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Symmetry energy properties of neutron-rich nuclei from the coherent density fluctuation model
applied to nuclear matter calculations with Bonn potentials
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We derive the values of nuclear symmetry energy, its components, as well as pressure in finite nuclei at
saturation density from their corresponding values in nuclear matter obtained in nonrelativistic Brueckner-
Hartree-Fock calculations with the realistic Bonn B and Bonn CD potentials using the coherent density
fluctuation model in the framework of a self-consistent Skyrme-Hartree-Fock plus BCS method. We focus on
three isotopic chains of spherical nuclei (Ni, Sn, and Pb) and compare our results with those obtained with an
effective Brueckner density-dependent potential. The role of the three-body forces on the considered quantities
is also studied and discussed.
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I. INTRODUCTION

The basic properties of many-body quantum-mechanical
systems with strongly interacting particles primarily depend
on the equation of state (EOS). In particular, this concerns
symmetric and asymmetric nuclear matter including astro-
physical objects such as neutron stars and the gravitational
wave events caused by binary black hole and binary neutron
star mergers (see, e.g., Ref. [1]). A very important theoretical
problem is to determine the EOS from underlying nuclear in-
teractions using two-, three-, and many-body nucleon interac-
tions derived in various theoretical approaches. It is necessary
in many cases to calculate the EOS to extreme conditions
of high density and high neutron-proton asymmetry. This
inevitably leads to the necessity to have a knowledge of the
nuclear symmetry energy SNM(ρ) as one of the most important
quantities that determines the structure and the pressure of the
nuclear matter (NM). The SNM(ρ) is the difference between
the binding energy per particle in pure neutron matter and in
symmetric nuclear matter. Many calculations of the EOS and
SNM(ρ) have been performed using various realistic models of
the nucleon-nucleon interactions with parameters adjusted so
as to reproduce the observed nucleon-nucleon (NN) scattering
phase shifts. Here we note (see Ref. [2]) the variational
calculations in Ref. [3] with Argonne V14 potentials [4] and
the earlier Brueckner-Hartree-Fock (BHF) calculations using
one-boson-exchange potential [5,6] with Reid [7] and Paris
potentials [8]. It has been concluded in Ref. [2] that the
differences in the predictions of the SNM(ρ) at high densities
are not caused by the many-body method used, but rather by
the various models used for the NN interactions.

In what follows we concentrate on the nonrelativistic
many-body BHF calculations in NM with various poten-
tials. It was initiated in the 1960s by Brueckner [9,10] and
Bethe [11], and later by Haftel and Tabakin [12] and Erkelenz
et al. [13,14], with the objective to derive the saturation
properties of nuclear matter from first principles and obtain
the experimentally observed nuclear binding energy. Self-
consistent calculations of the density dependence of the nu-
clear symmetry energy were carried by Brueckner, Coon, and
Dabrowski in Ref. [15].

Substantial progress in the study of the equation of state
of nuclear matter was achieved in the 1990s with relativistic
extensions of that approach and employment of one-boson-
exchange nucleon-nucleon potentials [16–18]. The investi-
gations of β stability of nuclear matter [19] at high densi-
ties brought to center stage the need of accurate knowledge
of the density dependence of the nuclear symmetry energy
and many-body calculations in both nonrelativistic [2] and
relativistic [20] framework were carried out using modern
realistic potentials.

A comparative study of different approaches for the prop-
erties of asymmetric nuclear matter has been presented in
Refs. [21,22]. These various approximation schemes are
shown to lead to rather similar predictions for the energy per
nucleon of symmetric and asymmetric nuclear matter at high
densities and large proton-neutron asymmetries.

The study of finite nuclei has further significance for
the development of nuclear density functionals. Very re-
cently, Shen et al. have developed and realized an ap-
plication of relativistic BHF theory for finite nuclear
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systems [23]. They showed that further improvements in
building ab initio relativistic energy functionals are needed
(inclusion of higher orders of the hole-line expansion, more
precise relativistic NN interactions, efforts to develop rela-
tivistic chiral NN interactions) to go, for instance, to heavier
systems.

The main task of our work is to employ the modern
realistic Bonn B and Bonn CD potentials on the basis of the
nonrelativistic approach used by Engvik et al. [2]. First, we
obtain the density dependence of the NM symmetry energy for
a range of densities relevant to the present study and then we
use the coherent density fluctuation model (CDFM) [24,25]
to extract the symmetry energy and pressure in three isotopic
chains of (finite) spherical nuclei with input nuclear densi-
ties derived in self-consistent Skyrme-Hartree-Fock + BCS
calculations.

In our previous works [26–30] the CDFM allowed us
to make the transition from nuclear matter to finite nuclei
in the studies of the nuclear symmetry energy (NSE) for
spherical [26] and deformed [27] nuclei, as well as for Mg
isotopes [28] using the Brueckner energy-density functional
(EDF) of asymmetric nuclear matter [31]. In our work [29] we
used a similar method to investigate the temperature depen-
dence of the NSE for isotopic chains of even-even Ni, Sn, and
Pb nuclei following the local density approximation [32–35]
and using instead of the Brueckner EDF, the Skyrme EDF
with SkM* and SLy4 forces. In our work [30] the volume
and surface contributions to the NSE and their ratio were
calculated within the CDFM using two EDF’s, namely, the
Brueckner [31] and Skyrme (see Ref. [36]) ones. Recently
our results for the mentioned quantities have been given in
Ref. [37].

The structure of this article is the following. In Sec. II
we present the common definitions of the symmetry en-
ergy and properties of nuclear matter which characterize its
density dependence around normal nuclear matter density.
A brief description of the nonrelativistic Brueckner-Hartree-
Fock formalism for calculating the ground-state properties
of symmetric nuclear matter and extracting the density de-
pendence of the nuclear symmetry energy in quadratic ap-
proximation of the isospin polarization is given, as well. In
Sec. III we present a brief account of the formalism of the
CDFM which allows us to relate the intrinsic quantities in
nuclear matter to their corresponding ones in finite nuclei
using different phenomenological potentials. In Sec. IV we
present and discuss the results of our calculations of the
already mentioned quantities of spherical nuclei for three dif-
ferent isotopic chains of even-even Ni (A = 74–84), Sn (A =
124–152), and Pb (A = 206–214) nuclei within the CDFM
formalism in the framework of Skyrme HF + BCS obtained
from two different nuclear potentials for nuclear matter in-
teractions: on one hand the modern realistic Bonn B and
Bonn CD potentials [16,17] and on the other the time-honored
Brueckner’s density dependent potential [31,38]. The effect
of the Bonn B and Bonn CD potentials plus the microscopic
three-body forces (TBF) on the symmetry energy and related
quantities on the example of Ni isotopes is also estimated and
discussed. The conclusions of the present work are given in
Sec. V.

II. THE KEY EOS PARAMETERS IN NUCLEAR MATTER
AND IN FINITE NUCLEI

A. Semiempirical Bethe-Weizsäcker formula for nuclear matter

The semi-empirical Bethe-Weizsäcker formula [39,40]
captures the essential dependence of the finite nucleus ground
state on isospin asymmetry (polarization). This formula may
be viewed as a Taylor series expansion in the energy per
particle for nuclear matter in terms of the isospin asymmetry
δ = (ρn − ρp)/ρ, in which the density-dependent coefficient
in front of the quadratic term defines the so-called symmetry
energy SNM(ρ),

E (ρ, δ) = E (ρ, 0) + SNM(ρ)δ2 + O(δ4) + · · · , (1)

where ρ = ρn + ρp is the baryon density with ρn and ρp

denoting the neutron and proton densities, respectively (see,
e.g., Refs. [41,42]). Odd powers of δ are forbidden by the
isospin symmetry and the terms proportional to δ4 and higher
orders are found to be negligible.

Near the saturation density ρ0 the energy of isospin-
symmetric matter E (ρ, 0) and the symmetry energy, SNM(ρ),
can be expanded as

E (ρ, 0) = E0 + KNM

18ρ2
0

(ρ − ρ0)2 + · · · (2)

and

SNM(ρ) = 1

2

∂2E (ρ, δ)

∂δ2

∣∣∣∣
δ=0

= a4 + pNM
0

ρ2
0

(ρ − ρ0)

+ �KNM

18ρ2
0

(ρ − ρ0)2 + · · · . (3)

The parameter a4 is the symmetry energy at equilibrium (ρ =
ρ0). The pressure pNM

0 ,

pNM
0 = ρ2

0
∂SNM

∂ρ

∣∣∣∣
ρ=ρ0

, (4)

and the curvature �KNM,

�KNM = 9ρ2
0

∂2SNM

∂ρ2

∣∣∣∣
ρ=ρ0

, (5)

of the nuclear symmetry energy at ρ0 govern its density
dependence and thus provide important information on the
properties of the nuclear symmetry energy at both high and
low densities.

The Bethe-Weizsäcker semi-empirical mass formula for
the nuclear ground-state energy per nucleon describes both
properties of (infinite) nuclear matter as well as finite nu-
clei [43,44]:

E (A, Z ) = −B + ESA−1/3 + S(A)
(N − Z )2

A2
+ EC

Z2

A4/3

+ Edif
Z2

A2
+ Eex

Z4/3

A4/3
+ a�A−3/2, (6)
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where

S(A) = SV (A)

1 + SS (A)

SV (A)
A−1/3

= SV (A)

1 + A−1/3

κ (A)

, (7)

with

κ (A) ≡ SV (A)

SS (A)
. (8)

In Eq. (6) B � 16 MeV is the binding energy per particle
of bulk symmetric matter at saturation. ES , EC , Edif, and
Eex are coefficients that correspond to the surface energy
of symmetric matter, the Coulomb energy of a uniformly
charged sphere, the diffuseness correction, and the exchange
correction to the Coulomb energy, while the last term gives the
pairing corrections (� is a constant and a = +1 for odd-odd
nuclei, 0 for odd-even, and -1 for even-even nuclei). SV is the
volume symmetry energy parameter and SS is the modified
surface symmetry energy in the droplet model (see Ref. [44],
where it is defined by SS∗).

In our previous work [29] we have studied the temper-
ature dependence of the nuclear symmetry energy S(A, T ),
including its volume and surface [37] contributions as derived
from Brueckner [31,38] and Skyrme [36] energy density func-
tionals. In the present work we extract the symmetry energy
coefficients in Ni, Sn, and Pb from many-body Brueckner-
Hartree-Fock ground-state calculations of nuclear matter with
realistic potentials (Bonn B and Bonn CD) at zero temperature
(T = 0 MeV) by applying the CDFM using the finite nuclei
densities obtained in self-consistent Hartree-Fock + BCS
calculations with Skyrme effective interactions (SLy4, Sk3,
and SGII).

Here we would like to comment on the following point.
In the present work (and also in our previous paper [37])
we use Eq. (7) as a relation between the symmetry energy
S(A) and its volume SV (A) and surface SS (A) components.
As mentioned above, this relation is given in the droplet
model, e.g., in Ref. [44]. However, Eq. (7) is different from
the relation in another approach used in, e.g., Refs. [45–48],
and also in our work [30]. In the latter works the rela-
tion between S(A) and its components SV (A) and SS (A)
is SV (A)/{1 + [SV (A)/SS (A)]A−1/3}, which contains a ratio
in the second term in the denominator [SV (A)/SS (A)]A−1/3,
while in Eq. (7) the ratio is [SS (A)/SV (A)]A−1/3. In the nuclear
matter limit, when A → ∞ and SS/SV → 0, the symmetry
energy in Eq. (7) has the correct limit S → SV . In this limit
the ratio [SV (A)/SS (A)]A−1/3 is not well determined and
to get the right nuclear matter limit one has to impose the
condition that the surface coefficient SS (A) goes to zero more
slowly than A−1/3 as A → ∞. To avoid this constraint we
adopt in our present work (and also in Ref. [37]) the relation
from the droplet model [Eq. (7)].

Also, at large A Eq. (7) can be written in the known form
(see Ref. [40]):

S(A) � SV − SS

A1/3
, (9)

From Eqs. (7) and (8), follow the relations of SV (A) and SS (A)
with S(A):

SV (A) = S(A)

(
1 + 1

κ (A)A1/3

)
, (10)

SS (A) = S(A)

κ (A)

(
1 + 1

κ (A)A1/3

)
. (11)

Due to the choice of Eq. (7), Eqs. (10) and (11) are different
from Eqs. (26) and (27) in Ref. [30]. This leads to different
results for SV (A) and SS (A) obtained in Ref. [30] and those
of the present work which will be shown in Sec. IV. We
emphasize, however, that the results for the symmetry energy
S(A) in this work, as well as in Refs. [30] and [26], should be
the same because they are obtained from identical equations,
namely, Eq. (27) in Sec. III of the present work, Eq. (20) in
Ref. [30], and Eq. (28) in Ref. [26]. As can be expected, the
differences concern the values of SV (A) and SS (A).

Furthermore, it has been argued (Refs. [45,49]) that the
ratio of the volume to the surface energy coefficients is given
by the following integral of the symmetry energy function of
density S(ρ):

κ (A) = SV (A)

SS (A)
= 3

r0

∫
dr

ρ(r)

ρ0

{
SNM(ρ0)

SNM[ρ(r)]
− 1

}
(12)

in the local density approximation to the symmetry energy. In
Eq. (12) ρ(r) is the half-infinite nuclear matter density, ρ0 is
the nuclear matter equilibrium density, and r0 is the radius of
the nuclear volume per nucleon. The latter two quantities are
related by

4πr3
0

3
= 1

ρ0
. (13)

In Sec. IV are presented our results for the volume and
surface components of the nuclear symmetry energy and their
ratio obtained in calculations based on relationships from this
section and within the CDFM (see Sec. III).

B. Ground-state properties of dense nuclear matter calculated
with Bonn B and Bonn CD nuclear potentials

In this subsection we give a short overview of the for-
malism employed in obtaining the density dependence of the
symmetry energy of nuclear matter. Details can be seen in
the original works of Engvik et al. [2], and also of Haftel
and Tabakin [12], Erkelenz et al. [14], Machleidt [16,18],
and Song et al. [50,51]. Excellent pedagogical reviews can
be found in M. Baldo [52] and H. Heiselberg and M. Hjorth-
Jensen [53].

The symmetry energy in nuclear matter SNM(ρ) as a func-
tion of density (neglecting higher than quadratic terms in
isospin asymmetry) can be approximated with

SNM(ρ) = E (ρ, δ = 1) − E (ρ, δ = 0), (14)

where E (ρ, δ = 1) is the ground state energy per nucleon of
completely isospin polarized (i.e., neutron matter) at density
ρ and E (ρ, δ = 0) is the ground-state energy per nucleon
of isospin unpolarized (i.e., isospin symmetric) matter. From
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Eqs. (4) and (14) it follows the relationship for the pressure
pNM

0 (ρ).
The calculation of the ground-state energies per nucleon

at different density and polarization is carried out using the
reaction matrix G, which is a solution of the Bethe-Goldstone
equation for various isospin polarization fractions δ:

G(ω, δ) = V + V
Q(δ)

ω − H0
G(ω, δ), (15)

where ω is the unperturbed energy of the interacting nucleons,
V is the free NN potential, H0 is the unperturbed energy of
the intermediate scattering states, and Q(δ) is the Pauli op-
erator preventing scattering into occupied states. Only ladder
diagrams with intermediate two-particle states are included in
Eq. (15).

Having obtained a self-consistent solution of Bethe-
Goldstone equation, one can construct the bound state ener-
gies per nucleon at different density and isospin asymmetry
(polarization) δ,

E (ρ, δ) = T + U (ρ, δ), (16)

with the kinetic energy

T = 3

10mk3
F

(k5
F p + k5

Fn), (17)

where m is the effective nucleon mass and kF is the total Fermi
momentum. The Fermi momenta kF p and kFn for protons and
neutrons, respectively, are related to the total nuclear density
ρ and isospin asymmetry (polarization) δ by

ρ = 2

3π2
k3

F = (1 + δ)

2
ρ + (1 − δ)

2
ρ = 1

3π2
k3

Fn+
1

3π2
k3

F p.

(18)

The contribution of the potential energy U to the total energy
per particle can be written in the form

U (ρ, δ) = 1

2ρ

1

(2π )6

∑
a,b=(pn)

∫ kFa

0
d3ka

∫ kFb

0
d3kb

×〈kakb|G(ω = εa(ka) + εb(kb))|kakb〉, (19)

where εa and εb are the nucleon single-particle energies.
Using this approach we have carried out first nonrelativistic
Brueckner-Hartree-Fock calculations of the symmetry energy
using Bonn B and Bonn CD potentials from [16,17]. Our
results are summarized in Fig. 1. They are in line with pre-
vious studies which confirm the nearly linear dependence of
the symmetry energy in nuclear matter with density [2,20]. In
the same figure are presented also the results when two-body
Bonn B potential from Ref. [54] and two-body Bonn CD
potential from Ref. [55], as well as the results for SNM(ρ)
obtained by the Nijmegen II and Argonne V18 [56] potentials
taken from Ref. [2] are used. We note that in Fig. 1 the
TBF are not included. Here we would like to emphasize
that when comparing the results in Fig. 1 one has to keep
in mind their dependence on the choices of the auxiliary
potentials and of the methods of calculations. In the paper of
Wang et al. [54] BHF calculations are performed (with Bonn
B two-body potential and microscopic TBF) using gap and
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M
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ρ [fm−3]

Bonn B [16]
Bonn CD [17]

Argonne V18
Bonn B [54]
Bonn CD [55]

Nijmegen II

FIG. 1. Density dependence of the symmetry energy calculated
with Bonn B and Bonn CD potentials from [16,17], as well as from
Refs. [54,55] and with Nijmegen II and Argonne V18 potentials from
Ref. [2]. We note that all the curves correspond to two-body forces.

continuous auxiliary potentials that lead to different results,
namely, the symmetry energy under the gap choice is smaller
than that under the continuous choice. In Fig. 1 the result of
Ref. [54] with a gap auxiliary potential is compared with our
result using also gap auxiliary potential and Bonn B potential
from Ref. [16]. We should note the existing small difference
between our result and that from Ref. [54]. The reason for
this is mainly the difference between the estimations made
in our work and those in Ref. [54] of the contribution of the
1P1 partial wave to the energy as a function of the density. For
instance, for the density ρ = 0.17 fm−3 our estimation is close
to that in Table 9.2 of Ref. [16] but it is about 3 MeV larger
than that in Table 1 of Ref. [54]. We should add, however,
that the noted difference is within the uncertainty in the
experimental value of the symmetry energy (e.g., S = 32 ± 6
MeV given in [55]). The calculations of Soma and Bozek [55]
are performed not within the BHF method but using the self-
consistent in-medium T-matrix approach implemented with
Bonn CD and Nijmegen potentials plus the three-nucleon
Urbana interaction. It is found in Ref. [55] that the results
of their approach for the symmetry energy in the case of the
Bonn CD potential is S = 30–32 MeV. In Fig. 2 are given the
results of our calculations for the pressure in nuclear matter
based on Eqs. (4) and (14) for both Bonn potentials.

In the end of this section we comment on the role of
the three-body forces. It is well known that the standard
BHF formalism involving only two-body forces does not
reproduce correctly the empirical saturation point of nuclear
matter [57]. The studies of the TBF effects on the properties
of symmetric NM and pure neutron matter in Refs. [54,55,58]
were performed for Argonne V18, CD Bonn, and Bonn B
two-body potentials, which are among the few most accu-
rate NN interactions. The latter two potentials are object of
the present work and, in principle, of primary interest to
investigate the dependence of the nuclear EOS on the two-
and three-body forces and their impact on the characteristics
of NM for finite nuclei. Indeed, the saturation density and
the energy per particle of nuclear matter can be improved
by including the TBF to (0.17 fm−3 and −15.9 MeV) [54]

064315-4



SYMMETRY ENERGY PROPERTIES OF NEUTRON-RICH … PHYSICAL REVIEW C 101, 064315 (2020)

1

10

10−1

102

103

 0  0.2  0.4  0.6  0.8  1

p 0
N

M
(ρ

) [
M

eV
 fm

−3
]

ρ [fm−3]

Bonn B
Bonn CD

FIG. 2. Density dependence of the pressure in nuclear matter
calculated with Bonn B and Bonn CD potentials from Refs. [16,17].

and to (0.185 fm−3 and −15.5 MeV) [58] for the Bonn B
and Bonn CD potentials, respectively. For comparison, the
corresponding saturation points in the case of Brueckner EDF
are (0.204 fm−3 and −16.57 MeV). In Fig. 3 are compared
the results for the symmetry energy as a function of the
density from the calculations within the BHF method for
Bonn B potential [54] (with a gap choice) and within the
in-medium T-matrix approach for Bonn CD potential [55]
with and without TBF. In general, as it can be seen from
Fig. 3, the TBF play an important role in determining the
high-density behavior of the symmetry energy and its effect
leads to a strong stiffening of the symmetry energy at high
densities. A confirmation of this fact can be also found in
Ref. [59], where the TBF play a key role in determining the
coefficient b [see Eq. (3) and Table I of Ref. [59]], which
is responsible for the high-density behavior of the EOS and
whose values vary significantly when two-body or three-body
forces are accounted for in quantum Monte Carlo calculations
of the neutron star mass-radius relationship.
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FIG. 3. Density dependence of the symmetry energy calculated
with Bonn B [54] and Bonn CD [55] potentials with two- and three-
body forces (TBF).

III. NUCLEAR EOS PARAMETERS OF FINITE
NUCLEI IN THE CDFM

In what follows we calculate the key EOS parameters
in finite nuclei, i.e., the pressure p0 at saturation density
ρ0 and the nuclear symmetry energy and its surface and
volume components (see Refs. [24,25,30]) using the CDFM.
The latter is a natural extension of the Fermi-gas model and
is based on the δ-function approximation of the generator
coordinate method [60]. The model includes nucleon-nucleon
correlations of collective type. In general, it allows us to make
the transition from quantities in nuclear matter to the corre-
sponding ones in finite nuclei. In the present work it is applied
to our studies of the symmetry energy and its components. In
the CDFM the one-body density matrix ρ(r, r′) is a coherent
superposition of the one-body density matrices ρNM

x (r, r′)
for spherical “pieces” of nuclear matter (“fluctons”) with
densities ρx(r) = ρ0(x)�(x − |r|) and ρ0(x) = 3A/4πx3. It
has the form

ρ(r, r′) =
∫ ∞

0
dx|F (x)|2ρNM

x (r, r′), (20)

with

ρNM
x (r, r′) = 3ρ0(x)

j1(kF (x)|r − r′|)
(kF (x)|r − r′|) �

(
x − |r + r′|

2

)
.

(21)
In Eq. (21) j1 is the first-order spherical Bessel function and

kF (x) =
(

3π2

2
ρ0(x)

)1/3

≡ β

x
, (22)

with

β =
(

9πA

8

)1/3

� 1.52A1/3 (23)

as the Fermi momentum of the nucleons in the flucton with a
radius x. The density distribution in the CDFM has the form

ρ(r) =
∫ ∞

0
dx|F (x)|2ρ0(x)�(x − |r|). (24)

It follows from Eq. (24) that in the case of monotonically
decreasing local density (dρ/dr � 0) the weight function
|F (x)|2 can be obtained from a known density (theoretically
or experimentally obtained):

|F (x)|2 = − 1

ρ0(x)

dρ(r)

dr

∣∣∣∣
r=x

, (25)

with normalization ∫ ∞

0
dx|F (x)|2 = 1. (26)

We have shown in our previous works [26,27,30] by ap-
plying the CDFM that both nuclear symmetry energy and
pressure in finite nuclei can be obtained from infinite nu-
clear matter at temperature T = 0 MeV by weighting it with
|F (x)|2:

S(A) =
∫ ∞

0
dx|F (x)|2SNM[ρ(x)], (27)

p0(A) =
∫ ∞

0
dx|F (x)|2 pNM

0 [ρ(x)]. (28)
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Self-consistency requires that when this procedure is ap-
plied to quantities referring to (infinite) nuclear matter, the
weight function reduces to Dirac δ function. For example,
when the condition for self-consistency is applied to the den-
sity ρ(|r|) and the symmetry energy SNM[ρ(|r|)] in nuclear
matter it leads from Eqs. (24) and (27) to the trivial identities:

ρNM(|r|, x) =
∫ ∞

0
dx′δ(x′ − x)ρ0(x′)�(x′ − |r|)

= ρ0(x)�(x − |r|), (29)

SNM[ρNM(|r|, x)] =
∫ ∞

0
dx′δ(x′ − x)SNM[ρNM(|r|, x′)]

= SNM[ρ0(x)�(x − |r|)]. (30)

In Refs. [26,27,30] we used expressions for SNM[ρ(x)]
and pNM

0 [ρ(x)] derived for nuclear matter from an effective
density-dependent Brueckner potential [31,38]:

SNM(x) = 41.7ρ
2/3
0 (x) + b4ρ0(x)

+ b5ρ
4/3
0 (x) + b6ρ

5/3
0 (x), (31)

pNM
0 (x) = 27.8ρ

5/3
0 (x) + b4ρ

2
0 (x)

+ 4

3
b5ρ

7/3
0 (x) + 5

3
b6ρ

8/3
0 (x), (32)

where

b4 = 148.26, b5 = 372.84, b6 = −769.57. (33)

In the present work using the CDFM we take nuclear
matter values of the considered parameters and use them to
deduce the corresponding values in finite nuclei. We apply
the CDFM in the framework of a self-consistent Skyrme-
Hartree-Fock plus BCS method to calculate the volume and
surface contributions to the symmetry energy and their ratio,
as well as the pressure, in spherical nuclei of the Ni, Sn,
and Pb isotopic chains. In our approach to calculate κ (A),
i.e the ratio SV (A)/SS (A) (see also Ref. [30]) we start from
Danielewicz’s formula Eq. (12). In it we make an approxi-
mation replacing the density ρ(r) for the half-infinite nuclear
matter in the integrand by the density distribution of a finite
nucleus. We replace the latter by the expression in the CDFM
[Eq. (24)]. Concerning the term SNM[ρ(r)], when use is made
of Eqs. (29) and (30) the formula for κ (A) takes the form

κ (A) = 3

r0ρ0

∫ ∞

0
dx|F (x)|2ρ0(x)

∫ x

0
dr

{
SNM(ρ0)

SNM[ρ0(x)]
− 1

}
,

(34)

which leads to

κ (A) = 3

r0ρ0

∫ ∞

0
dx|F (x)|2xρ0(x)

{
SNM(ρ0)

SNM[ρ0(x)]
− 1

}
,

(35)
where the right-hand side of Eq. (35) is an one-dimensional
integral over x. The latter is the radius of the “flucton” that is
perpendicular to the nuclear surface.

The weight function |F (x)|2 is calculated from Eq. (25)
using the finite nucleus density ρ(r) obtained from self-
consistent deformed Hartree-Fock plus BCS calculations with

FIG. 4. Block diagram of the application of the CDFM for the
extraction of symmetry energy and pressure in finite nuclei from their
counterparts in nuclear matter.

density-dependent Skyrme interactions. We use expressions
for SNM(x) and pNM

0 (x) derived using Bonn B and Bonn
CD potentials in nonrelativistic Brueckner-Hartee-Fock cal-
culations [2] of ground-state properties of nuclear matter at
different densities. The role of the CDFM to extract the NSE
and pressure in finite nuclei from their counterparts in infinite
nuclear matter is presented schematically by a block diagram
in Fig. 4.

IV. RESULTS OF CALCULATIONS

In this section we present the obtained results for the
symmetry energy and pressure in finite nuclei extracted from
nuclear matter many-body calculations using realistic Bonn
B and Bonn CD potentials. We show also the results for the
volume and surface contributions to the nuclear symmetry
energy.

In Fig. 5 we plot the symmetry energy in nuclear matter
as a function of density for both Bonn B and Brueckner

 0
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 0.1  0.2  0.3  0.4  0.5

SN
M

(ρ
) [
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ρ [fm−3]
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IAS + Δrnp
Brueckner

Bonn B
S0(ρ) γ=0.40 
S4(ρ) γ=0.30

FIG. 5. Density dependence of the symmetry energy SNM(ρ )
in nuclear matter with Brueckner and Bonn B potentials [16,17].
The curves for S0(ρ ) (γ = 0.40) [Eq. (36)] and S4(ρ ) (γ = 0.30)
[Eq. (37)] are also given. The constraints on the symmetry energy
taken from Fig. 4 of Ref. [66] are presented by two bands (see the
text).
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FIG. 6. The density ρ(r) (in fm−3) of 78Ni calculated in the
Skyrme HF + BCS method with SLy4 force (normalized to A =
78) and the weight function |F (x)|2 (in fm−1) normalized to unity
[Eq. (26)].

effective potential (from Refs. [16,17]) in a range of nuclear
densities where the expression of symmetry energy derived
from the effective Brueckner potential is nonnegative. On the
same figure we present for a comparison two other density
dependencies SNM(ρ) used in our work [37]. These are the
power parametrization (see Refs. [45,46,49])

SNM(ρ) = SV

(
ρ

ρ0

)γ

(36)

[noted in the figure by S0(ρ)] for the case when γ = 0.40 and
also (Refs. [61,62]):

SNM(ρ) = 12.5

(
ρ

ρ0

)2/3

+ 17.6

(
ρ

ρ0

)γ

(37)

[noted in the figure by S4(ρ)] for the case when γ = 0.30.
The data for the symmetry energy obtained in Ref. [63] from
nuclear isobaric analog states (IAS) and from neutron skin
thickness �rnp of heavy nuclei (IAS+�rnp) [64,65] are also
presented in Fig. 5 by gray hatched and magenta bands,
respectively. The two bands are taken from Ref. [66], where
the role of the three-body forces have been studied. As can
be seen from Fig. 5, the symmetry energy calculated with
Bonn B potential is slightly smaller for ρ � 0.25 fm−3 than
the ones obtained from the Brueckner EDF and using the
power parametrization [Eqs. (36) and (37)]. Nevertheless, the
behavior of all symmetry energy curves is similar and in
accordance with the empirical data [63–65] around the normal
NM density.

In Fig. 6 we overlay the surface part of the density distri-
bution of 78Ni and the corresponding CDFM weight function
|F (x)|2 as a function of x. The density is obtained in a self-
consistent Hartree-Fock + BCS calculations with SLy4 inter-
action. The function |F (x)|2 which is used in Eqs. (27), (28),
and (35) has the form of a bell with a maximum around
x = R1/2 at which the value of the density ρ(x = R1/2) is
around half of the value of the central density equal to ρ0

[ρ(R1/2)/ρ0 = 0.5]. Namely, in this region around ρ = 0.5ρ0

the values of different SNM(ρ) play the main role in the

calculations. As it is known, the central density of the nucleus
has values around ρ0 ≈ 0.10–0.16 fm−3. Consequently, the
maximum of the weight function |F (x)|2 is around ρ(R1/2) ≈
0.05–0.08 fm−3. In the case of 78Ni (Fig. 6) the maximum of
|F (x)|2 is at ρ = 0.05 fm−3 and, within its width range, the
density ρ is between 0.12 fm−3 and 0.01 fm−3. Therefore, for
the finite nucleus calculations the relevant values of SNM are
typically those in the region around ρ ≈ 0.01–0.12 fm−3 in
Figs. 1 and 5.

We apply the CDFM to derive the values of the symmetry
energy and pressure in three isotopic chains of nuclei (Ni, Sn,
and Pb) from our many-body symmetry energy calculations
in nuclear matter with Bonn B and Bonn CD potentials
from Refs. [16,17] with input nuclear densities obtained from
Hartree-Fock + BCS self-consistent calculations with differ-
ent Skyrme paramatrizations. We use effective Skyrme forces
SLy4 [67], Sk3 [68], and SGII [69], namely, because they are
among the most widely used Skyrme forces and have been
already used in our previous paper [70].

Using Eqs. (27) and (28) we calculate the nuclear symme-
try energy and the pressure, correspondingly, as well as by
means of Eqs. (35), (10), and (11) the volume and surface
contributions to the symmetry energy in finite nuclei.

We next comment on the similarities and differences be-
tween our results for the symmetry energy (along with its
volume and surface components) and pressure in the isotopes
of Ni, Sn, and Pb nuclei. As can be seen in Fig. 4 we use
the CDFM that links the microscopic description of finite
nuclei obtained from Skyrme-Hartree-Fock plus BCS method
with the symmetry of nuclear matter. In this work the latter
is obtained in two different ways, namely, by self-consistent
many-body Brueckner-Hartree-Fock calculations with realis-
tic Bonn B and Bonn CD potentials or by effective Brueckner
density functional. In this way the CDFM used in our hybrid
approach utilizes the strong sides of both the ab initio many-
body Brueckner-Hartree-Fock calculations using Bonn B and
Bonn CD potentials (which give reasonable results for the
binding energy in nuclear matter at saturation densities) and
the Skyrme-Hartree-Fock + BCS method which gives realis-
tic results for the nuclear density profiles in finite nuclei with
appropriate choice of the parameters of the density-dependent
Skyrme contact interaction (SLy4, Sk3, and SGII).

In the case of the Ni isotopic chain (Fig. 7) for the choice of
the Brueckner EDF the calculated symmetry energy (using the
CDFM with the SLy4 force) is in the range 26.8–27.8 MeV.
The volume symmetry energy SV is within 41.7–42.3 MeV
and the surface symmetry energy SS in the range 17–19 MeV.
The pressure is in the range 1.39–1.48 MeV/fm3 and the ratio
κ within 2.22–2.44. By inspecting the graphs (Fig. 7) of the
values of these nuclear state parameters in Ni isotopes one
notices that at A = 78 the symmetry energy S(A), as well
as its volume and surface components, SV and SS and the
pressure p0, reach maximum values while κ has a minimum
(κ = 2.22).

For the choice of the Bonn CD one-boson exchange poten-
tial [17] the calculated symmetry energy (using the CDFM
with the SLy4 force) is in the range of 25.4–25.9 MeV
with volume symmetry energy SV within 28.4–29.1 MeV and
surface symmetry energy SS in the range 14.1–15.6 MeV.
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Brueckner EDF (solid line) and BHF method with Bonn CD (dashed line) and Bonn B (dotted line) potentials from Refs. [16,17]. The weight
function |F (x)|2 used in the calculations is obtained by means of the densities derived within a self-consistent Skyrme-Hartree-Fock plus BCS
method with SLy4 (left panel), Sk3 (middle panel), and SGII (right panel) Skyrme interactions.

The pressure is in the range 3.1–3.7 MeV/fm3 and the ratio
κ within 1.8–2.0. As can be seen in Fig. 5, at A = 78 the
symmetry energy S(A), as well as its volume and surface
components, SV and SS and pressure p0, reach minimum
values while κ has a weakly expressed maximum (κ = 2.0).

In the case of the Bonn B one-boson exchange poten-
tial [16] the result for the symmetry energy (using the CDFM
with the SLy4 force) is in the range of 24.4–24.8 MeV, with
volume symmetry energy SV within 27.6 and 28.1 MeV and
surface symmetry energy SS within 14.9 and 16.0 MeV. The
pressure is in the range 3.1-3.6 MeV/fm3, while κ is within
1.8–1.9. One can see in Fig. 7 that at A = 78 the symmetry
energy S(A) as well as its volume and surface components,
SV and SS and pressure, p0 reach minimum values while κ

has a very weak maximum (κ = 1.9).
The smaller values of the symmetry energies of NM ob-

served in Fig. 5 at the range of densities relevant in the
integration in Eq. (27) lead to smaller values for the NSE
in the case of Bonn B and Bonn CD potentials from [16,17]
in comparison with the Brueckner potential in the Ni chain.
At the same time, the almost identical density dependence
of pNM

0 (ρ) of both realistic potentials (see Fig. 2) produce
similar values of p0 for the Ni isotopes being larger than the
Brueckner ones.

Here we note that the observed peaks in the NSE and its
volume and surface components at A = 78 (see Fig. 7) take
place for all choices of Skyrme interaction parametrizations
(SLy4, Sk3, and SGII). They are more pronounced for the
choice of the Brueckner energy density functional and they are
somewhat smoothed out and less pronounced for Bonn B and

Bonn CD one-boson-exchange potentials. We attribute this
peak to the abrupt nuclear density change that is characteristic
for double-magic nuclei, such as 78Ni. We note that these
results concern all three Skyrme forces used (SLy4, Sk3, and
SGII).

Similar peaks in the symmetry energy and its surface and
volume components as functions of the mass number are
predicted at the double-magic nucleus with A = 132 in Sn
(Fig. 8) (and additional peak at the semi-magic nucleus with
mass number A = 140 observed for the volume contribution
to the NSE) and no pronounced peak at the double-magic
nucleus with A = 208 in Pb (Fig. 9) for all three choices of
the parametrization of the Skyrme interaction. These peaks
are more pronounced for the Brueckner density functional
and much less pronounced for the employed Bonn B and
Bonn CD potentials [16,17]. In addition, the conclusions
drawn already on the magnitude of the NSE S and pres-
sure p0 for Ni isotopes using the three potentials and three
Skyrme forces are valid also for the cases of Sn and Pb
isotopes.

Here we would like to note that the observed maxima and
minima of the considered quantities on Figs. 7–9 had been
found and discussed in our previous works [26,27,29,37] (so-
called there “kinks”), studying the density dependence of the
NSE for Ni, Sn, and Pb isotopes (see, e.g., details in Ref. [27]).
They are related to the shell effects which are important at zero
temperature. As mentioned above, the observed behavior of S,
SV , SS , and κ can be attributed to the profiles of the density
distributions, particularly in the surface region. We mention
that even the small differences between the densities of the
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FIG. 8. Same as described in the caption of Fig. 7, but for Sn isotopes.

double-magic nuclei 78Ni, 132Sn (and also of the semi-magic
140Sn where the neutron shell 2 f7/2 is closed), as well as 208Pb,
and the neighbor nuclei lead through their derivative to larger
differences of the weight function |F (x)|2 [see Eq. (25)].
The latter is one of the main ingredients in the calculations
of the quantities studied in our work [see Eqs. (27), (28),
and (35)].

Here we would like to note that in some cases the observed
peculiarities (maxima and minima, the so called “kinks”) in
Figs. 7 and 8 are different, from one side, when the Bonn B
and Bonn CD potentials are used and, from other side, in the
case of the Brueckner EDF. These are, for example, the cases
of SS , κ , and p0 (with the SLy4 force) for Ni isotopes and
S, SS , κ , and p0 in Fig. 8 for Sn isotopes. Thus, within our
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method, in addition to the profiles of the density distributions,
the reason for the mentioned differences is also related to the
model used to calculate the nuclear matter properties that enter
the calculations of the corresponding finite nuclear properties
under study.

The values of the symmetry energy, of its volume and
surface components and their ratio obtained in our work and
shown above are, in general, compatible with those quoted
in the existing literature (see, e.g., Refs. [46–48,63,71]).
The latter are, for example, the empirical value of the sym-
metry energy 30 ± 4 MeV given in Refs. [71,72], the val-
ues of the volume symmetry energy (between 27 and 33.7
MeV) [46–48,63] and the surface symmetry energy (between
9 and 12 MeV) [48]. In addition, the published values of
κ extracted from nuclear properties, such as the isobaric
analog states and skins [46] and masses and skins [47], being
presented in Ref. [49], are 2.0 � κ � 2.8. Another range of
values of κ (1.6 � κ � 2.0) is also given in Ref. [49].

Considering in more details the comparison of our results
for the NSE and its components with the existent data men-
tioned above we note that the main differences exist in the
following cases: (i) for the surface component of NSE SS

between 14.1 and 14.6 MeV when the Bonn CD potential is
used and between 14.9 and 16.0 in the case of the Bonn B
potential, and (ii) for the NSE S (between 24.4 and 24.8 MeV)
when the Bonn B potential is used.

The values of the pressure obtained in our work for
the three chains of isotopes (Ni, Sn, and Pb) using Bonn
B and Bonn CD potentials from Refs. [16,17] are around
3 MeV/fm3. This value is close to the upper limit of the
range of 1.95-2.95 MeV/fm3 of theoretical estimates in other
Brueckner-Hartree-Fock calculations [41] with various ver-
sions of Argonne V18 potentials and is compatible with the
value p0 = 2.3 ± 0.8 MeV/fm3 extracted from measurements
of the strength of the pygmy dipole resonance in Sn and
Pb isotopes [73]. However, the value of p0 obtained in our
work when the Brueckner EDF is used is roughly twice less
than those obtained when we use Bonn B and Bonn CD
potentials [16,17] and than the already mentioned values in
Refs. [41] and [73].

In addition, the values of the nuclear pressure p0 obtained
in our approach with the same potentials for 208Pb nucleus
agree well with the recent results for the slope parameter L
between 44 and 58 MeV [74] that correspond to p0 between
2.35 and 3.09 MeV/fm3. The latter values obtained from most
recent EOS based on state-of-the-art chiral NN potentials
were extracted from the typical correlation between L and the
thickness of the neutron skin in 208Pb (between approximately
0.14 and 0.16 fm).

An extension to include TBF in finite systems, in particular
in medium and heavy neutron-rich nuclei, for analysis of EOS
properties of these nuclei in the framework of the BHF is
an important task. In this case, the application of the CDFM
could be justified a posteriori as a good choice to calculate
the finite nuclei properties also when including three-body
forces. Therefore, as a first step in this direction we give, as an
example, estimations for the symmetry energy, its volume and
surface contributions and their ratio, as well as the pressure,
in the case of Ni isotopes on top of BHF calculations by
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FIG. 10. The symmetry energy S, its volume SV and surface
SS components, their ratio κ and the pressure p0 for Ni isotopes,
obtained by means of the CDFM and different nuclear matter calcu-
lations using the Bonn B potential in the BHF method [54] (a) and the
Bonn CD potential in the in-medium T-matrix method [55] (b). Solid
(dashed) line corresponds to the results in the case without (with)
TBF contributions (see the text). The weight function |F (x)|2 used in
the calculations is obtained by means of the densities derived within
a self-consistent Skyrme-Hartree-Fock plus BCS method with SLy4
interaction.

including the corresponding self-consistent three-body forces.
For this purpose we employ, as examples, the considerations
from Ref. [54] where the BHF method with Bonn B potential
is used, as well as from Ref. [55] where the in-medium
T-matrix approach and Bonn CD potential is used. The role
of the TBF in the case of the Bonn B potential [Fig. 10(a)]
is to increase the symmetry energy S for Ni isotopes with
A = 74 - 84 from 26.92–26.57 MeV to 27.17–27.01 MeV,
to change SV from 30.00–29.52 MeV to 29.93–29.70 MeV,
to decrease SS from 14.33–14.32 MeV to 12.74–12.95 MeV,
as well as to increase κ from 2.09–2.06 to 2.34–2.29 and p0

from 3.34–3.30 to 5.08–5.42 MeV/fm3. We note the existence
of the maxima of S and SV for 78Ni in both cases of two-
and three- body forces and of SS in the case of two-body
forces. The behavior of the calculated characteristics for the
same Ni isotopes when TBF are included can be seen in the
case of the Bonn CD in Fig. 10(b). However, there is a bigger
increase of S from 27.62–27.19 MeV to 38.02–37.65 MeV, an
increase of SV from 31.57–30.98 MeV to 41.09–40.58 MeV, a
decrease of SS from 18.98–18.93 MeV to 13.92–13.86 MeV,
an increase of κ from 1.664–1.636 to 2.95–2.93, and strong
one of p0 from 2.86–2.911 MeV/fm3 to 6.31–6.49 MeV/fm3.
One can see maxima for two- and three-body forces at A = 78
in the cases of S, SV , and κ and a maximum of SS only in
the case of TBF. The differences between the results obtained
with the use of Bonn B and Bonn CD potentials plus TBF can
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be attributed to different EOS of nuclear matter (see Figs. 1
and 3) being stiffer for the Bonn CD potential. In addition,
we have to note the role of the weight function |F (x)|2 when
averaging the NM properties for both potentials plus TBF to
obtain the considered quantities for the Ni isotopes in the
CDFM scheme. Although the TBF affect considerably the
high-density behavior of the symmetry energy of nuclear mat-
ter, their role on the symmetry energy and related quantities
is not so large at subsaturation densities relevant for finite
nuclei. This is due to the fact that the CDFM weight function
|F (x)|2 in our approach has a bell form (see Fig. 6), which
is peaked at distances that correspond to a density of around
ρ ≈ 0.05–0.08 fm−3 and its width is within the density range
between 0.12 and 0.01 fm−3. Namely, in this region, where
(as can be seen from Figs. 1 and 3) the difference between
the values of SNM(ρ) in cases of both Bonn B and Bonn CD
potentials when the two- and three-body forces are used is not
so large. The values of the weight function are going to zero at
densities ρ > 0.12 fm−3 and ρ < 0.01 fm−3 and that is why
the differences between the values of SNM(ρ) in the cases of
two- and three-body forces for nuclear matter at such densities
are strongly reduced in finite nuclei.

V. CONCLUSIONS

In the present work we combine the nonrelativistic
Brueckner-Hartree-Fock method with the realistic Bonn B
and Bonn CD NN potentials with the CDFM within the
self-consistent Skyrme-Hartree-Fock plus BCS approach to
calculate the nuclear symmetry energy, its volume and surface
components and their ratio, as well as the pressure for three
isotopic chains of spherical nuclei (Ni, Sn, and Pb). We find
that the values of the NSE obtained in the BHF method
are consistent and within 1.0–2.0 MeV agreement with the
values obtained with the effective Brueckner potential. The
calculated volume and surface components of the NSE for
the Ni, Sn, and Pb chains obtained from the realistic Bonn
B and Bonn CD two-body potentials are in a reasonable
agreement with recently published estimations and available
experimental data.

The results of our calculations of the pressure using Bonn
B and Bonn CD potentials [16,17] turn out to be close to the
upper limit of other BHF calculations using various versions

of Argonne V18 potentials and are comparable with the data
from measurements of the strength of the pygmy dipole
resonance in Sn and Pb isotopes. At the same time, our values
of p0 in the case when the Brueckner EDF is used are roughly
twice less than those obtained when Bonn B and Bonn CD
potentials are used and the values in Refs. [41,73].

Complementary, in the present work we estimate within
our approach the effects of three-body forces on the sym-
metry energy, its components and their ratio, as a first step
on the example of Ni isotopes using the CDFM with BHF
approximation with the Bonn B and Bonn CD potentials plus
TBF [54,55]. It is shown that the bell form of the CDFM
weight function |F (x)|2 that is peaked around ρ ≈ 0.05–
0.08 fm−3 and whose values are going to zero for ρ > 0.12
and ρ < 0.01 fm−3, is the reason why the difference between
the symmetry energy (and related quantities) for nuclear
matter when the two- and three-body forces are used is much
smaller in the case of finite nuclei. The small effect when TBF
are included is better observed in the case of Bonn B three-
body potential, where the values of the studied quantities are
closer to the ones calculated by adopting purely the two-body
forces. In our opinion, the role of microscopic three-body
forces in the proposed approach to study the surface properties
of neutron-rich nuclei can be clearly revealed in the future
by applying, for instance, the latest version of the Barcelona-
Catania-Paris-Madrid nuclear energy density functional ([75]
and references therein), which is constructed upon the BHF
calculations in nuclear matter and is able to treat successfully
medium-heavy nuclei.
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