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Effects of finite nucleon size, vacuum polarization, and electromagnetic spin-orbit interaction
on nuclear binding energies and radii in spherical nuclei
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The electromagnetic effects of the finite size of the nucleon are implemented self-consistently on top of the
Skyrme Hartree-Fock calculation, where the electric form factors of both protons and neutrons are considered.
Furthermore, the vacuum polarization and the electromagnetic spin-orbit interaction are taken into account.
The self-consistent finite-size effects give a different Coulomb potential from the conventional one and affect
the neutrons as well. The contribution of the finite-size effects to the total energy reaches 7 MeV in 208Pb.
The vacuum polarization and the electromagnetic spin-orbit interaction are also non-negligible, especially in
the heavy nuclei. These effects provide a comparable contribution of the total energy to that of the isospin
symmetry-breaking terms of the nuclear interaction. The mirror nuclei mass difference in 48Ca –48Ni is also
studied, and its value is improved by approximately one order of magnitude.

DOI: 10.1103/PhysRevC.101.064311

I. INTRODUCTION

Atomic nuclei are quantum many-body systems composed
of protons and neutrons, which interact with each other by the
nuclear and Coulomb interactions. It is known that the nuclear
interaction is much stronger than the Coulomb interaction,
and thus the main contribution to the nuclear properties comes
from the nuclear interaction. Nevertheless, the study of the
Coulomb effects on the properties is also important, since the
Coulomb interaction and the isospin symmetry breaking (ISB)
terms of the nuclear interaction are entangled to each other in
some particular nuclear properties, such as the superallowed
β decay [1,2], the energy difference of the mirror nuclei and
its Nolen-Schiffer anomaly [3–9], and the isobaric analog
states (IASs) [10–12]. Recently, to study such ISB effects, a
parametrization of the ISB terms of the nuclear interaction that
can reproduce the mirror and triplet displacement energies
on top of a Skyrme functional was proposed [13,14]. From
these and other works, it is evident that medium effects are
relevant for those ISB terms, and the approximation of using
the bare coupling constants is not adequate. Our current work
does not address the important question of understanding the
relationship between bare and effective ISB forces, but rather
it focuses on a complementary and yet relevant issue: Our
scope is to study the other Coulomb-related terms in DFT
more precisely than has been done so far.

The density functional theory (DFT) [15,16] is one of
the powerful and widely used methods to solve the quantum
many-body problem. In the DFT for nuclear physics, the
ground-state energy is usually given by

Egs = T0 + Enucl[ρp, ρn] + ECd[ρch] + ECx[ρch], (1)

where T0 is the Kohn-Sham kinetic energy, and Enucl, ECd,
and ECx are the energy density functionals (EDFs) of nuclear,
Coulomb direct, and Coulomb exchange parts, respectively.
Here, ρp and ρn are the ground-state density distributions
of protons and neutrons, respectively, and ρch is the charge
density distribution [17–19]. Since the nuclear EDF Enucl is
usually fit to the experimental data with certain Ansätze,
such as the Skyrme type [20], the Gogny type [21], and the
relativistic one [22,23], because of the missing knowledge
of the nuclear force in medium, Enucl includes the Coulomb
correlation as well as the nuclear one implicitly. In contrast,
the Coulomb EDFs, ECd and ECx, are deduced theoretically as
accurately as possible, since the Coulomb interaction is well
known.

Although the Coulomb EDFs can be given fully theoreti-
cally, the Hartree-Fock-Slater [24,25] or even Hartree approx-
imation has been widely used [17,18]. Recently, effects of the
exact-Fock treatment [26–28] and those beyond the Hartree-
Fock-Slater approximation, the so-called generalized gradient
approximation (GGA) [29,30], were discussed in the context
of the nuclear DFT to achieve more accurate evaluation of the
Coulomb contribution to the total energy.

Moreover, the role of the Coulomb functional has sev-
eral open questions. For example, it was suggested that the
Coulomb exchange term is almost canceled out by the ISB
terms of the nuclear force, and thus the Skyrme functionals
fit without the Coulomb exchange term reproduce the masses
better than those with it [31,32]. The effective charge in
the nuclear DFT has also been discussed [33,34]. Recently,
Dong et al. [34] showed that, in the Hartree-Fock-Slater
approximation, i.e., the local density approximation (LDA)
for the Coulomb exchange term, introducing the effective
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coupling constant e2
0 = e2(1 + aZ−2/3) well reproduces the

isobaric multiplet mass equation. They also discussed that this
effective coupling constant includes all the possible electro-
magnetic (EM) contribution, such as the difference between
the LDA and the exact-Fock, the finite-size effects, and the
vacuum polarization.

The Coulomb EDFs ECd and ECx are, in principle, written
in terms of the charge density ρch [35], because the Coulomb
interaction affects the charge itself instead of the point pro-
tons. Nevertheless, the protons and neutrons are assumed to
be point particles, i.e., ρch ≡ ρp is assumed (hereafter, this
approximation is called the point-particle approximation), in
most of the self-consistent nuclear DFT. Only a few works,
e.g., Refs. [12,32,36], considered the difference between ρch

and ρp.1 It was shown that the finite-size effects of nucleons,
i.e., the difference between ρch and ρp, are non-negligible in
the energy of the isobaric analog state EIAS [12,36]. Moreover,
it was shown in Refs. [12,36] that the vacuum polarization is
also non-negligible in EIAS.

Although these discussions related to the Coulomb interac-
tion have been done for decades as mentioned above, deeper
and self-consistent analysis is still desired. Thus, in this paper,
the finite-size effects of nucleons are implemented to the
self-consistent steps of the Skyrme Hartree-Fock calculation.
The electric form factors of both protons and neutrons are
considered. Also, other possible EM contributions, i.e., the
vacuum polarization and the EM spin-orbit interaction, are
considered.

This paper is organized as follows: First, the theoretical
framework is given in Sec. II. Second, the simple estimation
of systematic behavior of each effect is discussed in Sec. III.
Then, the Skyrme Hartree-Fock calculation is performed to
discuss systematics and to compare experimental data of mir-
ror nuclei mass difference in Sec. IV. Finally, the conclusion
and future perspectives are given in Sec. V.

II. THEORETICAL FRAMEWORK

In this section, the theoretical frameworks of the finite-
size effects, the vacuum polarization, and the EM spin-orbit
interaction are shown. The Coulomb functional is accordingly
composed of three terms: the Coulomb direct term ECd, the
Coulomb exchange term ECx, and the vacuum polarization
term EVP. Equation (1) is now modified as

Egs = T0 + Enucl[ρp, ρn] + ECd[ρch] + ECx[ρch] + EVP[ρch],
(2)

and correspondingly the effective potential is

Veffτ (r) = Vnuclτ (r) + VCdτ (r) + VCxτ (r) + VVPτ (r), (3)

where τ = p (n) for protons (neutrons), and Vnuclτ , VCdτ , VCxτ ,
and VVPτ are the effective potentials coming from the nuclear
force, Coulomb direct and exchange terms, and the vacuum
polarization, respectively.

1Note that the nuclear interaction is constructed as the nucleons are
point particles, and thus the finite-size effects need not be considered
in Enucl.

In ECd and ECx, the finite-size effects of nucleons are
considered, where the Coulomb direct term ECd holds the
conventional form

ECd[ρch] = e2

2

∫∫
ρch(r)ρch

(
r′)

|r − r′| drdr′. (4)

The EM spin-orbit interaction is considered perturbatively.

A. Coulomb exchange functional in generalized
gradient approximation

In principle, the nonlocal form of the Fock term

EF = −e2

2

∑
i, j

∫∫
ψ∗

i (r)ψ∗
j (r′)ψi(r′)ψ j (r)

|r − r′| drdr′ (5)

should be used for the Coulomb exchange term in the point-
particle approximation, where ψi is the single-particle wave
function of protons. The GGA for the Coulomb exchange
term was proposed in the context of the nuclear DFT [29,30].
The GGA functional reproduces the Coulomb exact-Fock
energy within 100 keV error. In this paper, the GGA Coulomb
exchange functional is used instead of the exact-Fock term
because writing the functional in terms of density has the
advantage of considering the finite-size effects, which we
discuss later.

The GGA Coulomb exchange functional is written as [37]

ECx[ρch] =
∫

εLDA
Cx (ρch(r))F (s(r))ρch(r)dr, (6)

where εLDA
Cx is the LDA exchange energy density,

εLDA
Cx (ρch ) = −3e2

4

(
3

π

)1/3

ρ
1/3
ch , (7)

s is the dimensionless density gradient,

s = |∇ρch|
2kFρch

, kF = (3π2ρch )1/3, (8)

and F is the GGA enhancement factor. Here, the modified
Perdew-Burke-Ernzerhof GGA enhancement factor

F (s) = 1 + κ − κ

1 + λμs2/κ
, (9)

μ = 0.21951, κ = 0.804, (10)

with λ = 1.25 is used [30].

B. Finite-size effects of nucleons

In most works, protons and neutrons are assumed to be
point particles, and thus ρch ≡ ρp is assumed in the self-
consistent steps and the calculation of Egs. The difference
between ρch and ρp is considered explicitly in the self-
consistent steps in this paper. Only the electric form factors
of nucleons are considered, while the magnetic form factors
are not considered in the single-particle wave functions since
they appear in higher (1/c2) and require us to consider the
EM spin-orbit interaction self-consistently. Instead, effects of
the magnetic form factors are considered in the single-particle
energy via the EM spin-orbit interaction, as discussed later.
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TABLE I. Parameters of the electric form factors G̃Ep and G̃En taken from Ref. [39]. Uncertainty is not shown in this table.

τ a10τ a11τ (GeV2/c2) a20τ a21τ (GeV2/c2) abτ (c2/GeV2) qbτ (GeV/c) σbτ (GeV/c)

Proton 1.041 0.765 −0.041 6.2 −0.23 0.07 0.27
Neutron 1.04 1.73 −1.04 1.54 0.23 0.29 0.20

1. Electric form factor

The charge density distribution ρch is written in terms of
the electric form factors of protons and neutrons, G̃Ep and G̃En,
and the density distributions of protons and neutrons, ρp and
ρn [38],

ρ̃ch(q) = G̃Ep(q2)ρ̃p(q) + G̃En(q2)ρ̃n(q), (11)

where the quantities with tilde denote those in the momentum
space. For example, ρ̃p reads

ρ̃p(q) = 1

(2π )3/2

∫
ρp(r)e−iq·rdr

=
√

2

π

∫ ∞

0
ρp(r)

sin (qr)

qr
r2dr, (12)

with the Fourier transformation of ρp. Here, the spherical
symmetry is assumed for ρp, ρn, and ρch.

The electric form factors G̃Ep and G̃En are measured by the
electron scattering of protons and neutrons, and their forms
are taken from Ref. [39] as

G̃Eτ (q2) = a10τ

(1 + q2/a11τ )2
+ a20τ

(1 + q2/a21τ )2

+ abτ q2

[
exp

{
−1

2

(
q − qbτ

σbτ

)2
}

+ exp

{
−1

2

(
q + qbτ

σbτ

)2
}]

, (13)

where the corresponding parameters are listed in Table I.
In this paper, ρch given in Eq. (11) is used in both the

self-consistent steps and the calculation of Egs, instead of
the point-particle approximation. Precisely, ρp and ρn are
calculated from the single-particle wave functions ψi, and
ρch is calculated from Eq. (11) in each self-consistent step.
The effective potential Veffτ for ψi is derived from ρch as
well as ρp and ρn. As a result, the Coulomb potential in
Veffτ is different from that calculated in the point-particle
approximation. Details are shown as follows.

2. Effective potential with finite-size effects

The effective potential of the nucleon τ is, in general,
defined as [20,40]

Veffτ (r) = δE [ρp, ρn]

δρτ (r)
. (14)

Once the finite-size effects are considered, i.e., ρch �≡ ρp, the
chain rule of the functional derivative [40]

δ

δ f (r)
=

∫
δg(r′)
δ f (r)

δ

δg(r′)
dr′ (15)

should be applied to the Coulomb terms ECd and ECx.

The charge density distribution in the real space is

ρch(r) = 1

(2π )3/2

[∫
GEp(|r − r′|)ρp(r′)dr′

+
∫

GEn(|r − r′|)ρn(r′)dr′
]
, (16)

where GEτ are the electric form factors of the nucleons in the
real space defined as

GEτ (r) =
√

2

π

∫ ∞

0
G̃Eτ (q2)

sin (qr)

qr
q2dq, (17)

since the product in the momentum space is identical to the
convolution in real space as

f̃ (q)g̃(q) =
√

2

π

∫ ∞

0

[
1

(2π )3/2 ( f ∗ g)(r)

]
sin (qr)

qr
r2dr,

(18)

( f ∗ g)(r) =
∫

f (|r − r′|)g(r′)dr′. (19)

From Eqs. (15) and (16), the functional derivative with
respect to ρch reads

δ

δρτ (r)
=

∫
δρch(r′)
δρτ (r)

δ

δρch(r′)
dr′

= 1

(2π )3/2

∫
GEτ (|r − r′|) δ

δρch(r′)
dr′. (20)

Combining Eqs. (14) and (20), the Coulomb potential for
nucleons with the finite-size effects reads

VCτ (r) = δEC[ρch]

δρτ (r)

=
∫

δEC[ρch]

δρch(r′)
δρch(r′)
δρτ (r)

dr′

= 1

(2π )3/2

∫
VC[ρch](r′)GEτ (|r − r′|)dr′, (21)

where EC[ρch] = ECd[ρch] + ECx[ρch], and VC is the conven-
tional form of the Coulomb potential, but expressing in terms
of ρch instead, e.g.,

VC[ρch](r) = VCd[ρch](r) + VCx[ρch](r)

= e2
∫

ρch(r′)
|r − r′|dr′ − e2

(
3

π

)1/3

[ρch(r)]1/3 (22)

in the LDA form. For the GGA form, see Ref. [30]. It should
be noted that the Coulomb potential in the momentum space
is

ṼCτ [ρch](q) = ṼC[ρch](q)G̃Eτ (q2). (23)
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Let us compare the Coulomb potential with the finite-size
effects proposed in this paper and that used in previous works
such as Refs. [12,32,41]. The Coulomb potential without the
finite-size effects corresponds to VC calculated with ρp, i.e.,
VC[ρp]. The Coulomb potential with the finite-size effects in
previous works [12,32,41] is calculated with ρch when the po-
tential is calculated, i.e., VC[ρch]. This corresponds to G̃Ep ≡ 1
and G̃En ≡ 0 being used in Eq. (23), in which case the self-
consistency shown in Eqs. (14) and (20) is no longer valid. In
contrast, the Coulomb potential with the finite-size effects in
this work is derived self-consistently. Hereafter, the finite-size
effects in the previous works are simply called “conventional
finite-size effects,” and those in this work are “self-consistent
finite-size effects.” It should be emphasized that the Coulomb
potential for the neutrons, VCn, does not vanish within the
self-consistent finite-size effects since GEn �≡ 0, whereas the
conventional Coulomb potential VC affects only protons.

C. Vacuum polarization

The vacuum polarization is the lowest-order correction of
quantum electrodynamics (QED) for the Coulomb interaction
[42]. The effective one-body potential of the vacuum polar-
ization for a charged particle −e under the Coulomb potential
caused by the charge distribution ρch is known as the Uehling
potential [43]. In the case of atomic nuclei, the charge of
protons is +e, and thus the sign of the potential is opposite
to the original Uehling potential as

VVP(r) = 2

3

αe2

π

∫
ρch(r′)
|r − r′|K1

(
2

λ̄e
|r − r′|

)
dr′, (24)

where

K1(x) =
∫ ∞

1
e−xt

(
1

t2
+ 1

2t4

)√
t2 − 1dt, (25)

α is the fine-structure constant, and λ̄e = 386.159 267 96 fm
is the reduced Compton wavelength of electrons2 [44]. Corre-
spondingly, the EDF for the vacuum polarization is written as

EVP[ρch] = 1

2

∫
ρch(r)VVP(r)dr. (26)

Once spherical symmetry is assumed, Eq. (24) is written as
[45]

VVP(r) = 2αe2λ̄e

3r

∫ ∞

0

[
K0

(
2

λ̄e
|r − r′|

)

−K0

(
2

λ̄e
|r + r′|

)]
ρch(r′)r′dr′, (27)

2The dominant contribution of a virtual particle-antiparticle pair
produced in a photon propagator is the lightest fermions, i.e., elec-
trons. Therefore, quantities appeared in the Uehling potential are still
those for electrons even though the potential is applied to protons.

where

K0(x) = −
∫ x

−∞
K1(x′)dx′

=
∫ ∞

1
e−xt

(
1

t3
+ 1

2t5

)√
t2 − 1dt . (28)

In this work, this potential is assumed to affect only pro-
tons. According to the treatment of the finite-size effects in
the DFT scheme discussed in Sec. II B, the vacuum polariza-
tion potential for protons and neutrons, VVPτ , are δEVP/δρτ ,
slightly different from the original VVP. However, this differ-
ence must be tiny. Therefore, VVP is applied to protons, and the
vacuum polarization potential for neutrons is neglected, while
ρch is used for calculating VVP in Eq. (27). This corresponds
to the conventional treatment of the finite-size effects in the
Coulomb potential.

D. Electromagnetic spin-orbit interaction

The protons and neutrons move inside the charge distribu-
tion ρch. On the frame of a nucleon, this charge distribution
is regarded as moving and the moving charge distribution
generates a magnetic field, which interacts with the spin of
the nucleon. This interaction is the spin-orbit interaction.

In this work, the EM spin-orbit interaction is considered
by using the first-order perturbation theory. The effects on
the single-particle orbitals and potentials are neglected since
this interaction affects the single-particle energies by less than
100 keV. The correction due to the EM spin-orbit interaction
for the single-particle energy is [46]

εi = h̄2c2

2m2c4
xi〈l̂ i · ŝi〉

∫ ∞

0

[ui(r)]2

r

dVC(r)

dr
dr

= h̄2c2

2m2c4
xi

[
ji( ji + 1) − li(li + 1) − 3

4

]

×
∫ ∞

0

[ui(r)]2

r

dVC(r)

dr
dr, (29)

where l̂ i and ŝi are its orbital and spin angular-momentum
operators, rui(r) is the radial part of single-particle wave
function, and li and ji are the azimuthal quantum number
and total angular momentum, respectively. The quantity xi is
related to the g factors as [44]

xi =
{

gp − 1 = 4.585 694 689 3 for protons,
gn = −3.826 085 45 for neutrons. (30)

This equation is the same as the spin-orbit interaction for
hydrogen-like atoms [47], while the g factors of nucleons are
used instead. Here, 1 in Eq. (30) corresponds to the charge of
protons. In this calculation, the Coulomb potential without the
finite-size effects VC[ρp] is used, since the correction itself is
expected to be small, and thus it does not need to take into
account the finite-size correction in VC[ρch].

III. SIMPLE ESTIMATION OF SYSTEMATIC BEHAVIOR

Before the numerical calculation, simple estimations are
performed in this section to understand the systematic
behavior of the contributions of the finite-size effects and
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the vacuum polarization to the total energy. The hard-sphere
distribution is assumed for protons:

ρp(r) =
{
ρ

p
0 r < Rp,

0 r > Rp,
(31)

where Rp is the radius of the proton distribution and

ρ
p
0 = 3Z

4πR3
p

(32)

is held. The saturation density of protons,

ρ
p
0 = 1

2ρ0 	 0.08 fm−3, (33)

together with

Rp =
(

3Z

4πρ
p
0

)1/3

, (34)

are used for estimation of coefficients, where ρ0 is the sat-
uration density of atomic nuclei. Accordingly, the neutron
and charge distributions are also assumed to be hard spheres.
When the finite-size effects are considered, we use the proton
and neutron radii, 〈r2

p〉 and 〈r2
n〉, consistent with the form

factors (17). Note that smaller or larger values of proton radius
that are recently debated in the literature do not affect our
simple estimation significantly.

At first, the estimation under the point-particle approxima-
tion is discussed. The Coulomb direct potential is

V point
Cd (r) = e2

∫
ρp(r′)
|r − r′|dr′

=
{

Ze2

2Rp

(
3 − r2

R2
p

)
r < Rp,

Ze2

r r > Rp,
(35)

and thus the Coulomb direct energy is

Epoint
Cd = 1

2

∫
ρp(r)V point

Cd (r)dr

= 3e2

5

Z2

Rp

= 3e2

5

(
4πρ

p
0

3

)1/3

Z5/3

	 0.60Z5/3 MeV. (36)

The Coulomb exchange energy is

Epoint
Cx = −3e2

4

(
3

π

)1/3 ∫
[ρp(r)]4/3dr

= −3e2

4

(
9

4π2

)1/3 Z4/3

Rp

= −3e2

4

(
3ρ

p
0

π

)1/3

Z

	 −0.46Z MeV. (37)

Let us consider the finite-size effects for the Coulomb
energy. Hereafter, the superscripts associated with energies
describe which finite-size effects are considered; “point,” “p-
finite,” and “pn-finite” mean the energies calculated with the

point-particle approximation, the proton finite-size effect, and
both the proton and the neutron finite-size effects, respec-
tively. Only the finite-size correction to the Coulomb direct
energy is discussed here, since the finite-size effects should be
a small correction and the main contribution of the Coulomb
energy to the total energy is the direct term. The relationship
between the radii is assumed to be [48]

R2
ch 	 R2

p + 〈
r2

p

〉 + N

Z

〈
r2

n

〉
, (38)

where Rch is the charge radius of the nucleus. Here, the
contribution of the EM spin-orbit interaction is not considered
in Eq. (38). The Coulomb direct energy with the finite-size
effects is the same as Eq. (36), while Rch is used instead of
Rp, i.e.,

Efinite
Cd = 3e2

5

Z2

Rch
. (39)

The contribution of the proton finite-size effect for the total
energy is estimated with 〈r2

n〉 = 0 in Rch of Eq. (38) as

E p-finite
C − Epoint

C 	 E p-finite
Cd − Epoint

Cd

= 3e2

5
Z2

(
1

Rp-finite
ch

− 1

Rp

)

= 3e2

5
Z2

⎡
⎣ 1√

R2
p + 〈

r2
p

〉 − 1

Rp

⎤
⎦

	 −3e2
〈
r2

p

〉
10

Z2

R3
p

= −2πe2ρ
p
0

〈
r2

p

〉
5

Z

	 −0.11Z MeV. (40)
The contribution of the neutron finite-size effect to the total
energy is

E pn-finite
C − E p-finite

C

	 E pn-finite
Cd − E p-finite

Cd

= 3e2

5
Z2

(
1

Rpn-finite
ch

− 1

Rp-finite
ch

)

= 3e2

5
Z2

⎡
⎣ 1√

R2
p + 〈

r2
p

〉 + N
Z

〈
r2

n

〉 − 1√
R2

p + 〈
r2

p

〉
⎤
⎦

	 −3e2
〈
r2

n

〉
10

NZ(
R2

p + 〈
r2

p

〉)3/2

	 −3e2
〈
r2

n

〉
10

NZ

R3
p

= −2πe2ρ
p
0

〈
r2

n

〉
5

N

	 0.010N MeV. (41)

Since 〈r2
p〉 > 0 and 〈r2

n〉 < 0, the coefficient in Eq. (41) is
positive, whereas that in Eq. (40) is negative.
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At the end of this section, the energy of the vacuum polarization is estimated. It reads

EVP = 1

2

∫
ρch(r)VVP(r)dr

	 2π

∫ ∞

0
ρp(r)VVP(r)r2dr

= 2πρ
p
0

∫ Rp

0
VVP(r)r2dr

= 2πρ
p
0

2αe2λ̄e

3

∫ Rp

0

∫ ∞

0

[
K0

(
2

λ̄e
|r − r′|

)
− K0

(
2

λ̄e
|r + r′|

)]
ρch(r′)r′dr′r dr

	 2π
(
ρ

p
0

)2 2αe2λ̄e

3

∫ Rp

0

∫ Rp

0

[
K0

(
2

λ̄e
|r − r′|

)
− K0

(
2

λ̄e
|r + r′|

)]
r′dr′r dr. (42)

The first term of the integral in Eq. (42) is estimated as∫ Rp

0

∫ Rp

0
K0

(
2

λ̄e
|r − r′|

)
r′dr′r dr

=
∫ Rp

0

∫ Rp

0

∫ ∞

1
e−2c|r−r′ |

(
1

t3
+ 1

2t5

)√
t2 − 1dtr′dr′r dr

=
∫ ∞

1

∫ Rp

0

[∫ r

0
e−2c(r−r′ )r′dr′ +

∫ Rp

r
e2c(r−r′ )r′dr′

]
r dr

(
1

t3
+ 1

2t5

)√
t2 − 1dt

=
∫ ∞

1

∫ Rp

0

r

4c2

[
4cr + e−2cr − e2c(r−Rp)(1 + 2cRp)

]
dr

(
1

t3
+ 1

2t5

)√
t2 − 1dt

=
∫ ∞

1

3 − 6c2R2
p + 8c3R3

p − 3e−2cRp (1 + 2cRp)

24c4

(
1

t3
+ 1

2t5

)√
t2 − 1dt, (43)

and the second term is∫ Rp

0

∫ Rp

0
K0

(
2

λ̄e
|r + r′|

)
r′dr′r dr =

∫ Rp

0

∫ Rp

0

∫ ∞

1
e−2c|r+r′ |

(
1

t3
+ 1

2t5

)√
t2 − 1dtr′dr′r dr

=
∫ ∞

1

∫ Rp

0

∫ Rp

0
e−2c(r+r′)r′dr′r dr

(
1

t3
+ 1

2t5

)√
t2 − 1dt

=
∫ ∞

1

e−4cRp (1 − e2cRp + 2cRp)2

16c4

(
1

t3
+ 1

2t5

)√
t2 − 1dt, (44)

where c = t/λ̄e. Combining Eqs. (42)–(44), we get∫ Rp

0

∫ Rp

0

[
K0

(
2

λ̄e
|r − r′|

)
− K0

(
2

λ̄e
|r + r′|

)]
r′dr′r dr

=
∫ ∞

1

[
3 − 6c2R2

p + 8c3R3
p − 3e−2cRp (1 + 2cRp)

24c4
− e−4cRp (1 − e2cRp + 2cRp)2

16c4

](
1

t3
+ 1

2t5

)√
t2 − 1dt

	 0.0070R5
p MeV. (45)

Finally, we can estimate Eq. (42) as

EVP 	 2π
(
ρ

p
0

)2 2αe2λ̄e

3
× 0.0070R5

p MeV

	 0.0047Z5/3 MeV. (46)

At the end of this section, effects of these terms on the
Coulomb displacement energy are discussed. The displace-

ment energy is defined as [36]

Edis = 〈P|T+[H, T−]|P〉
N

, (47)

where |P〉 is the parent nucleus, H is the total Hamiltonian,
and T± are the isospin raising and lowering operators. Auer-
bach et al. [36] estimated the contributions of the Coulomb ex-
change, proton finite-size effect, and the vacuum polarization
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TABLE II. Total energies for selected doubly magic and semimagic nuclei. All the corrections to the Coulomb interaction are considered
step by step, where the SAMi functional [50] is used for the nuclear EDF. The columns labeled “LDA” and “GGA” refer to the results without
the finite-size effects, while those labeled as “GGA + p-fin” and “GGA + pn-fin” refer to the results with proton and proton-neutron finite-size
effects. Moreover, “VP” refers the vacuum polarization, and “All” corresponds to “GGA + pn-fin + VP + EM spin-orbit.” The column labeled
as “All + ISB” is calculated with all the corrections and the SAMi-ISB functional [12]. All units are MeV.

Nuclei LDA GGA GGA + p-fin GGA + pn-fin GGA + pn-fin + VP All All + ISB

4He −27.5263 −27.6120 −27.6748 −27.6677 −27.6597 −27.6597 −29.3137
14O −100.7141 −100.9292 −101.5339 −101.4800 −101.3917 −101.3684 −102.6839
16O −130.4800 −130.6925 −131.2765 −131.2121 −131.1245 −131.1247 −134.6588
24O −173.0167 −173.2203 −173.7450 −173.6534 −173.5690 −173.5204 −173.5347
40Ca −347.0848 −347.4582 −349.3631 −349.1581 −348.7538 −348.7544 −353.5741
48Ca −415.6148 −415.9813 −417.7843 −417.5394 −417.1433 −417.0041 −417.2803
48Ni −352.6388 −353.1148 −356.0852 −355.8364 −355.1244 −355.3307 −349.7211
100Sn −811.6641 −812.3382 −817.9244 −817.3322 −815.5356 −815.5896 −808.9891
124Sn −1047.2633 −1047.9111 −1052.8150 −1052.1049 −1050.4031 −1050.5981 −1054.9999
132Sn −1103.0881 −1103.7325 −1108.4618 −1107.7192 −1106.0438 −1105.9931 −1101.0821
162Sn −1189.5521 −1190.1618 −1194.2258 −1193.4190 −1191.8476 −1192.1076 −1192.7669
208Pb −1636.6149 −1637.4850 −1645.7092 −1644.4772 −1640.7825 −1640.7246 −1633.4297
310126 −2131.4146 −2132.5366 −2145.5436 −2143.6650 −2136.3995 −2136.3397 −2125.0085

as −900Z/A keV, ∼−100 keV, and 8.5Z/A1/3 keV,
respectively.

Each contribution of the Coulomb energy to the displace-
ment energy is calculated from the simple estimations as
ED

Ci − EP
Ci, where EP

Ci and ED
Ci refer to the energies of each

contribution for the parent and daughter nuclei, respectively.
Since the proton and neutron numbers Z and N change
to Z + 1 and N − 1 in the isobaric analog resonance, the
contributions to the displacement energy of the Coulomb
exchange, proton finite-size effect, neutron finite-size effect,
and the vacuum polarization read approximately −460 keV,
−110 keV, −10 keV, and 7.8Z2/3 keV, respectively. These
values are consistent with Auerbach’s estimation if Z 	 A/2
is assumed.

IV. THEORETICAL CALCULATION AND DISCUSSION

The finite-size effects, the vacuum polarization, and the
EM spin-orbit interaction are implemented to the self-
consistent Skyrme Hartree-Fock plus RPA code named
SKYRME_RPA [49]. The ISB terms of the nuclear force are also
implemented to compare the contributions of the EM interac-
tion with that of the ISB terms of nuclear force. Details of the
ISB terms of nuclear force are shown in the Appendix. In this
calculation, spherical symmetry is assumed, and the pairing
correlations are not considered. A box of 15 fm with 0.1 fm
mesh is used. In each self-consistent step, the charge density
distribution and the Coulomb potential are calculated with
Eqs. (11) and (23), respectively, instead of the convolution in
the real space. More precisely, in each self-consistent step, the
nucleon densities ρτ and the Coulomb potential VC, obtained
by the SKYRME_RPA code in the real space, are transformed
to momentum space, and then ρ̃ch and ṼC are derived and
transformed back to the real space.

In this paper, the SAMi functional [50] is used for the nu-
clear EDF for most calculations, and the SAMi-ISB functional
[12] is used instead when the isospin symmetry breaking orig-
inated from the nuclear interaction is considered explicitly.

One may wonder whether the Skyrme functional should be
refitted. The coefficients of the Skyrme functionals are deter-
mined to reproduce the experimental total binding energies
and density distributions of the selected nuclei. In this paper,
our main motivation is to see how these corrections affect the
nuclear properties in the Skyrme Hartree-Fock calculations
instead of the comparison between the calculations and exper-
imental data. In short, this is a sensitivity study. If we wished
to compare with experimental data in detail, we would need a
refit of the Skyrme functional.

A. Systematic calculation

First of all, the systematic behavior of the contributions of
the finite-size effects, vacuum polarization, and EM spin-orbit
interaction are discussed. Some doubly magic and semimagic
nuclei are selected. The calculations are performed under the
assumption of spherical symmetry without pairing, which is
assumed not to affect the main conclusions of the present
paper, even for the semimagic nuclei.

In Table II, the total energies of the selected nuclei are
shown, where contributions are considered step by step to see
the effects of each term. In Fig. 1, the ratios of the Coulomb
direct and exchange energies calculated with the finite-size
effects to those without the finite-size effects, Efinite

Ci /Epoint
Ci

(i = d, x), are shown as functions of the mass number A.
It is seen that the proton finite-size effect makes the nuclei

more bound, for example, 580 keV and 8.2 MeV for 16O
and 208Pb, respectively. In contrast, the neutron finite-size
effect makes the nuclei less bound, for instance, 64 keV and
1.2 MeV for 16O and 208Pb, respectively.

From the point of view of the interaction, the finite-size
effect of protons makes the Coulomb interaction effectively
weaker, because ρch distributes more extensive and dilute than
ρp due to the proton finite size as shown in Eq. (38). In
contrast, the finite-size effect of neutrons makes the Coulomb
interaction effectively stronger, because the neutron radius
〈r2

n〉 is negative and hence neutrons effectively behave as

064311-7



NAITO, ROCA-MAZA, COLÒ, AND LIANG PHYSICAL REVIEW C 101, 064311 (2020)

90

92

94

96

98

100

0 40 80 120 160 200 240 280 320

E
fin

it
e

C
i

/E
p
oi

nt
C

i
(%

)

A

Direct (Proton)
Direct (Proton-Neutron)
Exchange (Proton)
Exchange (Proton-Neutron)

FIG. 1. Ratios of the Coulomb direct and exchange energies cal-
culated with finite-size effects to those without the finite-size effects,
Efinite

Ci /E point
Ci (i = d, x), shown as functions of the mass number A.

The ratios for the Coulomb direct and exchange terms only with the
proton finite-size effect are shown by the red solid and green dashed
lines, respectively. Those with both the proton and neutron finite-size
effects are shown by the blue long-dashed and purple dot-dashed
lines, respectively.

negative charge rather than as positive charge, which make
ρch distributes more compact and denser. The absolute value
of the proton radius |〈r2

p〉| is larger than that of the neutron
radius |〈r2

n〉|, and therefore, the proton finite-size effect is
more significant than the neutron finite-size effect as shown
in Fig. 1. Although the finite-size effects for light nuclei are
more significant than those for the heavy nuclei since Rp is
smaller, the absolute values themselves for the heavy nuclei
are more significant. It should be noted that even though the
neutron finite-size effect is smaller than the proton one, it is
not small enough to be neglected in heavy nuclei.

As shown in Table II, the vacuum polarization makes the
nuclei less bound, for example, 88 keV and 3.7 MeV for 16O
and 208Pb, respectively. The vacuum polarization contributes
to the total energy more than the difference between the
exact-Fock and the LDA Coulomb exchange energies and the
neutron finite-size effect. Hence, it is not small at all to be
neglected in heavy nuclei.

Among the contributions of the finite-size effects and the
vacuum polarization to the total energy, the proton finite-size
effect is dominant. The contribution of the vacuum polariza-
tion is larger than that of the neutron finite-size effect in the
heavy nuclei, whereas they are comparable in the light nuclei.

Next, the systematic behavior of these contributions to the
total energy are discussed. For this estimation, the Coulomb
direct and exchange energies calculated with the point-
nucleon approximation, i.e., Epoint

Cd and Epoint
Cx , are used. The

proton finite-size effect and vacuum polarization are defined
as the differences of the two total energies, i.e., E p-finite

tot −
Epoint

tot and Evacuum
tot − E pn-finite

tot where Evacuum
tot is the total energy

calculated with the all finite-size effects and vacuum polariza-
tion but without the EM spin-orbit interaction. All the energies
used here are calculated with the LDA Coulomb functional.

TABLE III. Parameters a and b for Eq. (48). For the neutron
finite-size effect, Eq. (49) is used instead of Eq. (48).

a (MeV) b

Direct Coulomb (LDA) 0.528757 1.6692
Exchange Coulomb (LDA) −0.390342 1.0009
Exchange Coulomb (GGA) −0.368013 1.0103
Proton finite size −0.0757012 1.0640
Neutron finite size 0.00706328 1.0620
Vacuum polarization 0.00354808 1.5765

These energies are fit to

E = aZb, (48)

whereas the neutron finite-size effect defined in term of
E pn-finite

tot − E p-finite
tot is fit to

E = aNb. (49)

These coefficients a and b are shown in Table III.
At first, the values of a and b are almost compatible with

the simple estimation performed in Sec. III. Also, as discussed
above, the proton finite-size effect is one order of magnitude
smaller than the exchange energy, and the neutron finite-size
effect and the vacuum polarization are one more order of
magnitude smaller, according to the values of a in Table III.
Since the value of b for the vacuum polarization is larger than
that for the neutron finite-size effect, the contribution of the
vacuum polarization to the total energy is larger than that of
the neutron finite-size effect in the heavy nuclei, as discussed
above.

At last, the EM spin-orbit interaction gives different effects
for the total energy in different nuclei. As expected, in the
spin-saturated nuclei, such as 4He, 16O, and 40Ca, the EM
spin-orbit interaction contributes to the total energy by only
a few keV. In contrast, in the spin-unsaturated nuclei, the
absolute values of its contribution to the total energy are
around 50 keV or more. For example, on the one hand, in
48Ca case, ν1 f7/2 orbital for neutrons is fully occupied, while
its spin-orbit partner ν1 f5/2 orbital is completely unoccupied.
The coefficient of Eq. (29) for the ν1 f7/2 orbital is negative.
On the other hand, in the 48Ni case, the π1 f7/2 orbital for
protons is fully occupied, while its spin-orbit partner π1 f5/2

orbital is completely unoccupied. The coefficient of Eq. (29)
for π1 f7/2 orbital is positive. Therefore, the contribution of
the EM spin-orbit interaction to the total energies for 48Ca
and 48Ni should be opposite, because the corresponding con-
tribution to the 40Ca core is almost zero. Indeed, as shown
in Table II, its contributions for 48Ca and 48Ni are 139 keV
and −206 keV, respectively. The absolute value itself reflects
the structure of the single-particle wave functions, in contrast
with the other contributions which have just monotonic Z or
N dependence.

All these corrections also change the order of some single-
particle levels, as well as the total energy, for example, 3s1/2

and 1h11/2 for protons and 1i13/2 and 3p1/2 for neutrons in
208Pb. These effects may become even more significant in
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TABLE IV. Charge radii for the selected nuclei. All units are fm.

Nuclei LDA All All + ISB

4He 2.087 2.087 2.069
14O 2.772 2.769 2.747
16O 2.771 2.768 2.758
24O 2.829 2.827 2.788
40Ca 3.486 3.482 3.475
48Ca 3.527 3.523 3.497
48Ni 3.794 3.787 3.834
100Sn 4.509 4.504 4.511
124Sn 4.691 4.686 4.680
132Sn 4.744 4.740 4.731
162Sn 4.979 4.976 4.965
208Pb 5.519 5.514 5.504
310126 6.336 6.331 6.321

nuclei with stronger Coulomb interaction, such as the proton-
rich and the superheavy nuclei.

The corrections to the Coulomb interaction are compared
with the ISB energies. In light nuclei, such as the 16O case,
the ISB terms of the nuclear force contribute to the total
energy more significantly than the corrections to the EM
interaction. However, in heavy nuclei, such as the 208Pb
case, the contribution of the ISB terms of the nuclear force
to the total energy is comparable to the corrections to the
EM interaction, especially, the proton finite-size effect and
the vacuum polarization. Therefore, once the ISB terms are
considered, these corrections to the EM interaction should be
also considered to keep the consistency.

The charge radii for the selected nuclei are shown in
Table IV. It is seen that the charge radii calculated in the LDA
and those with all the corrections to the Coulomb interaction
are the same at the 0.01 fm order. In contrast, the ISB terms
of the nuclear interaction can affect the charge radii around
0.1 fm. The corresponding radii become smaller, except 48Ni
and 100Sn.

B. Mirror nuclei mass difference

As a test of our framework, the mirror nuclei mass differ-
ence between 48Ca and 48Ni calculated with a combination
of the Coulomb LDA or all the corrections discussed above
with the present self-consistent finite-size effects (shown as
“All” in the table) and the SAMi or SAMi-ISB functional are
shown in Table V. Here, in “(All)” and “All,” the results by the
conventional finite-size effects and the present self-consistent
finite-size effects are shown, respectively. The experimental
data are given in AME2016 [51].

At the beginning of this section, we discuss that the re-
fitting of the functional is not needed unless the results are
compared with the experimental data. Nevertheless, we can
compare the calculation results with the experimental data in
the mirror nuclei mass difference, since the contribution of the
isospin symmetric part of the functional is basically canceled
out.

It is seen that the mirror nuclei mass difference calculated
with the Coulomb LDA functional and without the ISB terms
of the nuclear force deviate more than 4 MeV from the

TABLE V. Mirror nuclei mass difference between 48Ca and 48Ni
calculated with the combination of the Coulomb LDA or all the
corrections to the Coulomb interaction (All) and the SAMi or SAMi-
ISB functional. Here, “(All)” and “All” show the results by the
conventional finite-size effects and the present self-consistent finite-
size effects, respectively. The experimental data given in AME2016
[51] are also shown. All units are MeV.

Functional 48Ca 48Ni Difference

SAMi & LDA −415.6148 −352.6388 62.9760
SAMi & (All) −415.7756 −353.3874 62.3882
SAMi & All −417.0041 −355.3307 61.6734

SAMi-ISB & LDA −415.8529 −347.1168 68.7361
SAMi-ISB & (All) −416.0248 −347.8291 68.1957
SAMi-ISB & All −417.2803 −349.7211 67.5592

Expt. [51] −416.000928 −348.72 67.28

experimental data. Even with the ISB terms of the nuclear
force, still it deviates by more than 1 MeV although the result
is improved. If all the corrections to the EM contribution are
considered on top of the previous finite-size effects, the error
is reduced. Nevertheless, the error is still around 900 keV.
Once all the corrections with the novel self-consistent finite-
size effects are considered in addition to the Coulomb inter-
action, the result is further improved and agrees, finally, with
the experimental data within 300 keV error. We should note
that the refit of the SAMi functional may further improve the
description of the mirror nuclei mass difference.

The Nolen-Schiffer anomaly is a related topic to the mirror
nuclei mass difference [3–9]. The anomaly is the difference of
mirror nuclei mass difference between theoretical calculation
and experimental data. It is said that this difference comes
from both the ISB terms of the nuclear interaction and the
Coulomb interaction. In the present calculation, it is, actually,
seen that the ISB terms of the nuclear force and the correction
to the EM interaction reduce the anomaly.

V. CONCLUSION AND PERSPECTIVES

In this paper, the finite-size effects of protons and neutrons
as well as the vacuum polarization were considered in a
self-consistent Skyrme Hartree-Fock calculation. The electro-
magnetic spin-orbit interaction was considered perturbatively.
These contributions to the total energy and their systematic
behavior were discussed.

The proton finite-size effect makes the nuclei more
strongly bound, for example, for 8.2 MeV in 208Pb. In
contrast, the neutron finite-size effect makes the nuclei less
strongly bound, and its contribution is almost one order of
magnitude smaller than the proton contribution. The con-
tribution of the vacuum polarization to the total energy is
also non-negligible and makes the nuclei less strongly bound,
for example, by 3.7 MeV in 208Pb. The contribution of the
electromagnetic spin-orbit interaction to the total energy is
around 50 keV.

Systematically, the contribution of the isospin symmetry-
breaking terms of the nuclear force to the total energy is
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comparable to that of the proton finite-size effect in heavy
nuclei, while the former is still more significant than the
latter in light nuclei. The neutron finite-size effect and the
vacuum polarization are also non-negligible. Meanwhile, the
contribution of the electromagnetic spin-orbit interaction to
the total energy depends on the shell structure.

The mirror nuclei mass difference between 48Ca and 48Ni
was also calculated. All the corrections to the Coulomb func-
tional with the SAMi-ISB functional cooperate to reproduce
the mirror nuclei mass difference within 300 keV accuracy,
which is improved from that calculated with conventional
finite-size effects.

So far, the spherical symmetry is assumed and the pair-
ing correlations are not considered. After considering these
effects, the systematic study of the mirror nuclei mass dif-
ference is promising. The nuclear structure of the superheavy
elements is also an interesting topic for applying the present
scheme. Since the superheavy elements have larger Z , the
highly accurate estimation of the Coulomb contribution to the
binding energies is important.

Also, to reach a more accurate estimation of the Coulomb
contribution to the binding energy, study of the Coulomb
correlation energy is important, while this may have certain
model dependence because it also includes the effects coming
from the nuclear force.
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APPENDIX: ISOSPIN SYMMETRY-BREAKING TERM OF
SAMI-ISB FUNCTIONAL

In the SAMi-ISB functional [52], the Skyrme-like
zero-range charge-symmetry-breaking (CSB) and charge-
independence-breaking (CIB) interactions are

vCSB(r1, r2) = 1
4 (τz1 + τz2)s0(1 + y0Pσ )δ(r1 − r2), (A1)

vCIB(r1, r2) = 1
2τz1τz2u0(1 + z0Pσ )δ(r1 − r2), (A2)

respectively, where τzi is the z projection of the isospin
operator for the ith nucleon, and Pσ = (1 + σ1 · σ2)/2 is
the spin projection operator. The parameters, including the
errors attached to each parameter, are y0 = z0 = −1, s0 =

−26.3(7) MeV fm3, and u0 = 25.8(4) MeV fm3. For further
details on this functional, please see Refs. [12,46].

According to these interactions, the CSB and CIB Skyrme
energy densities in the Hartree-Fock calculation are [12]

ECSB[ρp, ρn] = s0(1 − y0)

8

(
ρ2

n − ρ2
p

)
, (A3)

ECIB[ρp, ρn] = u0

8

[
(1 − z0)

(
ρ2

n + ρ2
p

) − 2(2 + z0)ρnρp
]
.

(A4)

Accordingly, the ISB average potentials for protons and neu-
trons are

V p
ISB(r) = u0(1 − z0) − s0(1 − y0)

4
ρp(r)

− u0(2 + z0)

4
ρn(r), (A5)

V n
ISB(r) = u0(1 − z0) + s0(1 − y0)

4
ρn(r)

− u0(2 + z0)

4
ρp(r), (A6)

respectively.
Here, a simple estimation of the ISB energies is discussed.

The proton and neutron distributions are assumed to be the
hard sphere as in Sec. III:

ρτ (r) =
{
ρτ

0 r < Rτ ,

0 r > Rτ ,
(A7)

where Rτ is the radius of the proton or neutron distribution
and

ρτ
0 = 3Nτ

4πR3
τ

(A8)

is held (τ = p, n) with Nn = N and Np = Z .
The CSB energy in this simple estimation reads

ECSB =
∫

ECSBdr

= s0(1 − y0)

8

∫
[{ρn(r)}2 − {ρp(r)}2]dr

= s0(1 − y0)

8

(
4πR3

n

3

(
ρn

0

)2 − 4πR3
p

3

(
ρ

p
0

)2

)

= s0(1 − y0)

8

(
3N2

4πR3
n

− 3Z2

4πR3
p

)

= s0(1 − y0)

8

(
Nρn

0 − Zρ
p
0

)
, (A9)

and the CIB energy reads

ECIB =
∫

ECIBdr

= u0(1 − z0)

8

∫
[{ρn(r)}2 + {ρp(r)}2]dr

− u0(2 + z0)

4

∫
ρn(r)ρp(r)dr
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= u0(1 − z0)

8

(
4πR3

n

3

(
ρn

0

)2 + 4πR3
p

3

(
ρ

p
0

)2

)

− u0(2 + z0)

4

4πR3
p

3
ρn

0ρ
p
0

= u0(1 − z0)

8

(
3N2

4πR3
n

− 3Z2

4πR3
p

)
− u0(2 + z0)

4

3NZ

4πR3
n

= u0

8

[
(1 − z0)

(
Nρn

0 + Zρ
p
0

) − 2(2 + z0)Zρn
0

]
. (A10)

Here, the usual relationship Rn > Rp is assumed in Eq. (A10).
If Rn < Rp is held, for example, in proton-rich nuclei,

Eq. (A10) is rewritten as

ECIB = u0

8

[
(1 − z0)

(
Nρn

0 + Zρ
p
0

) − 2(2 + z0)Nρ
p
0

]
. (A11)

If ρn
0 = ρ

p
0 = ρ0/2 	 0.08 fm−3 is assumed as in Eq. (33),

the CSB and CIB energies, Eqs. (A9) and (A10), are evaluated
as

ECSB = s0(1 − y0)

8
(N − Z )ρ0 	 −0.526(N − Z ) MeV,

(A12)

ECIB = u0

8
[(1 − z0)(N + Z )ρ0 − 2(2 + z0)Zρ0]

	 [0.516(N + Z ) − 0.516Z] MeV 	 0.516N MeV.

(A13)
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