was introduced,
containing a density-dependent neutron-neutron scattering
length [10]. This functional was later called ELYO (extended
Lee-Yang-Orsay) in Ref. [25], where it was generalized for
treating finite-size systems. To construct such a functional, a
Lee-Yang–inspired EOS was considered. Thus, the functional
can be regarded as EFT inspired in the sense that it correctly
describes, by construction, dilute Fermi gases (as is the case
in EFT). In addition, such a functional can be regarded as
ab initio–inspired in the sense that it was benchmarked on
ab initio pseudodata for reproducing the energies of neutron
drops. The validity of the ELYO functional at all neutron-
matter densities was guaranteed through the use of a scattering
length tuned as a function of the density by imposing a
low-density constraint |askF | < 1, where as is the scattering
length and kF the Fermi momentum. Satisfactory EOSs were
obtained up to the nuclear saturation density for both pure
neutron matter (PNM) and symmetric nuclear matter (SNM).
In the case of PNM only one parameter was fitted, the effective
range rs associated with the s-wave scattering length as, in
order to have a Lee-Yang–type EOS valid at all densities.
To describe also SNM, a mapping was carried out with an
s-wave Skyrme-like EOS and four parameters were adjusted
(the Skyrme parameters t0, t1, t3, and α, where α is the power
of the density-dependent term).

A recent application to neutron drops [25], finite-size
systems composed solely of neutrons living in a harmonic
trapping potential, has revealed severe limitations of the
ELYO EDF that may be intuitively understood by analyzing
the associated PNM EOS. As an attempt to overcome the
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TABLE I. Physical values for the s-wave scattering length as, the
effective range rs, and the p-wave scattering length ap, adopted in
the present work. ρlim denotes the density from which each of the
conditions of Eqs. (1) is violated.

as rs ap

(fm) –18.9 2.75 0.63

ρlim (fm−3) 5.0 × 10−6 1.6 × 10−3 0.135

observed drawbacks, we propose here to extend the functional
via the inclusion of the p-wave contribution to the energy,
neglected in the initial version.

The present work is organized in the following way. The
ELYO ansatz is first enriched for PNM in Sec. II. Next,
neutron drops are addressed in Sec. III where additional
parameters defining the effective mass are introduced. In
Sec. IV, the remaining free parameters are determined by
using the EOS of SNM as constraint, which entirely specifies
the proposed functional. As an application, masses and radii
of neutron stars are then evaluated in Sec. V by solving the
Tolman-Oppenheimer-Volkov equations. Finally, conclusions
are given in Sec. VI.

II. PURE NEUTRON MATTER: LEE-YANG EXPANSION

Let ap be the neutron-neutron p-wave scattering length.
When the density ρ is such that the Fermi momentum kF =
(3π2ρ)1/3 satisfy simultaneously the following conditions:

|askF | < 1, |rskF | < 1, |apkF | < 1, (1)

a low-density expansion may be performed [23,24], which
was first derived by Lee and Yang in the 1950s and which
naturally arises in EFT as shown in Ref. [26]. The first terms
of this expansion are

E

N
= h̄2k2

F

2m

{
3

5
+ 2

3π
(askF ) + 4

35π2
(11 − 2 ln 2)(askF )2

+ 1

10π
(rskF )(askF )2+0.019(askF )3 + 3

5π
(apkF )3

}
,

(2)

where N and m denote, respectively, the neutron number and
the neutron mass.

The values of the physical constants used in this work as
well as the associated limit densities ρlim up to which the
inequalities of Eq. (1) respectively hold are reported in Table I.
It is worth mentioning that, in the literature, the p-wave
scattering length varies from 0.45 fm in Refs. [27,28] to 0.84
fm in Ref. [29]. The adopted value 0.63 fm corresponds to the
AV4 interaction (see Ref. [29]).

The original ELYO functional [10] has been designed
by retaining only the s-wave terms of Eq. (2), that is by
discarding the last term, and by requiring that the first relation
of Eq. (1) is always satisfied. The associated validity condition
is then generalized to density regimes of interest for nuclear

physics by allowing as to depend on the density as

as(ρ) =
{

as if ρ < ρlim (I)
−�/(3π2ρ)1/3 if ρ � ρlim (II)

, (3)

where � � 1 is a control parameter. Throughout this paper,
when there is no explicit ρ dependence, as refers to the phys-
ical value in Table I. It is therefore supposed that the s-wave
scattering length departs from its bare value to approach zero
as the density increases, thus modeling in-medium effects.

The ELYO EOS may be mapped with a pure s-wave
Skyrme mean-field EOS, that is without the t2 gradient com-
ponent, through a term-by-term identification with respect to
the power of kF (or ρ, equivalently) appearing in Eq. (2),
leading to

t0(1 − x0) = 4π h̄2

m
as(ρ), (4a)

t1(1 − x1) = 2π h̄2

m

[
rsa

2
s (ρ) + 0.19πa3

s (ρ)
]
, (4b)

t3(1 − x3) = 144h̄2

35m
c0(11 − 2 ln 2)a2

s (ρ), (4c)

with c0 = (3π2)1/3, provided that the fractional power of the
density-dependent t3 term is fixed to α = 1/3. For pure neu-
tron systems, the above combinations ti(1 − xi ), i = 0, 1, 3,
fully characterize the EOS.

Such a mapped Skyrme-type t0 − t1 − t3 model can be
used to describe also SNM. For this, we have not required in
Ref. [10] that the very low-density regime of SNM is correctly
reproduced. Instead, since the SNM EOS of a Skyrme-type
t0 − t1 − t3 model does not depend on the xi’s, the parameters
ti have been fitted so that to impose correct properties close to
saturation. The coefficients xi are then generated by Eqs. (4a)–
(4c) through which they depend on the density.

The effective range in the region (II) defined by Eq. (3) is
tuned to reach −4.5 fm, very different from the bare value
(see Table I), but required to obtain a reasonable PNM EOS
with � = 1. The ELYO EOS of PNM, denoted by ELYO-s on
Fig. 1 (to emphasize its pure s-wave character), depends on
this unique phenomenological parameter, whereas the three
ti’s are needed to specify the EOS of SNM. The orange area
on the figure represents a collection of ab initio results [30–34]
relying on various interactions and many-body methods. Also
shown is the PNM EOS produced by the SLy5 Skyrme
parametrization [35], which agrees rather well with the ab
initio estimates (we remind the reader that the SLy5 PNM
EOS was adjusted on the Akmal et al. EOS [30]) and is,
consequently, taken as reference in the present work.

The reason why the readjustment of rs was a necessary step
for the ELYO-s functional may be explained by examining
the Lee-Yang formula. In the case of Ref. [10], the scattering
length is taken equal to −18.9 fm up to kF ∼ 0.05 fm−1, that
is up to the associated ρlim. For this value of kF and using
rs = 2.75 fm, rskF ∼ 0.14. To kF ∼ 0.05 fm−1, |rskF | < 1
and it was checked that the term containing the effective
range in the Lee-Yang formula may be safely neglected.
Beyond, the scattering length deviates from −18.9 fm and it
becomes meaningless to keep the associated value of 2.75 fm
for the effective range. On the other side, if one assumes a
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FIG. 1. Energy per particle of PNM as obtained in the five cases
described in the text. Also shown for comparison are the EOS for
the ELYO-s (red line) and SLy5 functionals (black dotted line).
The orange area contains ab initio results from Refs. [30–34]. The
different curves refer to the cases 1–5 discussed in the main text.
Note that the case-4 curve (fit rs, ap) (cyan) is practically superposed
to the case-5 curve (fit rs, fix ap) (blue).

prescription such as Eq. (3) for the effective range as well and
keeps the original ELYO-s functional, then the energy is just
proportional to that of a free Fermi gas, as for unitary gases,
the proportionality constant being the Bertsch parameter ξ .
Taking for example ξ = 0.37, the EOS of PNM is indeed
quite well described by such a unitary gas EOS [36] (see
also discussion in Ref. [37]). However, an effective range of
the form (3) would lead for ELYO to a value of ξ which
is quite different from 0.37, and thus to an EOS for PNM
definitely far to be acceptable. If, on the other hand, rs is
kept constant, an additional k3

F term (∝ ρ) survives within the
domain (II) and the adjustment of rs allows for correcting the
EOS compared to the case where the bare value of rs is used
(see Fig. 4 of Ref. [10]). The point is that an EOS containing
only s-wave terms is not sufficient to well describe PNM if
both the scattering length and its associated effective range
obey a low-density constraint such as Eq. (3).

Of course, one may notice that, with rs = −4.5 fm, the
relation |rskF | < 1 is satisfied only at very low densities (kF <

0.22 fm−1). This means that, by fitting rs, we renounce the
second condition of Eq. (1) to be valid in all density regions
and maintain only the first (which is, by the way, the only
condition strictly required to have a correct EOS at extremely
low densities).

Let us now include within the ELYO functional the first p-
wave contribution which was neglected in the initial version.
To this end, we proceed as in Ref. [10], that is by mapping
Eq. (2) term-by-term with a Skyrme-like EOS. The p-wave
part thus gives rise to a new t2 term related to the p-wave
scattering length by

t2(1 + x2) = 4π h̄2

m
a3

p, (5)

while Eqs. (4) still hold.

Next, we have to choose how to treat the quantities as, rs,
and ap, that is to decide which ones are considered as density
dependent through a prescription of the form (3) and which
ones are used as adjustable parameters. Several directions are
explored here and one is finally chosen. Before, let us make
two remarks:

(i) We see from Table I that it is actually possible to
define four ranges of densities separated by the three
values of ρlim associated with each physical constant.
Several tests were carried out leading to more or less
satisfactory results and it was finally concluded that
the best strategy, adopted here, consists in considering
only two regions: (I) where Eq. (2) applies with the
conditions of Eqs. (1) simultaneously fulfilled; (II)
which coincides with the region (II) of Eq. (3) and
starts at the limit density associated with as in Table I.

(ii) For simplicity, the control parameter � is assumed to
be the same for the three low-density constants, and
fixed to unity.

As the s-wave scattering length dominates, Eq. (3) is used
systematically and we have identified the following cases for
which the obtained PNM EOS are represented on Fig. 1:

1 [no fit (gray curve)]: In addition to Eq. (3), we have
density dependencies in region (II) for both the effective
range

rs(ρ) =
{

rs (I)

1/(3π2ρ)1/3 (II)
, (6)

and the p-wave scattering length

ap(ρ) =
{

ap (I)

1/(3π2ρ)1/3 (II)
. (7)

The minus sign in Eq. (3), region (II) disappears for
rs(ρ) and ap(ρ) as the sign is imposed by continuity
argument at the frontier between the two regions.

2 [fit ap (green curve)]: As for rs in the s-wave version, the
value of ap in region (II), denoted by aII

p , is adjusted on
the SLy5 EOS whereas rs(ρ) is employed.

3 [fit rs (purple curve)]: The treatment of rs and ap is
interchanged compared to the case 2, that is, we use
ap(ρ) whereas rII

s is fitted.
4 [fit rs, ap (cyan curve)]: Only as is density dependent and

the values of both rII
s and aII

p are adjusted.
5 [fit rs, fix ap to the physical value in both regions (blue

curve)]: Only as is density dependent and only the value
of rII

s is adjusted.

Case 1 corresponds to a PNM EOS containing only one
term, proportional to ρ2/3 (see above), and there is no ad-
justed parameter. In cases 2 and 3 there are extra contri-
butions depending on ρ5/3 and ρ, respectively. Each of the
latter two cases relies on a single parameter. We observe
that these three cases offer a poor reproduction of the SLy5
curve. In contrast, cases 4 and 5 involve three powers of the
density. By performing the adjustement of both rs and ap
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FIG. 2. Energy of PNM divided by the energy of a free Fermi gas
EFG as a function of |askF | with as = −18.9 fm. The colors are the
same as in Fig. 1. FP and AV4′ stand for the ab initio calculations
of Refs. [31] and [34,38], respectively. |askF | = 10 corresponds to
a density of 5 × 10−3 fm−3, where traditional Skyrme functionals
generally break down. (Note that, by mistake, in Fig. 5 of Ref. [10],
the green dot-dashed curve does not correspond to the correct curve
and should be replaced by the red curve in the present figure.)

for the case 4, we have found a very good agreement with
the benchmark EOS with the values rII

s = −7.668 fm and
aII

p = 0.626 fm.
One may observe that the adjusted value of ap is indeed

very close to its physical value on Table I (even if we know
that ap may vary around this value). Due to this, the optimal
choice for us was to retain the option 5, where the physical
value of ap = 0.63 fm is used and only one parameter is
adjusted, rs. The fitted value of rs in case 5 is −7.754 fm,
very close to the the value found for case 4. The two curves
corresponding to cases 4 and 5 are practically superposed on
Fig. 1. The new version of the functional corresponding to
case 5 is denoted as ELYO-s + p in what follows.

Expectedly, the ap terms have very small effects in region
(I) (similar discussions were done in Ref. [10], Sec. III, for rs).
With the adopted value ap = 0.63 fm the EOS is continuous
at the board |askF | = 1, as shown on Fig. 2 which displays
the ratio of PNM and free Fermi gas energies as a function of
|askF |. To avoid a (very small) discontinuity between regions
(I) and (II) we used the value rs = −7.754 fm in both regions
(in (I) the contribution related to rs is anyway negligible).
Comparing with ab initio results from Refs. [31,34,38], we
observe a qualitative improvement when the p-wave channel
is included. Note that in all cases the PNM EOS in (I) is
given by the Lee-Yang expansion and does not involve any
adjustable parameter.

With this adjusted value of rs, it is obvious that the sec-
ond condition of Eq. (1) is valid only at very low densities
(kF < 0.13 fm−1). We remind that we are not constructing
a controlled EFT, but a new type of functional where some
parameters are not adjusted, but naturally constrained (such
as as). The optimal description of both SNM and PNM at all
densities requires that rs is treated as a “phenomenological”
parameter to adjust.
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FIG. 3. Neutron effective masses of the ELYO-s + p functional
(blue solid line) compared to the values from SLy5 (black dotted
line), the ELYO-s version (red solid line), and ab initio estimates
extracted from Ref. [31] (FP, green squares), Ref. [39] (DSS, pink
diamonds), Ref. [40] (SFB, orange pentagons), and Ref. [41] (WAP,
purple circles). The dotted curves for ELYO-s and ELYO-s + p refer
to the choice W(1,2) = 1.

III. FINITE-SIZE SYSTEMS AND NEUTRON
EFFECTIVE MASS

A very important quantity, in particular for the description
of finite systems, is the effective mass, defined for PNM as

m∗
n

m
=

[
1 + m

4h̄2 �nρ
]−1

, (8)

where �n = t1(1 − x1) + 3t2(1 + x2). In virtue of the rela-
tions (4) and (5), �n = 2π h̄2

m [rsa2
s (ρ) + 0.19πa3

s (ρ) + 6a3
p] in

the case of the ELYO-s + p EDF. As a result, m∗
n is determined

by the effective range, the s-wave, and the p-wave scattering
lengths. In contrast to standard Skyrme EDFs, �n depends
on the density through as(ρ). The neutron effective mass
computed using the values of rII

s and ap (case 5 of the previous
section) is plotted on Fig. 3 (dotted blue curve) where it
is compared to the effective mass associated with the SLy5
and the ELYO-s functionals, as well as to ab initio estimates
extracted from Refs. [31,39–41]. The original ELYO EDF
has been recently applied to finite systems composed of
neutrons trapped in a harmonic potential [25]. This work
concluded that the neutron effective mass had to be corrected
to get a reasonable reproduction of the droplet energies. The
correction was done via the introduction of a factor, denoted
by W , to modulate the t1 contribution and, consequently, �n,
while leaving unchanged both EOSs. The effect of this extra
parameter is to split the velocity-dependent term Eq. (4b)
into the same term weighted by W plus a density-dependent
one with the weight 1 − W . The adjustment of W on ab
initio neutron drop energies led to the overall reduction of the
effective mass observed in Fig. 3 from the case W = 1 (dotted
red line) to its optimal value W = 0.396 (full red line).

The effective mass ensuing from the inclusion of the p-
wave term within the ELYO functional (dotted blue curve)
is globally as large as in the original ELYO-s case (W = 1).
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Accordingly, one can anticipate incorrect droplet energies,
which was indeed found. In the same spirit as for the ELYO-s
EDF, m∗

n/m must then be corrected. For generality, we there-
fore introduced two distinct factors W1,2 such that Eqs. (4b)
and (5) become

t1(1 − x1) = W1
2π h̄2

m
Bs(ρ), (9a)

t3′ (1 − x3′ ) = (1 − W1)
36c2

0π h̄2

10m
Bs(ρ), (9b)

t2(1 + x2) = W2
4π h̄2

m
a3

p, (9c)

t3′′ (1 − x3′′ ) = (1 − W2)
108c2

0π h̄2

5m
a3

p, (9d)

where, for compactness, we have set the notation

Bs(ρ) ≡ [
rsa

2
s (ρ) + 0.19πa3

s (ρ)
]
. (10)

The extra t3′,3′′ terms have the same density dependencies α′ =
α′′ = 2/3 and, within the EDF, may then be gathered into a
unique contribution characterized by ᾱ = 2/3, t3̄ = t3′ + t3′′ ,
and x3̄ = (t3′x3′ + t3′′x3′′ )/t3̄.

Finally, we end up with a generalized Skyrme functional
having two t3-like terms, {xi}i=0,1,3,3̄ parameters that depend
on ρ (by replacing in Eqs. (4) and (10) as(ρ) by as[ρ(�r)], ρ(�r)
being the local density), and a constant x2. Alternatively, the
ELYO-s + p functional may be cast into

Ec = ESk
c −

[
X0as[ρ] + X3ρ

αa2
s [ρ] + X3̄ρ

ᾱD[ρ]

]

×
[

1

2
ρ2 −

∑
q=n,p

ρ2
q

]

−W1X1Bs[ρ]

{
1

2
ρτ + 3

8
( �∇ρ)2 − 1

4
�J 2

−
∑

q=n,p

[
ρqτq + 3

4
( �∇ρq)2

]}

+W2X2a3
p

{
1

2
ρτ − 1

8
( �∇ρ)2 − 1

4
�J 2

+
∑

q=n,p

[
ρqτq − 1

4
( �∇ρq)2

]}
, (11)

with

D[ρ] = 1
2 (1 − W1)Bs[ρ] + 3(1 − W2)a3

p, (12)

B[ρ] being the functional extension of Eq. (10), and

X0 = 2π h̄2

m
, X1 = π h̄2

2m
,

X2 = π h̄2

m
, X3 = 12c0 h̄2

35m
(11 − 2 ln 2),

X3̄ = 3πc2
0 h̄2

5m
.

τ (�r) and �J (�r) stand for the local kinetic and spin-current
densities, respectively (the index n and p refer to the neutron
and proton counterparts). The form (11) is convenient for
neutron drops as the first term ESk

c , defined as the central part
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FIG. 4. Energies of neutron drops in traps of frequencies h̄ω = 5
(a) and 10 (b) MeV, scaled by the Thomas-Fermi approximation
h̄ωN4/3, as obtained with the new ELYO-s + p functional (blue) and
compared to values from the ELYO-s (red) and SLy5 (black dotted)
EDFs, as well as to ab initio estimates. The purple dots refer to
the QMC calculations of Refs. [32,33] using the AV8’ [42] two-
body force supplemented by the UIX [43] three-body interactions.
The green squares indicate results from a configuration-interaction
method [32] with the JISP16 force [44]. The orange area on panel
(b) represents the collection of these ab initio estimates together
with QMC results (using AV8’ only or with the IL7 [45] three-body
interaction), no-core shell-model, and coupled-cluster calculations
(with an interaction derived from chiral EFTs [46]). Their average
is denoted as “ref. data” (black circles).

of a Skyrme functional with two density-dependent terms (see
the Appendix of Ref. [25]) with constant xi = 1 (respectively,
−1) for i = 0, 1, 3, 3̄ (respectively, 2), vanishes in that case.

Following Ref. [25], the parameters W1 and W2 are ad-
justed to reproduce the “average” ab initio energies (black
dots on Fig. 4) of drops with numbers of neutrons N =
8, 12, 14, 16, and 20 for a trap frequency h̄ω = 10 MeV. The
spin-orbit coupling constant Vso and the strength Vpp of a
mixed surface/volume pairing interaction are also adjusted.
The optimal values of W1, W2, Vso, and Vpp are reported in
Table II. It is worth noticing that the new spin-orbit and
pairing coupling constants come naturally closer to the SLy5
values than what was found in the case of ELYO-s.

The energies of neutron droplets obtained for h̄ω = 5 and
10 MeV are shown in Fig. 4. We note a considerable improve-
ment for h̄ω = 5 MeV compared to the pure s-wave version
of the EDF. Moreover, the numerical instabilities occurring in
ELYO-s for N > 22 in a 10-MeV trap have disappeared.

To further test the new functional, we plot on Fig. 5 the
density profiles for the systems N = 8, h̄ω = 5 MeV, and
N = 8, 14, h̄ω = 10 MeV. While the reference SLy5 curves
well agree with the ab initio values, the ELYO-s + p densities
exhibit curious bubblelike trends in all the considered cases,
entailing a disagreement larger than for the pure s-wave EDF.
For illustration, Fig. 6 compiles the densities normalized
by the number of neutrons for drops containing from 8 to
48 neutrons, with h̄ω = 10 MeV. When N increases from 8
to 16, a strong central depletion (bubble) exists and the peak
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TABLE II. Summary of the parameters of the ELYO-s + p func-
tional obtained in this work (� = 1), organized according to the
constraint employed for their fit. The arrows indicate features of the
EDF depending on the parameters appearing just above. The index
c refers to saturation density. The physical value of ap = 0.63 fm is
used.

PNM EOS

rII
s = −7.754 fm

	⇒ Valid Lee-Yang formula

Neutron drops energies and effective mass (α=1/3, ᾱ = 2/3)

W1 = −0.163 W2 = 0.499
	⇒ m∗

n/m|c = 0.731
Vso = 81.20 MeV fm5 Vpp = −252.14 MeV fm3

	⇒ Neutron drop energies

SNM EOS

t0 = −1916.910 MeV fm3 t3 = 15344.700 MeV fm4

θs = −598.97 MeV fm5

	⇒ ρc = 0.159 fm−3 	⇒ E/A|c = −15.990 MeV
	⇒ K∞ = 223.270 MeV 	⇒ m∗

s /m|c = 1.403

of density is progressively shifted to the surface of the system.
From N = 20 to 36 the central depletion disappears and a new
one shows up between 1 and 2 fm. Starting from N = 40,
a central depletion reoccurs while a second one is located
between 2 and 3 fm.

It has been shown that such extremely pronounced bubble
structures may be the signature of finite-size instabilities (one
may notice in the figure that only this functional predicts
these structures) [47–49]. In Refs. [48,49], the linear response
theory has been employed to predict this kind of instabilities
and then avoid the regions of parameter values responsible
for their appearance. Such an analysis exceeding the scope
of this article, the study of the instabilities in EFT-inspired
functionals will be presented as the future step of our project.

Note that, for consistency, we could have used reference
energies from mean-field calculations with the SLy5 func-
tional, as done for the fit of the other parameters in the
previous and following sections, instead of the “average” ab
initio results defined in Ref. [25]. However, the impact of this
choice on the obtained parameters is negligible since both sets
of pseudo-data are very close to each other (see Fig. 4).

The neutron effective mass for the optimal values of W1,2 is
shown in Fig. 3. A strong reduction of m∗

n is observed, yielding
values qualitatively comparable to the ab initio estimates of
Refs. [31,39–41].

IV. PARAMETERS FROM SYMMETRIC
NUCLEAR MATTER

A full definition of the underlying functional requires the
determination of all the parameters. The PNM EOS only
gives the combinations of Eqs. (4) and (5). Therefore, as the
{ti} and {xi} parameters are still undefined individually, we
have to resort to additional constraints. As for for ELYO-s in
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FIG. 5. Density profiles as a function of the distance from the
center of the trap obtained with the the Sly5 (black dotted), ELYO-
s (red), and ELYO-s + p (blue) functionals for (a) N = 8, h̄ω =
5 MeV, (b) N = 8, h̄ω = 10 MeV, and (c) N = 14, h̄ω = 10 MeV.
The ab initio results are extracted from Ref. [32] (purple circles and
green squares).

Ref. [10], we consider the EOS for SNM that reads:

E

A
= 3c2

1

5

h̄2

2m
ρ2/3 + 3

8
t0ρ + 1

16
t3ρ

4/3 + 3c2
1

80
�sρ

5/3, (13)

where c1 = (3π2/2)1/3 and �s = 3t1 + t2(5 + 4x2). Due to
Eq. (5), �s = 3t1 + t2 + 16π h̄2

m a3
p and is constant in contrast

to �n that explicitly depends on the density in region (II).
This particular form (13) in which W1, W2, t3′ , and t3′′ are
not involved, results from the assumption that the EOS are
not affected by the splitting parameters W1,2 introduced in the
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FIG. 6. Densities normalized by the neutron number obtained
with the the ELYO-s + p functional for h̄ω = 10 MeV and 8 � N �
48.

previous section. This is true if and only if we set

t3′ = (1 − W1)
9c2

1

5
t1,

t3′′ = (1 − W2)
3c2

1

5
t2(5 + 4x2),

(14)

so that these terms respectively recombine with the t1,2 com-
ponents of �s weighted by W1,2. Fitting on the reference SLy5
EOS then provides the values of t0, t3, and �s, the latter of
which defining also the isoscalar effective mass

m∗
s

m
=

[
1 + m

8h̄2 �sρ
]−1

. (15)

The resulting parameter values are reported in Table II while
the obtained EOS is shown on Fig. 7. One may notice from
Table II that such an EOS corresponds to a high value (∼1.4)
for m∗

s /m at saturation density that is twice the one of SLy5.
It remains to determine t1, t2 separately, which are im-

portant for the detailed form of the functional. Indeed,

-20

-15

-10

-5

 0

 0  0.05  0.1  0.15  0.2  0.25  0.3

E/
A

 (
M

eV
)

ρ (fm-3)

Sly5 ELYO-s ELYO-s+p

FIG. 7. ELYO-s + p (blue) SNM EOS compared with those from
the original ELYO-s (red) and SLy5 (black dashed line) functionals.

even though they combine in the EOS of SNM into a unique
ρ5/3 term and do not impact the results for pure neutron sys-
tems, they correspond to different functional form in Eq. (11).
For this purpose, one has to resort to extra constraints for the
ratio t1/t2, for instance from the properties of particular nuclei.
This task is out of the scope of the present paper that mainly
aims at improving the description of neutron systems (matter
and finite-size drops) by including the contribution from p-
wave scattering. Accordingly, we report the adjustment of
t1,2 to a forthcoming work on the application of EFT-guided
functionals to nuclei.

The parameters of the ELYO-s + p functional, as well as
the associated properties of infinite matter and neutron drops,
are summarized on Table II. One notices that PNM may be
described with only one parameter, as in the ELYO-s case. The
number of parameters increases to 6 (plus the pairing strength)
when neutron drops and the neutron effective mass are also
considered. By including SNM, the new ELYO functional has
finally nine parameters, that is only one more than the original
ELYO-s functional and one less than Skyrme interactions.

V. APPLICATION TO NEUTRON STARS

As a first concrete test of the newly designed ELYO-s + p
functional, let us now examine its predictions for the masses
and radii of neutron stars. But, before doing this, we discuss
the values of the symmetry-energy coefficient calculated at
the saturation density, J , and its slope L, which are both
very important for the physics of neutron stars. In the present
implemented version of the ELYO functional J and L are
respectively equal to 32.96 and 49.13 MeV, very close to the
corresponding SLy5 values [50]. One may notice that these
values are more than reasonable by comparing them with the
experimental constraints coming, for instance, from heavy-ion
collisions [51], and from two measurements of the electric
dipole polarizability on 208Pb [51,52]. Note that the value of J
and L we obtained are in the allowed region conjectured from
the unitary gas equation of state [36].

The evolution, with respect to the Schwarzschild radial
distance r, of the pressure P(r) and of the mass m(r) enclosed
within a sphere of radius r is governed by the Tolman-
Oppenheimer-Volkov (TOV) differential equations:

dm = 4π
ε

c2
r2dr, (16)

dP = mε

c2r2

(
1 + P

ε

)(
1 + 4πPr3

mc2

)(
1 − 2Gm

rc2

)−1
dr,

where ε stands for the energy density, G for the universal grav-
itational constant, and c for the speed of light. Supplemented
by the neutron star EOS (ε(ρ); P(ρ)), Eqs. (16) form a closed
system that can be integrated from a chosen central pressure
(or density) up to the boundary condition P(r = R) = 0,
which provides the stellar radius R and the associated mass
M = m(R). For the EOS, we adopt here the approximation
scheme used in Ref. [53]. The crust (ρ < 0.076 fm−3) is
described by a compressible liquid-drop model [54] with
parameters from the SLy4 Skyrme interaction [35]. The core
of the star (ρ > 0.076 fm−3) is supposed to be composed of a
mixture of n, p, e−, and μ− at zero temperature. The baryonic
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measurements of Demorest et al. [55] (purple) and Antoniadis et al.
[56] (orange) while the red area is forbidden by general relativity.

contribution to its EOS is given by the asymmetric nuclear
matter energy provided by the functional under consideration
using the parabolic approximation. The leptonic terms are
evaluated in the Fermi gas model for ultrarelativistic e− and
relativistic μ−. The fractions of each constituent are deduced
consistently from the β-stability conditions.

Varying the central density between 0.1 and 1.5 fm−3,
we obtain the mass-radius relations depicted in Fig. 8. The
maximal mass M = 2.04 M∗ calculated with the SLy5 EDF
coincides with the recent observations of Refs. [55,56], rep-
resented by the horizontal bands. Furthermore, the radius
R = 11.6 km found with SLy5 for an M = 1.4 M∗ neutron
star lives well within the expected range [10.4,12.9] km
inferred in Ref. [57] (see also the discussion in Sec. II B of
Ref. [58]). In contrast, the initial s-wave version of the ELYO
functional generates negative pressure at high densities, which
prevents its use in the TOV equations as the condition for
the hydrostatic equilibrium is violated. The same behavior
has already been noticed in Ref. [53] for the D1S Gogny
interaction [59] that produces a PNM EOS very similar to
ELYO-s. Accounting for the p-wave channel notably im-
proves the description of neutron stars: The ELYO-s + p EDF
yields a maximal mass of 1.88 M∗ close to the observed

values, and a satisfactory radius of 11.2 km for M = 1.4 M∗.
The value of the maximal mass that we obtain is lower than
the one provided by the Skyrme parametrization SLy5 because
the EOSs of PNM generated by the two functionals start to be
different at densities higher than twice the saturation density.
However, it is well known that, at such large densities, it starts
to be meaningless to describe the EOS of PNM with a simple
EDF-based models and that new degrees of freedom related
to the internal structure of nucleons should be explicitly
included. This is why we can provide only a kind of qualitative
estimation and, for this reason, the fact that our prediction is
lower (but not so much anyway) than observations is not for
us a crucial issue.

VI. SUMMARY AND CONCLUSION

This paper proposes an extension of the EFT-inspired
ELYO functional. The new ansatz still relies on the Lee-
Yang expansion but incorporates the initially neglected first
p-wave term of the expansion. The PNM may be described
with a unique parameter related to the effective range in the
Lee-Yang expansion. Considering neutron drops energies and
neutron effective, the number of parameters increases to 6,
and goes to 9 when SNM saturation properties are included as
constraints. Finally, the new ELYO-s + p EDF contains only
one parameter more compared to the original s-wave version,
which is still one less than traditional functionals derived from
Skyrme effective forces.

Encouraging results have been obtained: The description
of systems not comprised in the pseudo-data set used for the
fit turns out to be significantly improved, as illustrated by the
applications done to heavier drops and neutron stars.

Future investigations include first the study of finite-size
instabilities, and then the treatment of atomic nuclei with
superfluidity effects. This will allow us to further develop and
test the functional form and to determine the last parameter
needed to fully characterise it, that is the ratio t1/t2. We expect
that the analysis of instabilities will slightly change some
parameter values. This is why we plan to carry out uncertainty
quantification to characterize our calculations only once this
study will be completed.
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