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Two new USD-type Hamiltonians, USDC and USDI, have been developed that directly incorporate Coulomb
and other isospin-breaking interactions. Starting from ab initio interactions, linear combinations of two-body
matrix elements were constrained by experimental energy levels in sd-shell nuclei. With this method, binding
energies and excitation energies of proton-rich nuclei in the shell can be added to the data set used in the fit.
USDC is based on the same renormalized G matrix used in the derivation of previous USD-type Hamiltonians,
while USDI is derived from in-medium similarity renormalization group (IMSRG) interactions. Both contain an
analytic Coulomb interaction with Miller-Spencer short-range correlations and an effective isotensor interaction.
Also presented are modifications to these interactions, USDCm and USDIm, that have had the Coulomb
interaction constrained to better reproduce the experimental b coefficients of the isobaric mass multiplet equation.
These Hamiltonians are used to provide new predictions for the proton-dripline and to examine isospin-level
mixing and other properties of sd-shell nuclei. An empirical expression for the Thomas-Ehrman shift in loosely
bound and unbound proton-rich states is presented, and several such states are examined.
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I. INTRODUCTION

The universal sd shell (USD) Hamiltonian [1,2] has pro-
vided realistic sd-shell (Ods;,, 0ds/2, 1s1/2) wave functions
for use in nuclear structure models, nuclear spectroscopy, and
nuclear astrophysics since its development thirty-five years
ago. Its successors USDA and USDB [3,4] were developed
in 2006 using an updated and expanded set of nuclear energy
levels. These USD-type Hamiltonians are defined by three
single-particle energies (SPE) and 63 two-body matrix ele-
ments (TBMEs) in isospin formalism, which are derived from
a renormalized G matrix and then fit to a set of binding ener-
gies and excitation energies. In this paper, we introduce four
new isospin-breaking USD-type Hamiltonians. The spiritual
successor, which is based on the same renormalized G matrix
sd-shell interaction (SDBA) [5], is USDC. Additionally, we
derive USDI which uses a new ab initio interaction based on a
set of in-medium similarity renormalization group (IMSRG)
Hamiltonians [6,7] that are nuclei-specific, but otherwise
the same fitting procedure is followed. Also presented are
USDCm and USDIm in which the Coulomb TBME are further
constrained.

The original USD Hamiltonian was obtained from a least-
squares fit modified with the singular value decomposition
(SVD) method of 380 energy levels with experimental errors
of 0.2 MeV or less (with most experimental errors being
10 keV or less) from 66 nuclei with N > Z. The root-mean-
square (rms) deviation between experimental and theoretical
energies was about 150 keV. USDA and USDB were devel-
oped by using the same fitting procedure as USD, with 30
linear combinations of one- and two-body matrix elements
varied for USDA and 56 for USDB, with the remaining linear
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combination fixed values determined by SDBA. The resulting
rms deviation between experimental and theoretical energies
were 170 and 130 keV for USDA and USDB, respectively.
An increased data set was used for USDA and USDB with
608 well-known energy levels in 77 nuclei with N > Z mainly
added data for the middle of the sd shell. The distributions
of states for these data sets can be seen in Figs. 1 and 2
in Ref. [3]. As these were developed as isospin-conserving
Hamiltonians, the energies used in the fit had to be include
Coulomb energy corrections [3]. These corrections were ob-
tained from energy differences of isobaric-analog states near
the N = Z line.

There exist isospin nonconserving additions to USD con-
sisting of a Coulomb interaction, an isovector term, and an
isotensor term [8,9]. These additions were fit to experimental
b and c coefficients of the isobaric multiplet mass equation
(IMME), without modifying the underlying USD interaction.
The addition from Ref. [8] is often used with USDB to
perform configuration-interaction calculations and is referred
to as USDB-CD. While USDB-CD is quite good at predicting
excited energy spectra for sd-shell nuclei, it does a poor
job at determining absolute ground-state binding energies.
Lack of reliable binding-energy calculations results in poor
predictions for separation energies.

We are therefore motivated to extend the derivation of
USD-type Hamiltonians to include isospin-breaking interac-
tions directly. Isospin formalism restricts the TBME so that
the wave functions produced by the interaction have good
isospin, thus the inclusion of isospin-breaking terms in the
Hamiltonians requires us to move to proton-neutron (pn)
formalism. We introduce groupings of TBME to restrict the
total number of parameters and keep our results physically
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FIG. 1. Number of energy levels in each sd-shell nuclei used in
the data set for constraining the new Hamiltonians.

reasonable. For the first time, binding energies and excitation
energies in proton-rich nuclei are able to be included in the fit
and no a priori Coulomb corrections to the data are necessary.
We are able to consider 854 states in 117 nuclei, and their
distribution over sd-shell nuclei is shown in Fig. 1. In the
Sec. II we discuss the experimental data in more detail. In
Sec. III we review the SVD method for the least-squares
fit and explain the new additions to the fitting procedure
necessary for the charge-dependent terms. In Sec. IV we
present the results for the new interactions. Section V covers
the modeling of the Thomas-Ehrman shift for specific cases
in the sd shell that were excluded from the fit. Comparisons
of the interactions are done in Sec. VI. Results for separation
energies and isospin-level mixing are discussed in Sec. VL.

II. DATA SET

In the last update of the “USD” Hamiltonians in 2006,
608 levels in 77 nuclei were used in N > Z nuclei in the
sd shell. This included the 77 ground-state energies and 531
excited-state energies. The distribution of these states in the
shell can be seen in Fig. 2 of Ref. [3]. The restriction to
neutron-rich nuclei was made because USDA and USDB
were made in isospin formalism, which assumed that mirror
nuclei were identical apart from a simple Coulomb energy
correction. Also for this reason, 7 = 1 isobaric-analog states
in the N = Z nuclei were excluded from the data set. These
TASs that fit our other criteria described below are included in
the updated data set.

By changing our model space to the pn formalism, we now
allow all well-known sd-shell states in nuclei with 8 < N <
20 and 8 < Z < 20, to be used in the data set to constrain our
Hamiltonians. This expanded data set includes ground-state
energies for 117 nuclei, with at least one excited state included
for 107 of those nuclei. Ground-state binding energies used
are taken from the 2016 atomic mass evaluation of Wang et al.

[10] and taken relative to that of '°Q,
BE(A,Z) = BE(A, Z) — BE('°0). (D

Excited-state energies are taken from the ENSDF database.
The number of levels with experimental errors less than
0.2 MeV included in the data set from each nucleus are shown
in Fig. 1. Generally, excited states were only included if the J”
for all lower states are known. This is done to ensure that only
states with sd-shell configurations are included. So-called
“intruder states” that involve orbitals outside of our model
space are omitted from the data set. These typically occur at
high excitation energies where the experimental level density
is much higher than the theoretical level density.

Recently, an extensive measurement of the mirror energy
differences in 2’Al and ?’Si was conducted by Lotay [11],
providing 43 well-known mirror pairs inthe A =27, T = 1/2
isobaric pair.

A collection of nuclei with N = 19, 20 and Z = 10-12 are
in the “island of inversion” [12]. The ground states of these six
nuclei are bound by ~2 MeV more than expected in sd-shell
configuration-interaction calculations. This is understood to
be due to an inversion of the standard level scheme and
requires extension to the pf shell to be properly calculated
[12]. Ground states and excited states for these nuclei are
therefore excluded from the fit.

Several states that have a large Thomas-Ehrman shift
(TES) are excluded from the fit. A discussion of these states
and analysis of their TES is found in Sec. V.

III. FITTING PROCEDURE AND UNCERTAINTY
QUANTIFICATION

The Hamiltonians used in configuration-interaction cal-
culations can be written as a sum of one- and two-body
operators:

H=Zeaﬂa+
a

where 7i, is the number operator for the spherical orbit a with
quantum numbers (1, l,, j,) and

Trr(abscd) =Y Afyrr (ab)Apurr.(cd), 3)
MT.

D D Vir(abied)Tir(abied),  (2)

a<b,c<d JT

is the scalar two-body density operator for nucleon pairs in the
orbits a, b, ¢, and d coupled to the spin quantum number JM
and isospin quantum numbers 7' 7.

In this work, we separate the Hamiltonian into three com-
ponents:

H = Hy + Hine + He, 4

where Hj is the isospin-conserving strong interaction, Hinc
is the isospin-breaking portion of the strong interaction, and
Hc is the Coulomb interaction. This allows us to separate the
eigenvalues Xy of the full Hamiltonian with eigenvectors ¢
nto

Ak = (x| H |¢r)

(| Hy @) + (dx| Hine o) + {Px| He 1)
A9 4 ANC )6 5)
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The method of fitting used in this work has three levels
of sensitivity. First, Hy was fit by using all available energy
levels in the shell, while H- and Hinc are held constant at
reasonable initial values. Second, H- was modified in the case
of USDCm and USDIm to reproduce the experimental linear
(b) coefficients in the IMME. And lastly, the isotensor strength
modification in Hinc, which is the change in strength for the
T =1 pn TBME, was set to minimize the rms deviation of
the quadratic (c) coefficients of the IMME. After these steps,
we once again fit Hy while holding H¢c and Hyne constant at
the new constrained values. We explored adding an isovector
component to the interactions but found that it could not be
well constrained by the data set and did not significantly
impact the results of the fits.

As in the derivation of USDA and USDB, a reformulation
of the least-squares fit in terms of uncorrelated linear combi-
nations through a SVD of the error matrix is used to constrain
the SPE and TBME to experimental energies. The strength
of this method is in the separation of well-determined and
poorly determined linear combinations, allowing us to replace
those not-well-constrained values by using a starting ab initio
Hamiltonian. A full explanation of this method can be found
in Ref. [3].

Briefly, the optimization of the interaction with N, pa-
rameters, p = {p1, ..., pr} (the SPE and TBME), that are
adjusted to fit Ny experimental energies E.,, through the
minimization of the chi-squared function:

N (EE, — )
x2<p>=2<‘”T : 6)

k=1

where o* are the adopted errors corresponding to the experi-
mental energies and include both experimental and theoretical
errors. To minimize the arbitrariness of the selection of the
theoretical error, the adopted errors can be tuned so that the
chi squared function is normalized to the number of degrees
of freedom Ngof = Ny — N, at the minimum py.

A new addition to these isospin-breaking USD-type Hamil-
tonians is a statistical uncertainty for each of the fitting
parameters. This was done following the prescription of
Ref. [13], first defining the covariance matrix C in terms of the
Jacobian J:

1 OE},
C~J™NH™, J,=——2| @)
o' 9pa

Po

Statistical uncertainties for the fitted parameters can then be
calculated as A p, = +/Cue. Statistical uncertainties for calcu-
lated observables can also be determined using the covariance
matrix.

Recently, uncertainty quantification of shell-model param-
eters in the sd shell was carried out by using principal compo-
nent analysis in Ref. [14].

A. The isospin-conserving interaction

Some changes to the SVD fit method were necessary to
transition to the pn formalism. It was necessary to group the
strong force TBME that would be identical in an isospin-
symmetric interaction. For example, the following TBME in

isospin formalism transforms into three equal (up to a phase)
TBME in pn formalism: a proton-proton term, a neutron-
neutron term, and a proton-neutron term:

Vo,1(k, ks k, k) — Vo,1(pk, pk; pk, pk)
Vo,1(pk, nk; pk, nk)
Vo.1(nk, nk; nk, nk), ®)

where the label k represents an sd-shell orbit (s1/2, ds/2, or
d3/») and the prefixes p and n indicate whether it is a proton or
neutron orbit, respectively. We therefore want these terms in
Hj to evolve together during the fit. This takes the 202 TBME
in Hy and puts them into 63 TBME groups.

Since we are not fitting the entire Hamiltonian at once,
and instead are doing so in stages, we must also subtract the
contributions to the energy eigenvalues due to Hie and He
from the experimental energies in the data set. This is because
we wish to minimize the quantity

N k 2 N [ ¢k 0\ 2

EX  — EE =20

CEX ) = ) ©
k=1 Gexpt k=1 Uexpt

where EX

expt are the as-

. . k

are the experimental energies, oy
. Fk _ gk _ 3INC _ 4C ; i

sociated errors, and Eq,, = Eg . — Ay Ay 1s the effective

experimental energies used in the first stage of the fit.

B. The Coulomb interaction

Three sources were considered for the two-body Coulomb
interaction. The first is an analytic Coulomb potential in
the simple harmonic-oscillator basis. A benefit of harmonic-
oscillator wave functions is the simplification of the separa-
tion into relative and center-of-mass coordinates. Using this
potential requires that /iw have a mass dependence ~41 A~!/3
to adequately reproduces the experimental rms charge radii.
The consequence of this is an overall mass dependence for
the Coulomb TBME of (1/r) ~ (hw)'/? ~ A~1/°,

We also use a more realistic basis by using a Skyrme
energy density functional to calculate a two-body Coulomb
interaction. In both cases, corrections to the Coulomb po-
tential to account for short-range correlations and the finite
size of the proton can be added. This will be discussed
more in Sec. IV. Lastly, we take the Coulomb component of
the IMSRG Hamiltonians for nuclei with N = Z in the sd
shell. The Coulomb contribution to the IMSRG TBME was
determined by taking the difference of the pp and nn T =1
terms. We then take an average of these IMSRG Coulomb
TBME as another H to test in the fit.

The b coefficient of the IMME is due primarily to the
Coulomb force. Therefore, the b coefficient rms deviation
between experiment and theory calculations is a good test
to differentiate these three interactions. In the data set, there
are 206 mirror energy states (38 ground-state pairs, and 168
excited-state pairs) with experimental errors <0.2 MeV. It is
important to exclude those pairs which have a large Thomas
Ehrman shift (TES). Due to different radial extents of the s
and d orbitals, the energies of isobaric mirror states are shifted
down by the Coulomb interaction [15,16]. These excluded
pairs will be discussed in Sec. V.
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Just as a SVD fit was done for H,, the method can be
applied to the 30 TBME and 3 SPE in H¢ to further reduce
the b coefficient rms deviation. This requires reframing the
minimization parameter to

Ny bk bk 2
ex fi
XN=y ("U—k> : (10)
where

_ENT.=T)—ENT.=-T)
o 2T

bk

: Y

for a pair of states in mirror nuclei.

C. The isotensor interaction

Isospin symmetry is not broken solely by the Coulomb
interaction, it is also only a partial symmetry for the strong
nuclear Hamiltonian. Nucleon-nucleon scattering data have
shown that the V,,, strength is slightly larger than V,,, and
further that V,,, is greater than the average of V,, and V,,.
This has previously been approximated as a 1% increase in
the T = 1 pn two-body matrix elements and a 1% decrease in
the T = 1 nn and pp two-body matrix elements. For this work,
the same isotensor effect can be captured by simply increasing
the T = 1 pn matrix elements by

V) (om) = (1 +OlT)(VJ,l(PP)-I-Vj,l(ml)) (12)

2

with a7 being set initially to 0.02 or 2%. This is also con-
sistent with the results of Ref. [8]. In this work, we also take
Vpp = Vin in H.

While the b coefficient of the IMME is sensitive to the
Coulomb interaction, the quadratic (c) coefficient is sensitive
to the asymmetry of the pn interaction to the strong com-
ponents of the nn and pp interactions. Figure 2 shows that
the odd-odd to even-even oscillation of the ¢ coefficients for
the ground-state 7 = 1 triplets in the sd shell. Introducing
Coulomb can only partially explain the size of the oscillation;
the addition of an isotensor component creates much better
agreement with experiment.

The values of the V;7-1(5,5;5,5) TBME are —2.5601
MeV (J =0), —0.9894 MeV (J =2), and —0.1982 MeV
(J = 4) for the strong (isospin-conserving) interaction and
0.4386 MeV (J = 0), 0.3852 MeV (J = 2), and 0.3612 MeV
(J = 4). As J increases, there is a much steeper drop-off in
the isospin-conserving TBME compared with the Coulomb
TBME. And as the isotensor interaction is modeled as propor-
tional to the isospin-conserving TBME, the same drop-off is
found in the isotensor TBME.

If there were no J dependence in the TBME, there would
be no oscillations in Fig. 2. The weak J dependence in the
Coulomb TBME result in small oscillations. It is the strong J
dependence in the isotensor interaction that creates the large
oscillations in the ¢ coefficients.

400 T T T T T T T T T T T
350 - —
2 300 .
= L .
1=
QL 250 1
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- - Coulomb
150 = —— Coulomb + isotensor 1
- e exp 4
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mass number

FIG. 2. The ¢ coefficients of the lowest lying 7" = 1 sd-shell
triplets. The dashed line shows the contribution to the ¢ coefficients
from the Coulomb interaction. The solid line shows the combined
contribution from the Coulomb interaction and a 2.2% increase in
the T =1 pn two-body matrix elements. Experimental values are
shown as filled circles.

IV. RESULTS FOR THE NEW HAMILTONIANS

The calculations for the wave functions and energies were
carried out with NuShellX. One iteration for the strong inter-
action fit took around 2 hours on a multicore desktop PC.

The criteria used to include experimental data in the fit is
described in Sec. II. These allow us to consider 854 states in
117 nuclei with errors of less than 0.2 MeV. The uncertainties
used in Eq. (6) show the experimental errors ajxpt added in
quadrature with a theoretical error set to 0.14 MeV,

(0" = (okp) + ()", (13)

in order to normalize the x> to the number of degrees of
freedom.

As was done for the previous USD-type Hamiltonians,
the SPE are taken to be mass independent. While a mass
dependence was explored for the SPE, it does not have a
significant effect on the rms deviations because changes in the
TBME can compensate.

The TBME have a mass scaling of the form

P
Vir(ab;cd)(A) = (%) Vir(ab;cd) (A = 18). (14)

For the matrix elements in Hy and Hyne, we take p = 0.3 as
described in Ref. [1,3]. The Coulomb TBME scale analyti-
cally with p = 1/6 as previously shown.

The poorly determined linear combinations of the TBME
and SPE were first constrained either with the renormalized
G matrix Hamiltonian SDBA, or an average of the N =Z
sd-shell IMSRG interactions with the Coulomb matrix ele-
ments subtracted out to extract the strong component of the
TBME. Using SDBA as the constraining interaction resulted
in the USDC Hamiltonian, and replacing SDBA with IMSRG,
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FIG. 3. The rms deviations as a function of the number of fitted
linear combinations in the SVD fit for the strong interaction. In
black filled circles are the results for USDC, with the blue lines and
open circles showing the results for USDI. The solid lines show the
energy rms deviation between experimental and theoretical sd-shell
energies. The dashed lines show the rms deviation between the
two-body matrix elements between the resulting Hamiltonians and
the ab initio interactions that they are based on.

resulted in the USDI Hamiltonian. Variants of USDC and
USDI will be discussed later in the paper.

The ISMRG interactions are nucleus dependent. They can
have different zero-body terms (the binding energy of the
core) and some apparent mass dependence for the SPE. We
performed fits allowing a variable zero-body term, and with
mass-dependent SPE using the IMSRG for the ab initio
Hamiltonian. These resulted in either no improvement or a
decrease in fit quality. Therefore, we keep a constant zero-
body term and SPE for the fits.

In this first stage of the fit there are a total of 69 parameters:
the 63 groupings of the isospin-conserving matrix elements,
the three SPE due to the strong interaction, and the three SPE
due to the Coulomb interaction. The Coulomb TBME were
held constant up to the mass scaling, and the isotensor strength
was set initially to 2%.

For the first iteration, the USDB matrix elements in pn
formalism were used for the strong interaction. Starting at
n =135 linear combinations being allowed to vary and the
remaining poorly determined linear combinations being re-
placed with the ab initio values, we increased n every three
iterations until we reached 56 varying linear combinations as
used in the derivation of USDB. This was done to allow for
slow evolution of the Hamiltonians through parameter space
and allow the two different ab initio backgrounds to search for
different minimums. We then iterated until the Hamiltonian
parameters converged to the level of about 10 keV. Results of
this SVD fit can be seen in Fig. 3, showing the drop in energy
rms deviation as the number of linear combinations allowed
to vary is increased, along with an increase in the Hamiltonian
rms deviation between the ab initio Hamiltonian used and the
resulting fitted Hamiltonians.

The rms deviation between experimental and theoretical
energies,

1
v 2 (B — EL) as)

1

N
rms =

k=
for USDC and USDI are 139 and 140 keV, respectively. USDC
and SDBA have a similar rms deviation between their TBME
to that of USDB and SDBA, about 390 keV.

The rms deviation between the USDI and IMSRG TBME
is somewhat higher, at 560 keV. Because the IMSRG Hamilto-
nian is an average of several nuclei-specific IMSRG Hamilto-
nians, it is not too surprising that the fit diverges more so than
it did for SDBA. It is notable that, even though the USDC and
USDI were allowed to slowly converge from different starting
values, they have a rms deviation for their TBME of 150 keV.
The TBME and SPE, and their statistical uncertainties, of
these Hamiltonians as well as two others to be discussed can
be found in Tables I-III.

We now have two new Hamiltonians based on two different
ab initio models: USDC from SDBA, and USDI from IMSRG.
A visual comparison between the differences of the isospin-
conserving TBME in USDC and USDI and the uncertainty
of the fit for those parameters are found in Fig. 4. It is clear
from the figure that the differences in USDI and USDC are
most prominent in the most poorly constrained terms (as
expected), and so these terms rely more heavily on the ab
initio interaction chosen at the beginning. However, we still
have the isospin-breaking interactions to consider.

The largest source of isospin symmetry breaking in the
nucleus is from the electromagnetic interaction between the
protons. We investigated the effects of three distinct sets
of Coulomb TBME. The IMSRG Coulomb interaction re-
sulted in a b rms deviation of 72 keV for our set of mir-
ror states. It was found that for the analytic potential, both
the Skyrme energy density functional basis and the simple
harmonic-oscillator basis resulted in only minor variations of
the TBME and produced rms deviations of around 67 keV.
Based on these results and to aid in reproducibility, the simple
harmonic-oscillator basis was chosen as the source for the
two-body Coulomb interaction.

Two corrections to the Coulomb potential were then an-
alyzed to try and improve the b rms deviation. The first is
to include the short-range correlations (SRC) of Miller and
Spencer [17] through the form factor

Fsre(r) =1 —¢" (1 = Brd), (16)

witha = 1.1 fm~2 and 8 = 0.68 fm~2. It should be noted that
the IMSRG Coulomb matrix elements include this correction
in the renormalization.

The finite size of the proton (FSP) can be accounted for by
using the form factor from Wiringa [18],

Frsp(r)=1—e¢"[1 = (14 x4+ X+ £2°)]. (A7)

with x = br, where b = 4.27 fm~!.
Interestingly, both of these modifications to the underlying
analytic potential produce remarkably similar TBME when
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TABLE I. Comparison of ab initio and fitted isospin-conserving TBME for the sd shell in isospin formalism with 7 = 1 (in MeV). Note
that v(abed; JT) = Vyr(ab; cd) (A = 18) The orbits are labeled by 1 = 5,2, 3 = d3,, and 5 = ds/,. The ATBME column shows the statistical

uncertainties for USDI which are representative for all of our new Hamiltonians.

Matrix element SDBA USDB USDC USDCm IMSRG USDI USDIm ATBME
v(5555;01) —2.5418 —2.5598 —2.5601 —2.5700 —2.5284 —2.3690 —2.3796 0.0932
v(5533;01) —2.9807 —3.1025 —-3.1774 —3.2194 —4.6033 —3.5295 —3.5705 0.1666
v(5511;01) —1.0885 —1.5602 —1.5666 —1.5843 —1.5239 —1.6163 —1.6341 0.0621
v(3333;01) —1.1624 —1.8992 —1.8877 —1.9070 —0.5971 —1.8648 —1.8826 0.0921
v(3311;01) —0.7911 —1.0150 —1.0370 —1.0578 —1.1893 —0.9147 —0.9328 0.0849
v(1111;01) —2.0617 —1.6913 —1.6433 —1.6622 —1.3890 —1.6762 —1.6962 0.0794
v(5353;11) —0.4249 0.6556 0.6030 0.6126 0.6542 0.4130 0.4265 0.1190
v(5331;11) —0.0304 —0.0456 —0.1531 —0.1704 0.1021 —0.2856 —0.3247 0.2107
v(3131;11) 0.3994 0.5158 0.5638 0.6042 0.3115 0.6230 0.6655 0.0646
v(5555;21) —0.9932 —1.0007 —0.9894 —1.0151 —0.9087 —0.9777 —1.0076 0.0409
v(5553;21) —0.1394 —-0.2137 —0.2289 —0.2254 —0.3810 —0.1917 —0.1924 0.0478
v(5551;21) —0.7957 —-0.9317 —0.9274 —0.9579 —0.9790 —0.8992 —0.9241 0.0478
v(5533;21) —0.9399 —1.2187 —1.1421 —1.1623 —1.0623 —1.2787 —1.3037 0.1450
v(5531;21) 0.8477 0.8866 0.9137 0.9432 1.0809 0.9979 1.0254 0.0800
v(5353;21) —0.4043 —0.1545 —0.0041 —0.0300 0.4747 0.1943 0.1624 0.1023
v(5351;21) —0.2469 —0.3147 —0.3128 —0.3166 0.1527 —0.3647 —0.3682 0.0603
v(5333;21) —0.9871 —0.5032 —0.7064 —0.7041 —0.7988 —0.8317 —0.8325 0.1020
v(5331;21) 0.6449 0.3713 0.4256 0.4292 0.8469 0.3580 0.3515 0.0910
v(5151;21) —1.2335 —0.9405 —0.9690 —0.9939 —0.8554 —0.9738 —1.0042 0.0426
v(5133;21) —0.6317 —-0.3173 —0.3807 —0.3791 —0.6018 —0.2549 —0.2519 0.0962
v(5131;21) 1.4633 1.6131 1.5668 1.5727 1.4230 1.6142 1.6209 0.0774
v(3333;21) 0.1427 —0.0974 —0.0615 —0.0422 —-0.1102 —0.0852 —0.0626 0.0282
v(3331;21) 0.1787 0.3494 0.3135 0.3247 0.2766 0.3313 0.3427 0.0474
v(3131;21) —0.2767 —0.3034 —0.3338 —0.2940 —0.0167 —0.3463 —0.3048 0.0476
v(5353;31) 0.5050 0.7673 0.6476 0.6551 0.2937 0.6708 0.6802 0.0918
v(5351;31) —0.1021 —0.5525 —0.4971 —0.4956 —0.2474 —0.4647 —0.4656 0.0536
v(5151;31) 0.2781 0.6841 0.6725 0.6690 0.6042 0.6536 0.6493 0.0536
v(5555;41) 0.0356 —0.2069 —0.1982 —0.2087 —0.0631 —0.1906 —0.2032 0.0206
v(5553;41) —1.4942 —1.3349 —1.3256 —1.3133 —1.4737 —1.3335 —1.3215 0.0339
v(5353;41) —1.6941 —1.4447 —1.3904 —1.4069 —0.7751 —1.4937 —1.5106 0.0716

applied separately. When applied together, the TBME de-
crease noticeably.

With these three options (SRC, FSP, and SRC + FSP) we
can once again check the b rms deviations. Each produces
a moderate improvement of a few keV to the rms deviation.
Given this and for simplicity, we chose to include only
the Miller-Spencer short-range correlations to the potential.
This Coulomb potential with SRC in the simple harmonic-
oscillator basis was used to produce the Coulomb TBME used
in USDC and USDI, and will be referred to as Coulomb w/
SRC.

The deviations between experiment and theory for the
ground-state and excited-state energies are shown in Fig. 5.
Included in the figure are eight points that are not used in
the fit. These are the six island-of-inversion ground states and
the ground states of >*?8F. The figure shows the results for
USDI because at this scale there is no significant difference
between USDI and USDC. For each element, the states in
neutron-deficient isotopes are to the left in the figure and those
states in neutron-rich isotopes are to the right.

The ground states of the six nuclei in the island of inversion
(29’30Ne, 30.31Na, and 31’32Mg) that were not included in the
fit are under-bound compared with experiment by 1-2 MeV,

as shown in the figures. Deviations this large demonstrate the
need to expand into the pf model space in order to account
for their binding energies [12].

For the new Hamiltonians the neutron-rich fluorine iso-

topes (A = 25, 26) used in the fit show a clear pattern of the
theory being overbound when compared with experiment. The
ground states of >"28F are significantly overbound as well,
but due to their larger experimental errors of 0.39 MeV they
have no impact in the x? minimization. The fit was done
with artificially suppressed errors for these fluorine isotopes
to see if the Hamiltonian could be forced to reproduce the
experimental values without damaging the rest of the fit.
The result was that these isotopes could not be forced to
these values without harming the fit. The need for further
more precise experimental measurements of the neutron-rich
fluorine isotopes is clear.

With a Coulomb interaction chosen, we now examine
whether further modifying the interaction through a secondary
SVD fit can improve our results. States with large TES that
are near proton separation energy are excluded from this fit
and discussed in Sec. V. A “residual” TES that is present
throughout the shell could be accounted for with a modified
Coulomb interaction. Such a modification could also be due to
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TABLE II. Same as Table I but for the 7 = 0 isospin formalism strong TBME.

Matrix element SDBA USDB USDC USDCm IMSRG USDI USDIm ATBME
v(5555;10) —1.4315 —1.3796 —1.4302 —1.4317 —1.7115 —1.3929 —1.3981 0.1449
v(5553;10) 3.1790 3.4987 3.3480 3.3348 4.8436 3.5507 3.5267 0.1210
v(5533;10) 1.7666 1.6647 1.7134 1.7204 1.5594 1.1894 1.2067 0.4152
v(5531;10) 0.3628 0.0272 0.2639 0.2854 —0.0049 0.3140 0.3424 0.1734
v(5511;10) —0.8749 —0.5344 —0.5303 —0.5304 —1.0724 —0.3500 —0.3566 0.1734
v(5353;10) —6.5104 —6.0099 —5.9698 —5.9608 —7.4545 —5.6815 —5.6813 0.1595
v(5333;10) —0.0200 —0.1922 —0.2165 —0.2261 0.3890 —0.2293 —0.2489 0.1747
v(5331;10) 1.7250 1.6231 1.6755 1.6867 2.8536 1.6872 1.7019 0.1224
v(5311;10) 1.8887 2.0226 1.9722 1.9991 2.8861 2.1688 2.1917 0.1049
v(3333;10) —1.3404 —1.6582 —1.6712 —1.6859 —0.0999 —1.5575 —1.5736 0.0947
v(3331;10) —0.8402 —0.8493 —0.6838 —0.6716 —1.2388 —0.7949 —0.7795 0.0893
v(3311;10) 0.0405 0.1574 0.1022 0.0821 —0.2347 0.2309 0.2189 0.1387
v3131;10) —3.3056 —4.0460 —3.8748 —-3.9136 —3.7679 —4.0006 —4.0260 0.0912
v3111;10) —0.2441 —0.9201 —0.9583 —0.9417 —1.0430 —1.0963 —1.0773 0.1054
v(1111;10) —3.3313 —3.7093 —-3.6510 —3.6842 —3.0068 —3.5766 —3.6058 0.0944
v(5353;20) —4.5004 —4.2117 —4.2675 —4.2872 —5.1309 —4.5096 —4.5269 0.1454
v(5351;20) —1.2555 —0.6464 —0.7692 —0.7537 —1.6854 —0.8428 —0.8296 0.0986
v(5331;20) —1.4793 —0.4429 —0.2953 —0.2881 —1.6810 —0.3153 —0.3067 0.1317
v(5151;20) —0.4109 —0.3154 —0.3329 —0.3060 —0.4944 —0.3223 —0.2941 0.1331
v(5131;20) —2.7050 —2.5110 —2.4310 —2.4331 —2.6000 —2.2262 —2.2209 0.2112
v(3131;20) —1.3883 —1.8504 —1.9103 —1.9525 —1.6706 —1.8622 —1.9173 0.0860
v(5555;30) —0.8478 —1.6651 —1.5969 —1.5745 —1.2752 —1.6701 —1.6343 0.0766
v(5553;30) 2.1769 2.3102 2.2564 2.2574 2.0175 2.1962 2.1934 0.1175
v(5551;30) —1.4992 —1.2167 —1.1785 —1.1770 —2.1032 —1.1734 —1.1821 0.0652
v(5533;30) 0.8466 1.1792 1.3317 1.3410 0.2661 1.1406 1.1452 0.1928
v(5353;30) —1.0712 —1.2124 —1.2549 —1.2850 —1.2610 —1.5308 —1.5592 0.1455
v(5351;30) 1.0367 1.2526 1.2484 1.2324 1.5017 1.2434 1.2349 0.1455
v(5333;30) 2.1625 1.4300 1.1584 1.1576 2.3693 1.2987 1.2928 0.1462
v(5151;30) —3.6000 —4.1823 —4.1134 —4.1194 —-3.9772 —4.1631 —4.1546 0.0650
v(5133;30) 0.1668 0.0968 0.1126 0.1224 0.0608 —0.1896 —0.1566 0.2127
v(3333;30) —2.9026 —2.9660 —2.9373 —2.9548 —2.8184 -3.0116 —3.0279 0.0444
v(5353;40) —4.4330 —4.6189 —4.5027 —4.4952 —4.5492 —4.0792 —4.0785 0.1536
v(5555;50) —3.6858 —4.3205 —4.3439 —4.3370 —4.0372 —4.3665 —4.3562 0.0342
changes in radii for nuclei in excited sates. Since the Coulomb < 06 ; | . I T 7
energy goes as 1/R, a 1% increase in the radius would reduce g .7
the binding energy by about 110 keV. Any model space - | ° _—
truncations would also be captured. '-'EJ L ’

The results of the secondary SVD fit can be seen in Fig. 6 @ R L’
showing the rms deviation of the b coefficients and Coulomb 5 041 L .
Hamiltonian parameters as a function of the number of varied 7] . L7
. o . . . >
linear combinations. A “modified” Coulomb interaction was | L . L §
chosen by allowing nine linear combinations to vary in the fit. g : .’
This was motivated by a drop in the b rms deviation and the @ 02 b .. & ’ |

8 . v e ’.'.

TABLE III. Comparison of fitted strong interaction SPE. The (3 .":"' ¢ |

orbits are labeled by 1 = 15/, 3 = 0d32, and 5 = 0ds . - .‘:,. .
3 L
Interaction €5 & € 0.0 Lo, , 3, o | !
0.0 0.2 0.4 0.6

USDB ~3.9257 2.1117 ~3.2079 fit uncertainty (MeV)
USDC —3.9521(194) 1.8943(1132) —3.1577(549)
USDCm —3.8958(189) 1.8887(1134) —3.1387(538) FIG. 4. Absolute differences between the isospin-conserving
USDI —3.9363(195)  1.8569(1117) ~ —3.1267(553)  strong TBME in USDC and USDI plotted against the ATBME
USDIm —3.8780(190) L8517(1117) —3.1111(541) obtained from the correlation matrix for USDI.
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FIG. 5. Deviations between experimental and theoretical ener-
gies for USDI. The ground-state binding-energy deviations are plot-
ted on the top, with the excited-state energy deviations plotted on the
bottom. The crosses show the deviations for the “island of inversion”
nuclei. The fluorine isotopes with large deviations for their ground-
state binding energies are discussed in the text.

first significant change in the TBME and SPE occurring at this
point.

The additional data for the A = 27, T = 1/2 isobaric pair
provided by Lotay [11] allows us to compare our modified
Coulomb interaction to experiment. It was found that the devi-
ation from experimental b coefficients increased as a function
of excitation energy for this mirror pair, with an overall rms
deviation of 104 keV. After refitting the Coulomb interaction
with these additional data points, this problem was reduced
with a new rms deviation for the A = 27 data of 48 keV. This
improvement can be seen in Fig. 7.

The TBME of this new fitted Coulomb are compared with
the Coulomb w/ SRC TBME in Table IV and Fig. 8. Simi-
larly, the SPE are compared in Table V. The fitted Coulomb
TBME and SPE are used in USDCm and USDIm. These
additional Hamiltonians produce similar plots to Fig. 5 at that
scale.

For each of our four new Hamiltonians, we adjusted the
isotensor strength increase o7 from 0% to 4% to find the value
that produced the lowest c-coefficient rms deviation for 26
isobaric multiplets in the data set. The set of multiplets were
composed of 11 triplets (T = 1), 10 quartets (T = 3/2), and
5 quintets (7" = 2). All multiplets used involved the ground
states of the |T;| = T nuclei.

This search determined that the ideal a7 is 2.2% for USDC
and USDI which use Coulomb w/ SRC, which agrees well

100||||||||||||||||||||||||||||
L [
- 1 -
eeoe
[ B
'
s Br coeet ]
3 *d 4
~—" L '.' -
s [ - ]
T 50 .
(2] r 1
S i : :
- ' —
25_ ' — brms 4
[ et - - TBMEms
- ' -
0 [ 2 X 2 W N N N A

0 5 10 15 20 25 30
varied linear combinations

FIG. 6. Results of the SVD fit for the Coulomb interaction. The
solid line shows the rms deviation between experiment and theory of
the IMME b coefficients. The dashed line shows the interaction rms
deviation. The vertical black line at nine varied linear combinations
shows our chosen “modified” Coulomb interaction.

with our initial setting of 2% based on nucleon-nucleon scat-
tering experiments and is consistent with previous theory. For
USDCm and USDIm, which use the fitted Coulomb, we find
that the minimizing ar is 0.8%. This lower isotensor strength
increase indicates that the fitting of the Coulomb parameters
is capturing some of the effects of the isotensor component of
the interaction.

Figure 9 shows the theoretical and experimental ¢ coeffi-
cients used to constrain «7. It is clear from the figure that

O3 T T T T T T T 7T
_ [ < with A=27 data . |
> - o without A=27 data .
= ° o
= 015 ° o ° -
je] L) o
-— o ()

g B %, b0 60 OS.&Q:.OO 4
3 | oo ° L °s °, o* 4
E o O...o O:
2 9 ° ° % ° ° o
:..Q__J 00 < < ° hd
D . . 8 g
o L . R . J
2 | :
O

_0.15 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1

0 1 2 3 4 5 6 7 8 9

27Q;i
E,(37Si) (MeV)

FIG. 7. b-coefficient deviations for the A = 27, T = 1/2 isobaric
pair plotted against the experimental excitation energy of 2’Si. The
deviation is defined as Ab = beyy — by
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TABLE IV. Comparison of Coulomb TBME. All orbits are for
pI'OtOIlS, with 1 = 1S1/2, 3= 0d3/2, and 5 = 0d5/2.

Matrix element CD w/ SRC Fitted

v(5555;01) 0.4386 0.4670 0.4862
v(3333;01) 0.4243 0.4525 0.4771
v(1111;01) 0.4068 0.4335 0.4477
v(5353;11) 0.3958 0.4234 0.4191
v(3131;11) 0.3645 0.3901 0.3295
v(5§555;21) 0.3852 0.4117 0.4556
v(3333;21) 0.3615 0.3866 0.3488
v(5§353;21) 0.3807 0.4071 0.4197
v(5151;21) 0.3885 0.4153 0.4838
v(3131;21) 0.3805 0.4069 0.3098
v(5§353;31) 0.3512 0.3758 0.4136
v(5151;31) 0.3645 0.3901 0.3909
v(5555;41) 0.3612 0.3866 0.3488
v(5§353;41) 0.3913 0.4178 0.4638
v(5§533;01) 0.035 0.0355 0.0827
v(5511;01) 0.0346 0.0363 0.1010
v(3311;01) 0.0283 0.0296 0.1032
v(5331;11) 0 0 0.0000
v(5553;21) —0.0112 —0.0123 —0.0107
v(§551;21) 0.0238 0.0251 0.1015
v(5§533;21) 0.0042 0.0041 0.0040
v(5531;21) —0.0194 —0.0205 —0.0233
v(§351;21) 0.0168 0.0177 —0.0251
v(5§333;21) 0.0145 0.0152 0.0047
v(5331;21) —0.0137 —0.0145 —0.0073
v(5133;21) 0.0182 0.0192 0.0153
v(5131;21) —0.0196 —0.0205 —0.0233
v(3331;21) —0.0148 —0.0156 —0.0261
v(5§351;31) 0 0 0.0000
v(5§553;41) 0.0201 0.0210 —0.0519

USDI better reproduces the ¢ coefficients with a rms deviation
of 8 keV compared with the rms deviation for USDIm of
21 keV. Similar results are seen with USDC compared with
USDCm.

With the Coulomb and isotensor components of the new
Hamiltonians set, we once again fit the isospin-conserving
strong interaction. Only one or two iterations were needed for
each interaction to converge, and their final values are shown
in Tables I-III. Comparisons to the ab initio Hamiltonians are
shown in Fig. 10.

To recap, the four new interactions developed in this sec-
tion are

(i) USDC: a constrained G-matrix interaction, an ana-
Iytic Coulomb term, and a 2.2% increase inthe 7 = 1
pn matrix elements.

(ii)) USDCm: a constrained G-matrix interaction, a con-
strained Coulomb term, and a 0.8% increase in the
T = 1 pn matrix elements.

(iii) USDI: a constrained IMSRG interaction, an analytic
Coulomb term, and a 2.2% increase inthe T = 1 pn
matrix elements.
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Coulomb w/ SRC TBME (MeV)

FIG. 8. Comparison of the Coulomb w/ SRC TBME and the fit-
ted Coulomb TBME. The fitted Coulomb was taken as the Coulomb
interaction resulting from nine varied linear combinations in Fig. 6.
Values for the TBME are shown in Table IV.

(iv) USDIm: a constrained IMSRG interaction, a con-
strained Coulomb term, and a 0.8% increase in the
T = 1 pn matrix elements.

V. MODELING THE THOMAS-EHRMAN SHIFT

The TES is described as a drop in energy of a state with a
valence proton in the sy, orbit at or near the separation energy
due to an increased radial extent of the proton’s wave function.
The data used in the SVD fit described in Sec. III B had six
mirror state pairs removed from the fit due to large TES in
their proton-rich nuclei. In this section we will examine these
and select other cases with large TES in the sd shell.

By using the Skyrme interaction from Ref. [19] with an '6Q
core, we adjust the depth of the valence sy, proton orbit while
holding the other orbits constant in order to model the single-
particle TES. This enables us to calculate the expected TES
for any given proton separation energy for the orbit. Doing this
at many different separation energies shows that a logarithmic
curve fit can be used to predict the TES as a function of proton
separation energy. This was then done for a 28Si core and it
was found that the single-particle TES curve generated was
very similar to the curve of the '°Q core. This allows us to use
a single curve to model the single-particle TES, of the form

TES,, = —0.4582 + 0.2154 In(S, + 1.1818),  (18)

TABLE V. Comparison of fitted Coulomb interaction SPE. The
orbits are labeled by 1 = 15,5, 3 = 0d3,,, and 5 = 0ds),. These are
for proton orbits only.

Interaction €5 € €]
CD 3.5749 3.5260 3.4843
w/ SRC 3.6279(137) 3.4514(177) 3.3238(434)
Fitted 3.5122(460) 3.4642(2696) 3.3136(841)
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FIG. 9. c coefficients for the lowest lying triplets, quartets, and
quintets in the sd shell. The solid black line shows the values for
USDI, the dashed line for USDIm, and experiment is shown as filled
circles.

where TES;), is the single-particle TES in MeV, and S, is
the valence proton separation energy in MeV. This function
is plotted in Fig. 11.

In reality, the valence proton is not in a pure s1, state, and
so only a fraction of the state experiences a TES. This fraction
corresponds to the spectroscopic factors of the state to the
proton sy, orbit. We can write the total TES for a nucleus
A7, using the appropriate spectroscopic factors to states in the
A-l7 _1 nucleus, as

2
total = S /) C S(Ex)» (19)
TE > TEg(S,
E.<4MeV
3 4f ] 15 4} ]
s 2t v v 1= 2t 1
w
= 0 g g = 0
= -2 1 18 -2 ¢ 1
s -4t 1 13 4t 1
@ -6« 14 12 6} 1
[P 24 DU 4 S B [ 74 B
864202 4-8-6-4-202 46 86420246
USDC TBME (MeV) USDCm TBME (MeV) USDC TBME (MeV)
w 2 [ ] ] w 2 [ ]
B o1 . 18 90 .
g4l £ {1 £ 12 4| A ]
g -6 [ Q ] Q ] % -6 [ g ]
-8 P L P L g T L
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FIG. 10. Comparisons of the fitted and ab initio TBME. Only the
isospin-conserving TBME in isospin formalism are shown. These are
representative of the 63 TBME groups.
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FIG. 11. Thomas-Ehrman shift as a function of proton separation
energy, fit to calculations using a Skyrme interaction.

where E, is the excitation energy of the 4~!Z —1 nucleus, and
S, =58,("2) + Ex(*~'Z —1) — E.("2).

Table VI shows the analysis of the cases excluded from the
b-coefficient SVD fit. The TES of ground states of these nuclei
were calculated and found to negligible, and so the shift for
the excited levels are all that are shown. The TEy, for these
cases were taken from the curve in Fig. 11. The 3% state in
20Na reported in the table at 2645 keV was originally reported
as a 17 in Ref. [20], guided by the spin sequence of the mirror
nucleus 2°F. Indeed, the NNDC database still lists this state as
(17). It was later argued to be a 3% in Refs. [21-23] by process
of elimination of possible mirror states.

For each case in the table, the calculated TEy is in better
agreement with the experimentally measured shift than is the
shift calculated using USDC alone. The shift that is built into
USDC ranges from 30% to 75% of the calculated TEq,, with
the average being about 50%. This can be seen in Fig. 12,
where the TE; calculation is labeled as Skyrme. Also shown
in this figure are the TES built into USDCm, which are similar
in magnitude to those in USDC.

This analysis can also be applied to ground states with
large 51/, spectroscopic factors; however, we cannot simply
add the calculated shift to the mirror energy to compare with
experiment.

With USDC, P is calculated to have S, = —146 keV.
Estimates for the unmeasured S, for 26p include 140(200) keV
[10], 0(90) keV [24], 85(30) keV [25], and —119(16) keV
[26]. Using this range of values and the method outlined
above, we calculate an expected TESym of —255(14) keV.
If we assume that USDC again has 30%-75% of the shift
built into it, we can revise the separation energy to include
the additional shift from this analysis. The predicted USDC +
TES one-proton separation energy is then —12(65) keV, the
central value of —12 keV corresponding to a proton emission
half-life of 7.6 x 10%° years.

We model the one-proton decay as a proton in a single-
particle 51 orbit with a 23Sj core, and then calculate the width
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TABLE VI. Calculated Thomas-Ehrman shifts for selected nuclei using USDC and the single-particle TES model described in Sec. V.

Spectroscopic factors are to the sy, orbit and calculated with USDC. The C?S, S

the dominant term of the sum in Eq. (19) are shown. Eg 1
calculated TE .

'
r’

and J; (spin-parity of the state in the ~'Z —1 nucleus) for

is the experimental energy for the neutron-rich state in the mirror pair plus the

S/p TEsp E;);f: Elil);frlJrTE Eo® TEUSDC TEtolal TEexpl
Nucleus J1 Cc*s J }_[ (keV) (keV) Mirror (keV) (keV) (keV) (keV) (keV) (keV)
s 12 1.000 o+ 105 —404 o 870 466 495 —304 —404 —375
Na /2 0.789 o+ —1068 —926 O 1472 741 745(12) —225 —731  =727(12)
ONa 3+ 0406  5/2F —580 —568 XF 2966 2736 2645(2) —156 —230 —321(6)
1+ 0413 1/2* —811  —672 3448 3168 3001(6) —122 —281 —447(2)
o+ 0.559 172 —896  —728 3526 3098 3086(2) —247 —407 —440(2)
BAl /2t 0.704 ot —409 —514  ®Ne 1017 655 550(20) —146 —362  —467(20)

of the unbound state at various values of S,,. With this method,
we calculate a half-life of 0.046 ms for our most unbound sep-
aration energy prediction within uncertainty, S, = —77 keV.
A typical beta-decay half-life of 100 ms corresponds to S, =
57.5 keV in this approximation. The beta-decay half-life of
26p has been measured as 43.7(6) ms [24]. We conclude that
the lifetime is likely dominated by the 8 decay,

The proton-dripline can be defined as the point at which
adding a proton to a nucleus results in a negative one- or two-
proton separation energy. With this definition, our prediction
of the 2P one-proton separation energy of —12(65) keV puts
the nucleus outside of the dripline (ignoring uncertainty).
However, up until a negative S, of about 100 keV the nucleus
is still able to undergo B decay. The point at which proton
emission dominates over S decay is another definition of the
proton-dripline.

USDC predicts that the one- and two-proton separation
energies for 2°S to be —217 and —1820 keV, respectively. For
39Ar, it predicts one- and two-proton separation energies of
—199 and —2976 keV. These nuclei are then good candidates
to consider as two-proton emitters, because a sufficiently large
TES could cause them to be bound to one-proton emission
while leaving the two-proton channel open. However, the

daughter nuclei from one-proton decay (*’Cl and >*P) also
have ground states with large s/, spectroscopic factors. This
has the effect of keeping the 2°S and *°Ar unbound to single
proton emission by a few hundred keV.

VI. COMPARING THE NEW HAMILTONIANS

The average, or monopole, interaction energy between two
orbits a and b is defined as

Voo >, J + 1)V (ab; ab)
ab.T = >,/ +1)

These monopole interaction energies combine with the
SPE to create effective SPE with Z and N dependence. The
monopole interactions for our new Hamiltonians are com-
pared in Fig. 13. A similar figure appears in Ref. [3] that
is known to show incorrect values. They are split into three
groups, the T = 0 and T = 1 isospin-conserving monopoles,
and the Coulomb only 7 = 1 monopoles that involve only
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FIG. 12. Comparison of TES found in Table VI.

-4 = o x USDB —
- T=0 — USDC i
B + Coul w/ SRC
11 31 33 51 53 55 - - Fitted Coul
-6

FIG. 13. The sd-shell monopole interactions. The solid line show
the values for USDC, which are representative of all four new inter-
actions at this scale. The filled circles are for SDBA, the open circles
for IMSRG, and the crosses for USDB. The Coulomb monopole
interactions are also shown, with Coulomb with SRC as pluses and
the fit Coulomb shown as a dashed line. Note that these are for
proton-proton matrix elements only.
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FIG. 14. The deviations of theoretical predictions for ground-
state binding energies and excitation energies between USDC and
USDI. Excited states are shown in the bottom panel, with ground
states in the top.

pp TBME. The isospin-conserving monopole interactions for
USDC, USDCm, USDI, and USDIm are all very similar with
the largest deviation being around 100 keV.

The terms with the largest variance among the new Hamil-
tonians, ds;» — dz2, T =0 and s1/5 — 512, T =0, are also
the terms that differ from USDB the most. The IMSRG and
SDBA monopole strengths differ by up to 600 keV in some
cases, but have a similar pattern.

The six T = 1 monopole terms for our fitted Coulomb are
shown to be in good agreement with the Coulomb w/ SRC,
with most being within 5%. The pds;» — psi;, term has the
largest shift, with a decrease of 64 keV or 17% of the unfitted
value.

Looking at the differences between energy-level predic-
tions using our new Hamiltonians can serve to help understand
the theoretical uncertainties in those predictions. In Fig. 14 the
residuals between USDC and USDI are shown for both the
ground states and excited states, having rms deviations of 24
and 70 keV for each group, respectively. The rms deviation for
all of the data is 30 keV, but is clear that the spread is larger in
the middle of the shell for the excited states. This tells us that
the choice of ab initio interaction from which we build our
Hamiltonians has a larger effect on the excited-state energies
than it does on the ground-state binding energies.

We can also examine the effect of modifying the Coulomb
interaction and isotensor strength by looking at the residuals
between USDC and USDCm in Fig. 15. There is a larger
change in calculated ground-state binding energies between
these two Hamiltonians, with a rms deviation of 70 keV. The
excited-state energy residuals are smaller than those between
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FIG. 15. The deviations of theoretical predictions for ground-
state binding energies and excitation energies between USDC and
USDCm. Excited states are shown in the bottom panel, with ground
states in the top.

USDC and USDI with a rms of 24 keV. The rms deviation for
all of the data is 30 ke V.

VII. RESULTS FOR SEPARATION ENERGIES
AND ISOSPIN MIXING

One motivation for the development of isospin-breaking
USD-type Hamiltonians comes from the relatively poor pre-
dictions for ground-state binding energies with USDB-CD.
The residuals when compared with experiment for the sd-
shell nuclei included in our updated data set are shown in
Fig. 16. Theory is underbound at the bottom of the shell
and becomes overbound as you move up the shell, causing
calculated separation energies to be systematically larger than
experiment at the top of the shell. Also present are the large
deviations for the neutron-rich fluorine isotopes and island of
inversion nuclei discussed earlier for the new Hamiltonians.

The binding-energy residuals for USDC (with similar re-
sults for the three other new Hamiltonians) are shown in
Fig. 17. The problem of overbinding towards the top of the
shell is solved, allowing for better predictions for separation
energies. Figure 18 shows the USDC two-proton and two-
neutron separation energies for sd-shell nuclei with Z > 10
and N > 10, respectively. The patterns for two-proton sep-
aration energies along isotopic chains and for two-neutron
separation energies along isotonic chains are similar in shape,
with a shift up in energy due to the Coulomb interaction.

Single proton and neutron separation energies were also
calculated, allowing us to define the proton and neutron
driplines. Consistent with experiment, the oxygen isotopes
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FIG. 16. Differences between the experimental and USDB-CD
ground-state binding energies. Positive values indicate that experi-
ment is more bound than theory.

with A > 24 are unbound. 2280 are single neutron bound,
but have negative two-neutron separation energies. The only
other sd-shell nuclei past the neutron dripline is 2*F. Figure 19
shows the predictions for the proton dripline and proton
separation energies using USDI. For the purposes of this
figure, the proton-dripline is defined as the point at which
proton-emission dominates the decay. The dripline location
is the same for the other new interactions with small changes
to the separation energies between them.
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FIG. 17. Differences between the experimental and USDC
ground-state binding energies. Positive values indicate that experi-
ment is more bound than theory. There are no significant differences
at this scale for calculations using USDI, USDCm, or USDIm. The
large disagreement between theory and experiment for the neutron-
rich fluorine isotopes is discussed in the text.
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FIG. 18. Isotonic chains of two-proton separation energies (left)
and isotopic chains of two-neutron separation energies (right) calcu-
lated with USDI. There are no discernible differences at this scale for
calculations using USDC, USDCm, or USDIm.

There is only one isotope that is bound to proton emission
but unbound to two-proton emission, 3Ca.Ithasa two-proton
separation energy of —2.011 MeV for USDC, —1.991 MeV
for USDCm, —2.027 MeV for USDI, and —1.976 MeV
for USDIm. These are significantly more negative than the
extrapolated mass evaluation value of —1.46(31) MeV [27].
All four Hamiltonians predict that 2P is proton unbound by
about 150 keV. However, as discussed in Sec. V, a large TES
brings the proton separation energy to —12(65) keV, allowing
the nucleus to predominately undergo beta-decay rather than
emit a proton.
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FIG. 19. Predicted proton drip-line and proton separation ener-
gies for proton-rich nuclei in the sd shell.
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FIG. 20. Experimental and predicted two-proton separation en-
ergies for *'Ar.

Recently, the two-proton separation energy for ' Ar was
measured as 6(34) keV [28]. Figure 20 shows the theory
predictions for USDB-CD and the new interactions compared
with this experimental value. The decrease in the separation
energy for the new Hamiltonians against USDB-CD is ex-
pected, and they are in better agreement with experiment.

A notably large deviation between experiment and theory
is found for the proton separation energy of ’Cl. Experiment
places the ground state at 1.8(2) MeV above the proton thresh-
old and assigns it as a 1/27 state [29], with an excited 3/27
state at 0.5 MeV. Our configuration-interaction calculations all
agree on a ground state at 2.7 MeV above the proton threshold,
but with a 3/2% assignment. The first-excited state is then
the 1/2% at 0.08 MeV. As mentioned in Sec. V, the 1/2%
state has a large proton sy,» spectroscopic factor. A TES of
—0.389 MeV is calculated for the 1/2%, which causes the
inversion of the level scheme as seen in experiment.

With isospin-breaking effective interactions, we can ex-
amine isospin-level mixing. Two examples of known large
isospin mixing can be found in 31S [30] and *2S [31,32]. The
3/2% levels at 6279 (IAS) and 6390 keV in 318 have a deduced
empirical isospin mixing matrix element v of 41(1) keV.
Study of the superallowed B transition for 3>Cl provided an
experimental branching ratio to the 7190 keV state in >'S
[32]. Treating this as a two-level mixing problem with the
IAS at 7001 keV, as in Ref. [30], the branching ratio was
used to deduce M? = 0.0625(42). Using our new interactions,
we calculate a theoretical B(GT) value of 0.0147(17) (this
includes the quenching factor of 0.6). Given that

M? = B(F) + (g—A>B(GT), @1
8v

where (g4/gv)* = 1.588, we arrive at a Fermi decay strength
of B(F) = 0.039(5). This then translates to an isospin mixing
matrix element for the two states of v = 26(3) keV.

TABLE VII. Isospin-mixing matrix elements (keV) between the
sixth and eighth %Jr sd-shell levels in *'S, and the second and third
1" sd-shell levels in *S.

v('S) v(?9)
Experiment 41(1) 26(3)
UusSDC 36 23
USDI 38 22
USDCm 51 42
USDIm 56 40
USDB-CD 28 16

Our results are compared with these mixing matrix ele-
ments in Table VII. In both cases we see better agreement with
experiment for the new USD-type Hamiltonians compared
with USDB-CD. Among the new interactions, USDC and
USDI and in better agreement with both v(*'S) and v(*'S)
compared with USDCm and USDIm.

VIII. SUMMARY AND CONCLUSIONS

The development of these new “USD” Hamiltonians
opens up new avenues to examine isospin mixing and other
isospin symmetry-breaking effects in the sd shell. All four
new interactions improve predictions for separation energies
throughout the shell, eliminating the systematic overestima-
tion present in calculations using USDB-CD.

The calculated binding energies for the neutron-rich flu-
orine (N = 16-19) isotopes are significantly higher than the
experimental values found in the 2016 atomic mass evalua-
tion. We suggest further more precise experiments to lower
the uncertainties on these measurements, and to correct or
reaffirm the current experimental energies.

We have presented four new interactions of two kinds.
USDC and USDI use a reasonable Coulomb interaction with
no fitting of the Coulomb TBME. USDCm and USDIm have
had their Coulomb interaction constrained by a SVD fit to
better reproduce the b coefficients of the IMME. An apparent
trade-off for this further fitting is a decrease in accuracy for
calculating the ¢ coefficients of the IMME. We therefore
suggest the use of USDC and USDI for precise predictions of
isospin mixing in low-lying states, and USDCm and USDIm
for mirror energy differences.

The analytic Coulomb Hamiltonians examined in this pa-
per were still unable to reproduce the energies for several
states with large TES. We have shown that individual analysis
of these states using a theoretical TES calculated by using
a Skyrme interaction can explain the experimental shifts in
several nuclei.
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