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Triaxiality and state-dependent shape properties of Xe isotopes
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The low-lying collective spectra for an extended set of Xe nuclei are described within a phenomenological
Bohr model with an exactly separable collective potential. The dependence of the collective potential on the γ

shape variable is chosen to allow the description of a phase transition between axial and triaxial shapes, while
the β excitations are described within the formalism of energy-dependent potentials in order to accommodate
the different structure of the excited states. The combined contribution of these effects leads to a high fidelity
description of the experimental spectra for 118–128Xe isotopes, especially in the excited rotational bands, which
revealed a rapid onset of stable triaxial deformation in the 120Xe nucleus persisting also in the heavier isotopes.
The critical nature of 120Xe is also reflected in its very strong state-dependence of the deformation properties.
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I. INTRODUCTION

The Xe nuclei mark the low mass boundary of a region
in the nuclide chart where the triaxial deformation manifests
itself in various ways, be it through specific γ band patterns
[1,2], or emergence of wobbling [3–7] and chiral bands [8]
associated usually to rigid triaxial shapes. The diversity of
energy spectra encountered in the Xe isotopic chain provides
a good opportunity to study various shape phase transitions
as a function of neutron number variation and the validity
of dynamical symmetries [9,10]. The more recent theoret-
ical efforts in this direction are based on phenomenologi-
cal [11–17] and microscopically derived [18–21] Bohr Hamil-
tonian (BH) [22,23] approaches, interacting boson model
(IBM) [24–28], and fully microscopical formalisms [28–32].
Most of these studies are usually focused on few Xe nuclei
in the A ≈ 130 mass region, whose collective behavior is
commonly concluded to be O(6)-like (γ unstable) with hints
of stable triaxial deformation [33]. This draws attention to
Xe nuclei from the perspective of the neverending quest for
triaxial shapes in nuclear systems. The knowledge of the
deformation related collective properties of Xe isotopes is
also important for the study of the double β decay or double
electron capture phenomena [34], experimentally observed
for 136Xe [35] and, respectively, 124Xe [36] and theoretically
predicted to occur in their corresponding neighboring isotopes
134Xe and 126Xe [37].

The phenomenological approaches to five-dimensional
collective dynamics are presently sufficiently well developed
to describe essentially any type of collective spectra with very
high accuracy. Although, it lacks in what concerns the extrap-
olation to neighboring nuclei, its success in the reproduction
of experimental data offers direct and reliable information on
the collective dynamics and the actual shape of the considered
nuclei. This information must be sought by more sophisticated
microscopically driven models as a final result.

In this paper, we propose a separable version of the BH
which combines the advantages of the most successful ap-
proaches used in connection to the phenomenological geo-
metric model. On one hand, a sufficiently general coupling
between the triaxiality and rotational degrees of freedom is
treated in a diagonalization procedure specific to the alge-
braic collective model (ACM) [38–40] which represents a
tractable algebraic approach to the solution of the BH es-
sentially for any type of collective potential. On the other
hand, the deformation dependence of the nuclear dynamics
is simulated within the analytical theory of energy-dependent
potentials [41–44]. The detailed theoretical formalism will
be exposed in the next section and then applied for the
description of the collective spectra of the 118–128Xe nuclei.
The versatile nature of the model, and in consequence its high
fidelity reproduction of experimental data will be used as a
source of information on nuclear deformation and its state
dependence in the considered Xe isotopes.

II. THEORETICAL FORMALISM

The starting point is the general BH with a shape-
independent mass [22,23]:

H = − h̄2

2B

[
1

β4

∂

∂β
β4 ∂

∂β
− �̂2

β2

]
+ U (β, γ ), (1)

where

�̂2 = − 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+

3∑
m=1

L̂2
m

4 sin2 (γ − 2πm/3)
(2)

is the SO(5) Casimir operator, whose action on the angu-
lar degrees of freedom is represented by operators of the
intrinsic SO(3) angular momentum operators L̂m. For ana-
lytical purposes, it is useful to work with reduced energy
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and potential:

ε = 2B

h̄2 E , u(β, γ ) = 2B

h̄2 U (β, γ ). (3)

By considering a reduced potential [45,46]

u(β, γ ) = v(β ) + w(γ )

β2
, (4)

an exact separation of the β variable from the γ -angular ones
is possible for Eq. (1) with a factorized total wave function
�(β, γ ,	) = R(β )
(γ ,	):[

− 1

β4

∂

∂β
β4 ∂

∂β
+ W

β2
+ v(β )

]
R(β ) = εR(β ), (5)

[
− 1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ 1

4

3∑
m=1

L̂2
m

sin2
(
γ − 2

3πm
)

+w(γ ) − W

]

(γ ,	) = 0. (6)

The potential term w(γ )/β2 was for the first time dis-
cussed in the paper of Wilets and Jean [45], where they state:
“Physically, we expect this to be unrealistic, since γ stability
should increase rather than decrease with β”. This is still a
valid point, and the potential form (4) is essentially for the
separation of the β variable. The separated form of the poten-
tial is needed to accommodate the use of energy-dependence
for the β potential. Otherwise, for mixed dependence of the
potential on β and γ variables, the use of the formalism for
energy-dependent potential becomes problematic. First of all,
the energy dependence changes the definition of the linear
momentum vector by an additional term [57], which will
have a vanishing contribution to the associated multidimen-
sional angular momentum only if the potential is isotropic.
Another difficulty comes from the fact that for nonseparable
multidimensional energy-dependent potentials, the associated
equations are not analytically solvable and the extension of
the usual approximate methods of quantum mechanics is
not necessarily valid because an energy-dependent problem
constitutes a coherent quantum theory only in the case of a
isotropic potential with a linear energy dependence [57]. Such
problems have seldom been studied so that even the existence
of solutions is not evident, not to mention their physically
correct behavior or uniqueness.

Even if the separable form of the total reduced potential (4)
has a more analytical purpose, it was found to be suitable for
well-deformed nuclei [47], which are usually characterized
by high β excited bands. This disparity between γ -rotational
excitations and β excitations is naturally simulated by the
centrifugal term W/β2 for large deformation. Alternatively,
the w(γ ) potential can be understood as a way to generalize
the usual SO(5) coupling between γ variable and rotational
angles 	 when the total potential is γ -independent.

One considers the γ potential w(γ ) to be of the form [38]

w(γ ) = c1(1 − cos 3γ ) − c2(1 − cos2 3γ ), (7)

where c1 and c2 are adjustable parameters. This potential was
introduced by Iachello [48] for the purpose of studying the
shape phase transition in the triaxiality variable, because its

range of shapes include both axial and triaxial minima with
varying softness (shallowness and depth) [38]. Its spectral
properties were investigated in Refs. [49,50], where the basic
signatures of triaxiality emergence were pointed out. Despite
its many useful properties, this potential did not receive much
attention in what concerns numerical applications on actual
nuclei.

In order to find the solution of the γ -angular equation, the
corresponding wave function is expanded in SO(5) spherical
harmonics |ταLM〉 = YταLM (γ ,	) [51] indexed by the se-
niority τ [52], α order distinguishing multiple occurrences
of the same angular momentum within a multiplet of fixed
seniority, and by angular momentum and its projection on the
third intrinsic axis:


κ
LM (γ ,	) =

∑
τ,α

Gκ
ταLYταLM (γ ,	). (8)

Gκ
ταL are basis expansion amplitudes, with κ being the com-

pleteness number distinguishing diagonalization solutions.
The kinetic operator �̂2 is diagonal in the chosen basis [53]:

�̂2|ταLM〉 = τ (τ + 3)|ταLM〉. (9)

While the relevant potential terms have the following matrix
elements:

〈τ ′α′LM| cosn 3γ |ταLM〉
= (ταL, (3n)10||τ ′α′L)〈τ ′||| cosn 3γ |||τ 〉, (10)

where the first factor is a SO(5) Clebsch-Gordan coeffi-
cient [51], whose values can be taken from [40]. The corre-
sponding SO(5)-reduced matrix elements have the following
closed expressions for n = 1 [38,39]:

〈τ + 1||| cos 3γ |||τ 〉 =
√

45τ (τ + 1)(τ + 4)

2(2τ + 1)(2τ + 5)(2τ + 7)
, (11)

〈τ + 3||| cos 3γ |||τ 〉 =
√

35τ (τ + 1)(τ + 2)(τ + 3)

2(2τ + 5)(2τ + 7)(2τ + 9)
. (12)

The n = 2 reduced matrix elements are determined by bearing
in mind that

Y(3n)100(γ ,	) = 1

4π

√
3(2n + 1)Pn(cos 3γ ) (13)

with Pn(x) denoting a Legendre polynomial [54], and using
the empirical formula [38,39]

〈τ ′|||Ŷs|||τ 〉

= 1

4π

(
σ
2 + 1

)
!(

σ
2 − τ

)
!
(

σ
2 − s

)
!
(

σ
2 − τ ′)!

√
(2τ + 3)(2s + 3)

(τ ′ + 2)(τ ′ + 1)

×
√

(σ +4)(σ −2τ +1)!(σ −2s+1)!(σ −2τ ′+1)!

(σ +3)!
,

(14)

where σ = τ + τ ′ + s and Ŷs is a tensorial representation of
the SO(5) spherical harmonic. Finally, the eigenvalue for the
γ -angular equation will be indexed just by angular momentum
L and the completeness number κ . For the convergence of
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the diagonalization results, a basis extended up to τ = 30 is
enough.

The β potential is chosen to be of the Kratzer type [55,56]
and with a coupling constant of the hyperbolic term depending
linearly on the energy of the system:

v(β ) = a1

β2
− 1 + a2ε

β
. (15)

Compared to the Davidson potential, which is extensively
used for nuclear collective excitations, the Kratzer potential
has a smaller slope of the outer wall. This makes the associ-
ated wave function to decay more slowly for large β values.
Such a behavior affects mostly the β excited states which
have a consistent deformation probability distribution near the
potential walls. This is an important feature, because the en-
ergy spacings between β band states are usually overestimated
when using an oscillator-like β potential well. Additionally,
the analytical form of the Kratzer potential allows for very
deep and narrow wells which can describe transitional nuclei
in the same manner as the critical point solutions with an
infinite square-well β potential [10]. The use of an energy-
dependent potential is justified phenomenologically by the
distinct microscopic structure of the excited states, while from
the analytical point of view, such a formalism [57] was shown
to simulate the Bohr model with a deformation dependent
mass [58–60] having however an additional nonlocality, that
is a differential term [44].

The associated β differential equation is solved by follow-
ing up to a certain point the procedure for a state-independent
Coulomb potential. There are few alternative approaches for
this, which are equivalent in what concerns the final result.
Here, we transform Eq. (5) into a Whittaker differential equa-
tion [61],

f ′′(x) +
[

k

x
− 1

4
+

(
1
4 − μ2

)
x2

]
f (x) = 0, (16)

by making the change of function f (β ) = β2R(β ) and the
change of variable x = 2

√
εβ with the following notations:

ε = −ε, k = 1 − a2ε

2
√

ε
, μ =

√
9

4
+ WLκ + a1. (17)

A solution of this equation, which is regular in both origin
and the asymptotic limit, can be expressed in terms of an as-
sociated Laguerre polynomial [54] if the following condition
is fulfilled:

μ + 1
2 − k = −n, (18)

where n is a positive integer. This condition leads to a
quadratic equation for ε

(1 + a2ε)2 + 4ε

(
n + 1

2
+

√
9

4
+ WLκ + a1

)2

= 0. (19)

Its physical solution is

εnLκ = 1

a2
2

[
2

(
n + 1

2
+

√
9

4
+ WLκ + a1

)

×

√√√√(
n + 1

2
+

√
9

4
+ WLκ + a1

)2

+ a2

− 2

(
n + 1

2
+

√
9

4
+ WLκ + a1

)2

− a2

⎤
⎦. (20)

Making the following notations:

ηnLκ = √−ε = 1 + a2εnLκ

2
(
n + 1

2 +
√

9
4 + WLκ + a1

) , (21)

pLκ =
√

9

4
+ WLκ + a1 − 3

2
, (22)

the β wave function can then be written in the following
analytical closed form [42]:

RnLκ (β ) = NnLκβ
pLκ e−ηnLκβL2pLκ+3

n (2ηnLκβ ). (23)

The normalization constant is determined from the condition∫ ∞

0
[RnLκ (β )]2β4

(
1 + a2

β

)
dβ = 1, (24)

where the modified normalization metric

dβ →
(

1 − ∂v(β )

∂ε

)
dβ, (25)

accounts for the energy dependence of the β potential [57]
and assures the conservation of the norm. Speculating the
properties of the associated Laguerre polynomials [54], the
normalization constant acquires the simple expression

NnLκ =
√

ηnLκn!

�(n + 2pLκ + 4)(a2ηnLκ + n + pLκ + 2)

× (2ηnLκ )pLκ+2. (26)

Now one can see that the integer number n plays the role of
the β excitation quantum number.

III. E2 TRANSITIONS

The obtained total wave function �nLMκ (β, γ ,	) =
RnLκ (β )
κ

LM (γ ,	) is now ready to be employed for the
calculation of electromagnetic transition probabilities. The
most important data in this sense are related to the quadrupole
transitions, which in the present model are calculated with
the transition operator

T (E2)
μ = 3R2Ze

4π
βMβQμ, (27)

where

Qμ = D2
μ0(	) cos γ + 1√

2

[
D2

μ2(	) + D2
μ−2(	)

]
sin γ ,

(28)
while βM is a scaling factor for the BH variable β which
makes the connection to the quadrupole deformation β2 =
βMβ, R is the nuclear radius, Z is the charge number. The
final quadrupole transition rates are calculated as

B(E2; i → f ) = ∣∣〈�niLiκi

∣∣∣∣T E2
2

∣∣∣∣�n f L f κ f

〉∣∣2
(29)
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TABLE I. Experimental and theoretical values of the commonly used spectral and electromagnetic transition observables are presented for
the considered nuclei. Fitted values of the parameters a1, a2, c1 and c2 are listed with the corresponding fitting details such as rms values σ ,
total number of data points as well as the scaling parameters βM and h̄2/2B relating the theoretical results with measured units for the energy
levels and transition probabilities.

118Xe 120Xe 122Xe 124Xe 126Xe 128Xe

R4/2
exp
T h 2.40 2.47 2.50 2.48 2.42 2.33

2.40 2.41 2.41 2.39 2.37 2.32
Rβ

0/2
exp
T h 2.46 2.82 3.47 3.58 3.38 3.57

2.62 2.93 3.54 3.61 3.33 3.67
Rγ

2/2
exp
T h 2.75 2.72 2.55 2.39 2.26 2.19

2.49 2.43 2.39 2.36 2.34 2.31
a1 19.39 33.33 56.86 62.39 54.76 68.49
a2 10278 108 953 464 303.3 9.41
c1 3.35 2.15 1.65 0.00 0.00 0.00
c2 0.21 8.84 16.30 16.48 16.26 8.10
N 17 16 14 15 15 12
σ 0.279 0.381 0.413 0.399 0.429 0.382
h̄2

2B [keV] 5.195 × 108 4.728 × 1014 2.979 × 107 1.452 × 107 8.882 × 106 2.695 × 106

βM 36.4(19) × 10−5 30.6(40) × 10−7 81.6(29) × 10−5 59.2(88) × 10−5 92.1(24) × 10−5 99.4(51) × 10−5

in the Rose’s [62] convention for the reduced matrix elements.
Taking in consideration that Q2m = 4π√

15
Ŷ112m, the reduced

matrix element is ultimately factorized as

〈
�niLiκi

∣∣∣∣T E2
2

∣∣∣∣�n f L f κ f

〉
= 3R2ZeβM√

15
I1
niLiκin f L f κ f

∑
τi ,αi
τ f ,α f

Gκi
τiαiLi

G
κ f

τ f α f L f

× (τ f α f L f , 112||τiαiLi )〈τi|||Ŷ1|||τ f 〉, (30)

where

Ik
niLiκin f L f κ f

=
∫ ∞

0
RniLiκi (β )Rn f L f κ f (β )β4+k

(
1 + a2

β

)
dβ.

(31)

The reduced matrix element of the spherical harmonic can be
extracted from formula (14). In order to follow the selection
rules, it can be expressed in a compact form [63,64]

4π√
15

〈τi|||Ŷ1|||τ f 〉 = δτi,τ f +1

√
τ f + 1

2τ f + 5
+ δτi,τ f −1

√
τ f + 2

2τ f + 1
.

(32)

IV. NUMERICAL APPLICATION

Due to the scaling property of the Bohr model, its numeri-
cal applications to actual energy spectra are usually performed
in terms of energy ratios. In this way, the model describes
effectively the evolution trend of excited energy levels with
quantum numbers. This property is invoked here for the
determination of the model parameters. This is done by fitting
the experimental data of 118–128Xe nuclei on the ground, γ ,

and β bands by minimizing the quantity

σ =
√√√√ 1

N − 1

N∑
i=1

(
Eexp(i)

Eexp(2+
g )

− ET h(i)

ET h(2+
g )

)2

. (33)

The absolute theoretical energies are considered in re-
spect to the calculated ground state energy—ET h(i) = (εi −
εg.s.)h̄

2/2B. The index “i” goes over all N states of ground,
β, and γ bands considered in the fit, which are limited
to the maximal angular momentum L = 12, beyond which
the collective experimental spectra of the considered nuclei
acquire a single-particle contribution due to quasiparticle pair
breaking or alignments. As can be seen, the fit on energy
ratios makes the scale factor h̄2/2B needless. It is however
necessary for the expression of theoretical energy levels in
measured units, and is commonly determined by matching
the measured energy of the first excited state 2+

g . The fitted
parameters are listed in Table I along with other information
such as the number of fitted data points, standard deviation
of the fitting procedure, and the deduced scale factor h̄2/2B,
while the resulted theoretical energy spectra are compared
with experimental data in Fig. 1. Table I compares also some
key spectral observables such as

R4/2 = E (4+
g )

E (2+
g )

, Rβ

0/2 = E (0+
β )

E (2+
g )

, Rγ

2/2 = E (2+
γ )

E (2+
g )

. (34)

Figure 1 shows a very good agreement with experimental
data for all nuclei in the γ and β bands, while the principal
source of discrepancy are the high spin states of the ground
band. Such a relation between theory and experiment is quite
opposite to the usual results of geometrical models, where the
ground band is exceptionally well reproduced.

The energy dependence is found to be high for the first
two nuclei and suddenly dropping between 120Xe and 122Xe.
Afterwards it gradually decreases and finally becoming very
small for 128Xe. The very high of a2 value for 120Xe was fixed
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FIG. 1. Excitation energy spectra of ground, γ , and β bands described by Eq. (20) and given in MeV are compared with corresponding
experimental levels up to the maximal spin L = 12+ for 118–128Xe nuclei [67–72]. The experimental data point for the 7+

γ state of 128Xe is only
tentative and was not considered in the fitting procedure.

such that for its larger values, the rms value would vary only
in its fifth decimal. This is due to the saturation properties of
the model in the asymptotic regime of parameter a2. Indeed,
in the large a2 limit, the energy (20) can be approximated as

ε
asymp
nLκ = − 1

a2
+ 2

a3/2
2

(n + pLκ + 2). (35)

Therefore, parameter a2 becomes a simple scaling factor for
the excitation energies and the fitted energy ratios lose their
dependence on it. The saturation of energy depends on the
state, and is attained for the whole considered spectrum at
quiet high values of a2. In this context, the choice of a2 for
120Xe seems arbitrary, provided a similarly high value for
h̄2/2B is chosen to reproduce the measured data. However, al-
though the scaling property of a2 is also reflected in the wave-
function, the scalar products are performed on unscaled vari-
able β. Therefore a choice of a2 is still needed and for numer-
ical considerations mentioned above a finite value is chosen.

Comparing to other geometrical model applications on the
same nuclei, the additional parameters included in the present
calculations lead to a relatively low gain in rms values. As it
happens, the agreement with experiment is improved the most
for the lightest Xe isotopes, which, judging by the fitted pa-
rameters, exhibit a very accentuated energy dependence of the
β potential. The agreement with experiment is however im-
proved qualitatively, in particular for the γ and β band states.
This is a good example of the dangers involved in blind fits on
experimental data [65]. More precisely, although the overall

agreement of various geometrical models with experimental
data is good for many of the nuclei considered here, and sub-
jective spectral observables are sufficiently well reproduced,
some qualitative features are ignored. For example, the γ band
staggering behavior is completely overlooked through drastic
approximations such as the γ -unstable idealization [12,13,16]
or the rigid triaxiality [14], while the rotational sequence of
the β band is often traded for an approximative matching of
the β band-head state. The success of the present description
of the γ band evolution with spin can be better traced through
the measure of the γ band staggering pattern proposed in
Ref. [66] and defined as

S(L) = E (L) − 2E (L − 1) + E (L − 2)

E (2+
g )

. (36)

This quantity is visualized as a function of angular momentum
for each nucleus in Fig. 2. The agreement with experiment
is obvious, as well as the fact that the staggering phasing
is consistent with γ -softness or dynamical triaxiality rather
than rigid triaxiality [2]. One can also observe that the stag-
gering measure |S(L)| evolves from an increasing function
in 118,120Xe to a decreasing one in the rest of the nuclei in
what concerns both experimental data and theoretical pre-
dictions. The latter changes back to an increasing function
around L = 8 only in 122,124,126Xe. Such a behavior is out
of the guidelines presented for the cornerstone geometrical
models [2], whose function |S(L)| is constant or increasing
with L. The change of the γ band staggering throughout
the considered nuclei can be correlated with the shapes of
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FIG. 2. Experimental and theoretical γ band staggering S(L) given by Eq. (36) is visualized as a function of angular momentum for the
considered 118–128Xe nuclei. The experimental data point for the 7+

γ state of 128Xe is only tentative.

the fitted γ potential w(γ ) depicted in Fig. 3. Checking this
picture, one can now see that the large |S(L)| values for 118Xe
are due to a very shallow axially symmetric potential which
leads to approximate γ -unstable conditions [50]. The next
nucleus, 120Xe, already acquires a triaxial minimum in its
γ potential. However, the shallowness of its minimum and

118Xe

120Xe

128Xe

122Xe
124Xe

126Xe

0 10 20 30 40 50 60

15

10

5

0

5

w
γ

γ

FIG. 3. The evolution of the γ potential defined by Eq. (7) with
fitted parameters c1 and c2, along the isotopic chain 118–128Xe.

the fact that its oblate part is higher than the prolate one,
lead to a similar behavior of its associated excitations. The
next three nuclei exhibit very deep and symmetrical triaxial
minima. While the triaxial minimum for 128Xe is considerably
shallower, pointing to a more γ -unstable character consistent
with an increased |S(L)| function. The S(L) function for
122,124,126Xe nuclei with the deepest triaxial minima in their
γ potential tends to a constant value at high spin states. By
Ref. [2], such a behavior would correspond to γ -stable axially
symmetric conditions. It must be noted here that the excellent

Observed

Th. predictions

64 66 68 70 72 74
1.2

1.4

1.6

1.8

2.0

2.2

N

E
0 3+

M
eV

FIG. 4. Theoretical predictions of the three phonon 0+ state are
compared with the observed energy levels 0+

3 [68,70–72].
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TABLE II. Theoretical results (second row) for the in-band quadrupole transition probabilities compared with experimental data (first
row) [27,67–70,72]. Values are given in W.u.

Transition 118Xe 120Xe 122Xe 124Xe 126Xe 128Xe

2g → 0g 84(4) 101(5) 78(4) 57.8(15) 41.0(13) 48(11)
55(6) 43(11) 72(5) 25(7) 39(2) 31(3)

4g → 2g 93.1(15) 117(8) 114(6) 67.6(19) 71(7) 62(3)
93(10) 68(18) 114(8) 40(12) 63(3) 49(5)

6g → 4g 74(19) 118(18) 110(40) 88(8) 84(11) 61(3)
130(14) 93(24) 153(11) 54(16) 86(4) 67(7)

8g → 6g 41(15) 97(17) 80(50) 66(21) 95(11)
174(18) 120(31) 195(14) 68(20) 112(6) 87(9)

10g → 8g >61 92(15) 120(50) 21(3)
227(24) 150(39) 243(17) 86(25) 144(7) 113(11)

12g → 10g 83(13)
290(31) 185(48) 300(21) 106(32) 183(9) 145(15)

3γ → 2γ 9(4) 56(6) 210(30)
94(10) 74(19) 128(9) 45(13) 72(4) 52(5)

4γ → 2γ 69(25) 36(4) 27.7(18)
69(7) 45(12) 70(5) 24(7) 39(2) 32(3)

5γ → 3γ 37(5)
92(10) 61(16) 98(7) 34(10) 56(3) 45(5)

5γ → 4γ 35(6)
42(4) 34(9) 61(4) 22(6) 36(2) 24(2)

6γ → 4γ

121(13) 79(21) 123(9) 43(13) 71(4) 57(6)
7γ → 5γ 140(80)

156(17) 101(26) 160(11) 56(17) 95(5) 76(8)
7γ → 6γ

28(3) 22(6) 41(3) 15(4) 25(1) 16(2)
8γ → 6γ

175(18) 113(29) 180(13) 63(19) 107(5) 85(9)
9γ → 7γ 150(50)

222(23) 139(36) 222(16) 79(23) 136(7) 109(11)
9γ → 8γ

21(2) 16(4) 31(2) 11(3) 19(1) 13(1)
2β → 0β 62(36)a 38(9)

78(8) 56(15) 103(7) 37(11) 60(3) 53(5)
4β → 2β

124(13) 88(23) 158(11) 57(17) 93(5) 82(8)

aData taken from Ref. [26] and not considered in the fitting procedure.

reproduction of staggering evolution is due to the combined
effect of the chosen γ potential and the energy dependence of
the β potential. The average γ deformation is however solely
given by the γ -angular degrees of freedom, and its value
around γ = 30◦ does not vary substantially between different
angular momentum states [49,50].

The validity of the triaxial features evidenced above, can
be checked by investigating the available experimental data
on the energy of the 0+

3 state for the considered nuclei. In
the present formalism, this state would correspond to the
three-phonon band-head. In Fig. 4, one can see that the model
predictions reproduce with good accuracy the energy of the 0+

3
state for 120Xe and 124,126,128Xe nuclei, and its overall increas-
ing trend with neutron number. The present interpretation of
these states is in contradiction with recent theoretical descrip-
tions based on IBM [26,27] or ACM [17] of the heaviest
three nuclei. These studies identify the first excited 0+

2 state

as the band-head of the K = 0 three phonon band, based on
the O(5) spectral grouping and selection rules for transition
probabilities. Nevertheless, the high values of the reported
quadrupole transitions connecting the 0+

2 state with ground
and γ band 2+ states in the 124,126,128Xe nuclei [11,26,27],
which is the main criterion for the assignment of 0+

2 state to
the three-phonon band, have big uncertainties due to the ap-
proximate degeneracy with 3+

1 states and do not appear in the
updated data evaluations. From our calculation, the correct re-
production of the γ band infers a much higher position of the
three-phonon 0+ state. Also, due to the particularity of the β

excitations stemming from energy dependence, the transition
probabilities connecting the β states with ground band states
are extremely well described and do not contradict even the
older data values. There is however a striking inconsistency
related to the transition 0+

2 → 2+
2 whose experimentally

deduced rate is quite high, while the present model essentially
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TABLE III. Theoretical results (second row) for the interband quadrupole transition probabilities compared with experimental data (first
row) [27,67–70,72]. Values are given in W.u.

Transition 118Xe 120Xe 122Xe 124Xe 126Xe 128Xe

2γ → 0g 0.71(13) 0.63(7) 0.76(5)
0.77(8) 0.20(5) 0.16(1) ≈0 ≈0 ≈0

2γ → 2g 32(6) 43(3) 57(4)
82(9) 66(17) 112(8) 40(12) 62(3) 49(5)

3γ → 2g 0.79(15) 0.90(23) 3.3(5)
1.33(14) 6.35(9) 0.28(2) ≈0 ≈0 ≈0

3γ → 4g 26(12)a �22.1(13) 72(10)
36(4) 29(8) 53(4) 19(6) 30(2) 21(2)

4γ → 2g 0.06(1)a 0.40(8)
0.011(1) ≈0 ≈0 ≈0 ≈0 ≈0

4γ → 4g 34(13) 28(4) 28(3)
57(6) 40(10) 61(4) 21(6) 35(2) 29(3)

5γ → 4g 0.5(3)
0.52(6) 0.11(3) 0.073(5) ≈0 ≈0 ≈0

0β → 2g 13.2(31)a 5.9(9) 3.7(6)b

50(5) 31(8) 44(3) 15(4) 27(1) 18(2)
2β → 0g 0.32(5)a 0.063(14)

1.68(18) 1.42(37) 1.92(13) 0.60(18) 0.84(4) 0.34(3)
2β → 2g 0.61(7)a �0.10(2)

0.89(9) 0.19(5) 0.12(1) ≈0 ≈0 ≈0
2β → 4g 5.55(79)a 0.96(4)

35(4) 21(5) 30(2) 10(3) 19(1) 14(1)
0β → 2γ 87(21)a 64(9) 52.8(76)b

1.43(15) 0.27(7) 0.18(1) ≈0 ≈0 ≈0
2β → 2γ 3.54(71)a �1.9(4)

18(2) 11(3) 16(1) 6(2) 10(1) 8(1)
2β → 3γ �21(4)

0.84(9) 0.15(4) 0.10(1) ≈0 ≈0 ≈0
2β → 4γ

0.0087(9) ≈0 ≈0 ≈0 ≈0 ≈
aData taken from Ref. [26].
bData taken from Ref. [11].

forbids it. This can be seen in Tables II and III, where
the available experimental data for transition probabilities
are compared with theoretical predictions. The latter values
are calculated with the wave-functions determined from the
fitting procedure, with the additional scaling parameter βM

fitted to reproduce the experimental data only for the in-band
transitions which have measured values usually of the same
order of magnitude. The fitting is made by including also the
errors, which are substantial:

σE2 =
√√√√ 1

NE2

NE2∑
i=1

(
Bi

exp(E2) − Bi
T h(E2; βM )

σ i
E2

)2

. (37)

NE2 is the number of data points considered in the fitting
procedure, while σ i

E2 is the absolute error of the experi-
mental E2 transition probability data point Bi

exp(E2). The
inclusion of errors is essential in making valid theoretical
predictions. The obtained scaling parameter βM is listed in
Table I with its associated theoretical error. As the fit of the
scaling parameter was made on the in-band transitions, the
associated experimental data is overall well reproduced by

the theory. Special mention deserves the very good theoretical
description of the in band transitions for 126Xe and 128Xe.
Surprisingly, the data available on inter-band transitions only
for the 124,126,128Xe are also in a very good agreement with
the extrapolated theoretical values, with the exception of the
transition 0+

2(β ) → 2+
2(γ ) discussed above.

With the use of the scaling parameters, one can draw the
total potential for the ground state in terms of the quadrupole
deformation β2 and the triaxial deformation. This is done in
Fig. 5, from where one can observe the evolution of the triaxial
deformation as well as the softness of the quadrupole defor-
mation through the considered Xe isotopes. As was mention in
connection to the γ potential, the triaxiality establishes itself
quite suddenly starting from 120Xe nucleus with γ = 26.67◦.
The equilibrium triaxiality rapidly increases to 30◦ in the
last three nuclei. The evolution of the quadrupole deforma-
tion associated with the ground state potential minimum, is
more erratic. Indeed, the first nuclei have similar deformation
around β2 = 0.13, and then there is a consistent increase in
deformation up to β2 = 0.18 in 122Xe and then a similarly
abrupt decrease to β2 = 0.11. After that, the deformation
stabilizes to almost the same deformation as in the first two
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FIG. 5. Total potential U from Eq. (1) for the ground state as a function of the quadrupole deformation β2 = βMβ and triaxiality measure
γ . The contour step is given for each nucleus by �E .

nuclei. Note however that the equilibrium quadrupole defor-
mation associated with the ground state potential minimum
is by 50% smaller than its associated average quadrupole
deformation due to the very anharmonic character of the
potential. As a matter of fact, these averages are in good agree-
ment with the quadrupole deformation values extracted from
experiment [73]. Indeed, Fig. 6 shows that the overall trend of
experimentally determined deformation values is sufficiently
well reproduced. The same figure shows also the theoretical
quadrupole deformation in the 0+

β state. Except 120Xe nucleus,
in all cases the deformation of the excited state is higher
with approximately the same factor. The departure is larger
for 128Xe whose energy dependence is the weakest among
all considered nuclei. The excepted 120Xe nucleus exhibits
actually a suppression of deformation from the excited state in
respect to the ground state. This behavior was reported before
in Ref. [43] in connection with the energy dependence of a
Davidson potential in axially symmetric limit.

The dynamical properties of the considered nuclei in each
state are more obvious from the correspondence between the
shape of an effective potential which includes the centrifugal
contribution and the associated density probability distribu-
tion ρ = |�nLκ |2(1 + a2/β )β4. Such an effective potential is
obtained by a change of function R(β ) = f (β )/β2 in Eq. (5),
which leads to

Veff = h̄2

2B

(
2 + WLκ + a1

β2
− 1 + a2εnLκ

β

)
. (38)

Both effective potential, and the density probability distribu-
tion can be transformed to depend on the quadrupole defor-
mation by using the change of variable β2 = βMβ. The two

g.s. β2 from Exp.
Th. g.s. β2
Th. β2 for 0β

64 66 68 70 72 74

0.15

0.20

0.25

0.30

N

β 2

FIG. 6. Theoretical predictions for the ground state quadrupole
deformation are compared with values extracted from experi-
ment [73] and with the similarly calculated 0+

β state quadrupole
deformation. The theoretical error bars are presented only for the
ground state deformation, with those corresponding to the excited
states having the same proportion in respect to their absolute values.
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FIG. 7. The effective potential for the β2 deformation variable and the associated probability distribution for the 0+
g , 2+

g , 2+
γ , and 0+

β states
of the 118,120,122Xe nuclei. The corresponding ground and β excited 0+ states are also shown by dashed lines.

quantities are shown for the 0+
g , 2+

g , 2+
γ , and 0+

β states of each
considered nucleus in Figs. 7 and 8, where the correspondence
between them becomes obvious. Whenever the energy depen-
dence of the potential is strong, the effective potential for the
0+

β state is much deeper than those associated with rotational
excitations and even the ground state, but with a similar
asymptotic behavior. This effect is reflected in the relative
height of the two peaks associated with the density probability
distribution for the 0+

β state. Indeed, a very strong energy de-
pendence induces a larger probability for the low deformation
turning point as it happens in 118Xe and 120Xe. While mild

energy dependence obtained for 122,124,126Xe equalizes the
probability of the two deformation turning points associated
with the β vibration. In this latter case, one can say that
the β variable behaves as in a one-dimensional harmonic
oscillator. The low energy dependence found for 128Xe cor-
responds to a usual behavior of the β excited state which
probabilistically favors the high deformation turning point.
Although for this nucleus the slope of the energy dependence
is small, the resulted effective potential for the 0+

β excited
state is still slightly deeper than the effective potential for the
ground state. The effective potentials of Figs. 7 and 8 seem

FIG. 8. Same as in Fig. 7 but for the 124,126,128Xe nuclei.
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FIG. 9. Variation of the effective potential for 118,122–128Xe nuclei
between ground state and the first β excited state. Note that the
ground state effective potential is the upper curve.

to have similar shapes, but are nevertheless differently scaled.
Indeed, the potentials depicted in Figs. 5, 7, and 8 have sig-
nificant variation with quadrupole deformation only in large
energy intervals of many MeV units, but the actual spectra
are very compressed in the relevant interval of excitation
energies.

In order to observe the actual changes in the effective
potentials between nuclei and also between states, one plotted
them within the same scale in Fig. 9 and as a function of
a β deformation variable normalized to the position of the
ground state effective potential minimum βmin. Such a rep-
resentation demonstrates the evolution with mass number of
the effective potential from very sharp minimum with strong
state-dependence to a shallow minimum with an approximate
state-independence. The 120Xe nucleus falls out from this
trend because, in the same scale of Fig. 9, it will show
a very deep minimum with large energy variance between
states. However, taking it into account, one observes that the
evolution of the effective potential and its state-dependence is
consistent with the change of the neutron valence space [13].
As it happens, 120Xe is just at the neutron midshell N = 66.
Its deepest potential minimum is then consistent with larger
shape fluctuations, while its sensitive energy-dependence is
a consequence of the maximal valence space which allows
more substantial microscopic changes between collective
states.

In what concerns the behavior of the rotationally excited
states, their effective potentials and associated probability
distributions are quite stabilized, with a slightly wider spread
for 118Xe and 120Xe, whose γ deformation is more prolate-
like. It must be mentioned here that the theoretical errors for
the quadrupole deformation used in Figs. 5, 7, 8, and 9 were
discarded for the sake of a clear presentation.

The analysis on the evolution with neutron number of both
triaxiality and the shape state dependence point to the fact that
a transition takes place in between 120Xe and 122Xe nuclei
from axial shapes with β excitations favoring low quadrupole
deformation towards triaxial shapes with β excitations favor-
ing higher deformation. This transition coincides also with the
evolution of the decay stability along the Xe isotopes [73],
which changes from very short-lived 118Xe to the stable
nuclei 124,126,128Xe. The critical role of 120,122Xe is enforced
in the present study by the strongest energy dependence for
120Xe and respectively the highest quadrupole deformation
obtained for 122Xe. The latter is also experimentally observed.
Moreover the lowest-lying γ band-head state is observed and
calculated for 122Xe nucleus.

The model calculations can be easily transposed to a
Davidson potential in the β variable. However, the fits per-
formed with an energy-dependent Kratzer potential were
found to be significantly better than those for the Davidson
potential with an energy-dependent harmonic term.

V. CONCLUSIONS

A phenomenological Bohr model with an exactly separable
collective potential allowing axial and triaxial minima of vary-
ing depth and softness is proposed in connection with a non-
local formalism for the β excitations. The energy dependence
of the β excitations, like the formalisms involving deforma-
tion dependent mass terms [12,13], shows a superior ability
in treating β excited states. While the adopted γ potential
is sufficiently versatile to reproduce truthfully the majority
of spectral behaviours of the γ band, the β variable part of
the formalism is fully analytic, but the equation involving
the γ -angular degrees of freedom is diagonalized in a basis
of SO(5) spherical harmonics. The model is applied for the
description of energy spectra and E2 transition probabilities
of the 118–128Xe nuclei, which is achieved with high accuracy.
The model parameters deduced from experimental data are
used to draw conclusion regarding the dynamical features of
the considered nuclei in connection to their deformation. The
main result is the identification of the transition from axial to
triaxial shapes happening at 120Xe nucleus, and maintaining
to the maximum value of γ = 30◦ up to the last considered
nucleus 128Xe. Additionally, the energy dependence of the β

excitations shows a change in the most probable deformation
turning point in the oscillation of the β shape variable. This
is happening around 122Xe nucleus, although the strongest
energy dependence is reported for 120Xe. However, this strong
energy dependence is vividly and uniquely reflected in the
decrease of the β excited state quadrupole deformation in
respect to the ground state in 120Xe.
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The present study offers also an alternative interpretation
of the excited 0+ states in the considered Xe nuclei, which
must be further validated by more precise measurements of
interband E2 transition probabilities.
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