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Light p-shell nuclei with cluster structures (4 � A � 16) in nuclear matter
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The composition of hot and dense nuclear matter is calculated including the 1p-shell nuclei 4 � A � 16.
In-medium shifts, in particular Pauli blocking, are determined by the intrinsic wave function of the nuclei.
Results are given within a shell-model approach for the nucleon wave function. Light nuclei are not always
well described by the shell model. The “clustered” nucleus 8Be exhibits strong correlation effects because
of α-like clustering. Intrinsic cluster structures are also significant for the nuclei 6Li, 7Li, 7Be, and 9Be. The
contribution of the relatively rare elements Li, Be, and B, to the equation of state (EoS) of matter near the
saturation density is overestimated in simple approaches such as the nuclear statistical equilibrium (NSE) model.
Both the treatment of continuum correlations and the account of in-medium modifications are considered for the
contribution of 5He and 4H clusters. Compared to the extended NSE including unstable nuclei, the contributions
of the corresponding P3/2 channel with A = 5, Z = 2 and P2 channel with A = 4, Z = 1, respectively, to the EoS
are strongly suppressed at high densities owing to Pauli blocking effects. For the shifts of the binding energies
of the light p-shell nuclei, simple-fit formula are given to calculate the composition of hot and dense matter in a
wide parameter range.
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I. INTRODUCTION

Nuclear systems, such as nuclei, excited matter produced
in heavy-ion collisions, and nuclear matter found in compact
astrophysical objects, are strongly coupled quantum systems.
The traditional treatment [1] of dense nuclear systems which
is based on a single-nucleon quasiparticle approach, such as
the relativistic mean-field approximation, the shell model of
nuclei, and the transport models related to the Boltzmann
equation, has to be improved to describe quantum correla-
tions, in particular the formation of bound states (clusters).
Four-nucleon, α-like correlations have been considered to de-
scribe nuclei such as the Hoyle state of 12C (see Refs. [2,3] and
references given there), but are also of relevance to describe
the α decay of heavy nuclei [4]. The production of clusters in
heavy-ion collisions (HIC) (see, e.g., Refs. [5,6]), demands
the treatment of clusters in highly excited nuclear matter
which can be realized within a quantum statistical approach
[7]. In thermodynamic equilibrium, in simplest approximation
a mass action law is obtained describing chemical equilibrium
in a mixture of ideal, noninteracting components performing
reactive collisions, which is denoted as nuclear statistical
equilibrium (NSE) [8]. Improvements are obtained by taking
into account excited states, in particular the contribution of the
continuum to obtain virial expansions [7,9,10]. In nonequilib-
rium, codes such as the antisymmetrized molecular dynamics
(AMD) and quantum molecular dynamics (QMD) have been
developed to include cluster formation in the treatment of
HIC; see Ref. [11]. The equation of state of stellar matter in
a wide range of temperature T , baryon density nB = ntot

n +
ntot

p , and asymmetry Yp = ntot
p /nB is of interest in supernovae

explosions (see Refs. [12,13] and references given there), and
the account of few-nucleon correlations and cluster formation
is relevant for the treatment of different processes during the
evolution of compact astrophysical objects. As an alternative
to the total number densities ntot

τ of neutrons (τ = n) and pro-
tons (τ = p), the state of nuclear matter can also be described
by the chemical potentials μτ , in addition to T .

The simple NSE and its improvements considering excited
states and scattering phase shifts of the isolated few-nucleon
problem cannot be applied to baryon number densities near
the saturation density nsat = 0.15 fm−3 where the interaction
between the constituents cannot be neglected. A systematic
quantum statistical approach to thermodynamic equilibrium
can be given which uses the concepts of Green’s functions,
spectral functions, and frequency-dependent self-energy, for
which a cluster decomposition can be performed. A main
feature is that bound states can be treated as quasiparticles
with medium-dependent binding energies and wave functions.
They are obtained from an in-medium Schrödinger equation
derived within a Green’s function approach [7]. In addition
to the single-nucleon self-energy, the antisymmetrization of
the wave function (Pauli principle) is of relevance. Starting
from the mass action law at low densities, clusters become less
bound at increasing densities because of Pauli blocking. They
are dissolved at a critical density so that near the saturation
density a Fermi liquid model of single-nucleon quasiparticles
becomes applicable. In particular, the contribution of two-
nucleon correlation has been discussed at arbitrary densities
[14]. The inclusion of light clusters A � 4, i.e. deuteron d
(2H), triton t (3H), helion h (3He), and α (4He), has also been
investigated; see Ref. [15] and references given there. Only
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TABLE I. Data of (nearly) stable nuclei A � 16 as well as 5He and 8Be. Mass number A, charge number Z , binding energy per nucleon
BA,Z/A, and degeneracy factor g = 2J + 1 [22]. Solar element abundance: log10 relative to 12 for hydrogen; [square brackets] denote isotope
fraction [32]. Half-life in seconds, days, years, and gigayears according to Ref. [22]. Charge rms radii taken from Ref. [33]. Parameter values
B̄ (13), the ansatz Bs(A) = 1.324 A−1/6 fm−1 as well as the parameter β = B2

s /B2
p are also given.

A Z BA,Z
A [MeV] gA,Z Abundance/half-life rmscharge [fm] rmspoint [fm] B̄ [fm−1] Bs [fm−1] β

1 1 2 12 [0.99998] 0.8783 0
2 1 1.112 3 12 [0.00002] 2.1421 1.9538 0.627
3 1 2.827 2 12.32 y (β−) 1.7591 1.5242 0.928
3 2 2.572 2 10.93 [0.000166] 1.9661 1.7590 0.804
4 2 7.073 1 10.93 [0.999834] 1.6755 1.427 1.051 1.051
5 2 5.512 4 2.04 × 10−22 s
6 3 5.332 3 1.05 [0.07594] 2.589 2.435 0.731 0.982 2.533
7 3 5.606 4 1.05 [0.9241] 2.444 2.281 0.812 0.957 1.626
7 4 5.372 4 53 d (ec) 2.646 2.496 0.742 0.957 2.065
8 4 7.062 1 8.19 × 10−17 s
9 4 6.462 4 1.38 [1.0] 2.519 2.438 0.797 0.918 1.444
10 4 6.497 1 1.5 Gy (β−) 2.355 2.185 0.904 0.902 0.995
11 4 5.953 2 13 s (β−) 2.463 2.301 0.869 0.888 1.055
10 5 6.475 7 2.70 [0.199] 2.4277 2.263 0.873 0.902 1.089
11 5 6.928 4 2.70 [0.801] 2.4060 2.240 0.893 0.888 0.986
12 6 7.680 1 8.43 [0.98894] 2.4702 2.309 0.875 0.875 1.0
13 6 7.470 2 8.43 [0.01062] 2.4614 2.2994 0.886 0.864 0.939
14 6 7.520 1 5700 y (β−) 2.5025 2.3433 0.876 0.853 0.938
14 7 7.476 1 7.83 [0.99771] 2.5582 2.4027 0.854 0.853 0.996
15 7 7.699 2 7.83 [0.00229] 2.6058 2.4533 0.842 0.843 1.003
16 8 7.976 1 8.69 [0.99762] 2.6991 2.5522 0.814 0.834 1.059

first steps have been made to include higher clusters A > 4
[16] within this approach.

The present work is devoted to the investigation of clusters
with mass number 4 � A � 16 where, in addition to the
1s shell, the 1p shell is filled. A list of the corresponding
stable nuclei is given in Table I, together with some known
properties. There are some recent works to include 1p-shell
nuclei in the calculation of the equation of state and the
composition of hot and dense matter. In Ref. [17], unstable,
neutron-rich isotopes such as 4H, 5He, and isotopes with even
higher neutron content have been included in the NSE. A
strong dominance of neutron-rich isotopes is found at high
densities and low proton fraction Yp. In-medium effects may
be included within an excluded-volume approach [18] but the
dominance of unstable, neutron-rich isotopes at high densities
remains. Another approach to include 1p nuclei in the EoS
[19] has been proposed within a generalized RMF approach
[20], where all nuclei are considered as new quasiparticles
and the corresponding fields are coupled to the meson fields.
These semiempirical approaches should be founded by a more
systematic quantum statistical approach as indicated in this
work.

In this work, I focus on two aspects of the inclusion of light
p-shell nuclei, the in-medium modification and dissolution of
bound states at increasing density owing to Pauli blocking
and the account of continuum correlation within a generalized
cluster Beth-Uhlenbeck approach. Fit formulas are proposed
to reproduce the energy shifts and the virial coefficients, i.e.,
the partial intrinsic partition functions, which are needed to
calculate the composition of nuclear matter in a wide parame-

ter range. These expressions can be used for the evaluation of
the EoS but are also of interest for other applications such
as kinetic and transport processes in subsaturation nuclear
matter; see Ref. [11] and references given there.

The paper is organized as follows: After a short review of
the formalism in Sec. II with the focus on Pauli blocking, the
in-medium shifts of the binding energy of bound 1p nuclei
are discussed in Sec. III. Because Pauli blocking is connected
with the occupation in phase space, the wave function of
the bound states in momentum representation is essential and
will be discussed in Sec. III A. To discuss the contribution of
unstable nuclei such as 4H and 5He, it is necessary to consider
the continuum correlations in Sec. IV. Illustrative calculations
for the composition of nuclear systems are presented and
discussed in Sec. V. One finds that in comparison to the NSE,
the mass fraction of 1p nuclei is significantly reduced near
the saturation density if in-medium effects are systematically
taken into account.

II. BASIC EXPRESSIONS

A. Composition of dense nuclear matter

Within a strict quantum statistical approach [15], nuclear
matter in thermodynamic equilibrium is characterized by the
temperature T and the chemical potentials μτ . Neglecting
weak processes, there are two conserved quantities, the total
number of neutrons and protons (bound in nuclei and free
ones) with the corresponding chemical potentials μn, μp. As
an equation of state, the total densities ntot

τ of neutrons and
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protons are obtained using the method of thermodynamic
Green’s functions via the single-nucleon spectral functions or
the related self-energy. At subsaturation baryon densities nB =
ntot

n + ntot
p � nsat, I am interested in cluster formation which is

described by the cluster decomposition of the self-energy. As
a result, the total densities of neutrons and protons are given as
the sum of free nucleons and the nucleons bound in clusters,

ntot
n (T, μn, μp) = 1

�

∑
A,Z,J,ν,P

N fA,Z (EA,Z,J,ν (P; T, μn, μp))

=
∑
A,Z,J

Nnpart
A,Z,J (T, μn, μp),

ntot
p (T, μn, μp) = 1

�

∑
A,Z,J,ν,P

Z fA,Z (EA,Z,J,ν (P; T, μn, μp))

=
∑
A,Z,J

Znpart
A,Z,J (T, μn, μp) , (1)

i.e., the sum over the partial densities of the different channels
characterized by {A, Z, J}. N = A − Z is the neutron number,
� is the volume, and P denotes the center of mass (c.m.)
momentum of the cluster (or, for A = 1, the momentum of
the nucleon). The internal quantum state ν describes possible
intrinsic excitations of the A-nucleon cluster, and

fA,Z (ω; T, μn, μp) = 1

exp[(ω − Nμn − Zμp)/T ] − (−1)A

(2)

is the Bose or Fermi distribution function for even or odd A,
respectively. For parameter values considered here, the free
nucleons may become degenerate. For all other clusters, the
classical approximation is possible at T > 1 MeV.

In the low-density, low-temperature limit, one can take the
ground-state energies (the negative of the binding energies)

EA,Z,J,ν (P; T, μn, μp) ≈ E (0)
A,Z,J + h̄2P2/(2Am) (3)

and perform the summation over P and ν (degeneracy factor
2J + 1) so that the partial density of channel {A, Z, J} results
as

npart,0
A,Z,J (T, μn, μp) = (2J + 1)

(
AmT

2π h̄2

)3/2

e(−E (0)
A,Z,J +Nμn+Zμp)/T .

(4)

Here, m denotes the nucleon mass (the proton-neutron mass
difference is neglected). The bound state energies E (0)

A,Z,J =
−BA,Z and the degeneracy 2J + 1 are found in the tables of
nuclei [21,22]. This approximation for the EoS is also denoted
as nuclear statistical equilibrium (NSE). It describes an ideal
mixture of nuclei (bound states), interacting only occasionally
via reactive collisions.

The simple approximation (4) can be improved in dif-
ferent ways. First, not only the ground state E (0)

A,Z,J but also
the excited states ν of the nucleus with quantum numbers
{A, Z, J} contribute to the partial densities (4). In particular,
the scattering states describing continuum correlations have
to be taken into account. If the scattering states of two clusters
are described by the scattering phase shifts δA,Z,J (E ) with

ν → E as the energy of relative motion, the virial EoS is
derived from a quantum statistical approach [7,9,10,14,23,24].
This contribution of scattering states as given by the Beth-
Uhlenbeck equation is discussed in Sec. IV.

Second, with increasing density, the approximation of
noninteracting clusters is no longer possible, and medium
modifications have to be considered. A quantum statistical
approach can be used; see Ref. [15] and further references
given there. In particular, a quasiparticle approach can be
given where the energies of the nucleons and of the nuclei,
EA,Z,J,ν (P; T, μn, μp), are depending on the temperature and
baryon densities of the nuclear medium. In addition, the
dependence on the c.m. momentum P is more general than
the expression (3). These modifications are given by the self-
energy of the single-nucleon states and the Pauli blocking on
the interaction within the clusters; for details, see Ref. [15] for
A � 4. Also the bound-state wave functions and the scattering
phase shifts are modified. These medium modifications for the
bound states with 4 � A � 16 are discussed in Sec. III.

B. In-medium shift of bound nuclei

In the low-density limit, the virial form of the EoS can be
calculated knowing the empirical values of the cluster binding
energies and the scattering phase shifts. The knowledge of the
interaction potential is not necessary. This is not the case at
higher densities where the medium modifications have to be
taken into account. Within the quantum statistical approach,
one has to solve the A-particle in-medium Schrödinger equa-
tion (momentum representation)[

Equ
τ1

(1) + · · · + Equ
τA

(A) − EA,Z,J,ν (P; T, μn, μp)
]

× 
AνP(1 . . . A) +
∑
1′...A′

∑
i< j

[
1 − fτi (i) − fτ j ( j)

]

× V (i j, i′ j′)
∏

k �=i, j

δkk′
AνP(1′ . . . A′) = 0, (5)

where 1 = {p1, σ1, τ1} denotes momentum, spin, and
isospin variables. Equ

τ1 (1) are quasiparticle energies which
are obtained from a frequency-dependent self-energy.
Parametrizations for the quasiparticle energies [20] can
be used which are derived from relativistic mean-field
approximations such as the density-dependent relativistic
mean-field (DD2-RMF) approximation [25] or an effective
mass approximation. The self-energy shift acts for the bound
states as well as for the continuum and has no influence on
the binding energy in the rigid shift approximation where
the p dependence of the shift is neglected. Then, it can be
implemented in the chemical potential. Within the effective
mass approximation, a minor effect on the shift of the binding
energy was obtained in Ref. [26].

More important is the Pauli blocking given by the occu-
pation number fτi (i) of the single-nucleon state i in front of
the interaction potential in Eq. (5). Neglecting the correlations
in the surrounding medium, one can use a Fermi distribution
function with effective values for temperature and chemi-
cal potential to approximate the actual occupation numbers.
Single-nucleon states which are already occupied cannot be
used to build up the bound state wave function 
AνP(1 . . . A).
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Fermi sphere 
px 

py 

pz 

P 

FIG. 1. Pauli blocking: In momentum space {px, py, pz}, the
Fermi sphere is occupied. A bound state is formed around the c.m.
momentum P using free phase space. Contributions of the occupied
Fermi sphere cannot be used to form the bound-state wave function.

As a consequence, the binding energy −EA,Z,J,ν (P; T, μn, μp)
is shifted, depending on the cluster intrinsic quantum numbers
ν and the c.m. momentum P, but also on temperature T and
chemical potentials μτ . A schematic representation of the
Pauli blocking and its dependence on the c.m. momentum P
is shown in Fig. 1.

For the light clusters A � 4, the Pauli blocking has been
discussed in the literature [15,26,27]. An effective separable
potential V (i j, i′ j′) has been considered which reproduces
known properties, in particular the binding energies and rms
radii. Similar calculations to determine the in-medium energy
shifts as function of temperature, densities of protons and
neutrons, and the c.m. momentum can also be performed for
larger, weakly bound clusters; see Appendix A.

For large numbers A, an appropriate description of the
nucleon wave function is the shell model where the A-nucleon
wave function is approximated by the antisymmetrized prod-
uct (Slater determinant) of single-nucleon wave functions
obtained from an effective potential V mf (1, 1′). A widely used
local potential is the Woods-Saxon potential [28]. Bound and
scattering states are easily obtained from a separable potential
[29,30], which will also be used here; see Appendix B. Note
that any local potential can be expressed as sum of separable
potentials [31].

Within the shell model, the nucleons are moving indepen-
dently on single-particle orbits. Instead of Eq. (5), one has to
solve the single-nucleon wave equations

Equ
τ1

(1) ψ1νP(1) +
∑

1′

[
1 − fτ1 (1)

]
V mf (1, 1′) ψ1νP(1′)

= Equ
1ν (P; T, μn, μp) ψ1νP(1), (6)

where the dependence of the c.m. momentum P results from
the relative motion of the Fermi distribution fτ1 (1). The Pauli
blocking shift of the single-nucleon states follows as

EPauli
1ν (P; T, μn, μp)

=
∑
11′

ψ1νP(1) fτ1 (1)V mf (1, 1′)ψ1νP(1′). (7)

An important ingredient to calculate in-medium effects is
the nucleon wave function of the A-nucleon cluster. In the
simplest form of a density functional approach, the Thomas-
Fermi model, the many-particle wave function is approx-
imated locally by plane waves, and shell effects are not
described. The shell model starts from the approximation of
the antisymmetrized product of single-nucleon quasiparticle
orbits and has to include correlation effects. Alternative con-
cepts to approximate the many-nucleon wave function are
based on the cluster model which adequately includes, for
instance, α-like clustering in light nuclei, in particular 8Be or
the Hoyle state of 12C; see Refs. [2,3] and Sec. III C below.

III. PAULI BLOCKING OF p-SHELL NUCLEI

A. Intrinsic nucleon wave function of a cluster

To calculate the in-medium shifts, the intrinsic wave func-
tion of the nucleons in the nucleus (cluster) is needed. I
focus here on the Pauli blocking which is responsible for
the disappearance of bound states with increasing density.
As seen from Fig. 1, this effect is determined by the wave
function in momentum space and the overlap with the Fermi
distribution function. Therefore, in this section I intend to find
appropriate approximations for the intrinsic wave function.
The self-energy corrections cancel nearly with the shift of
the continuum and give only a small contribution to the
in-medium shift of the binding energy which describes the
energy difference, but must be included in the bound-state
energy EA,Z,J,ν ; see Ref. [26] and Sec. V.

One can try to extract the wave function from empirical
data, in particular the rms radii; cf. Ref. [27] for the light
1s nuclei A � 4. In Sec. III B, I consider the nuclear shell
model. The 1p nuclei with 5 � A � 16 are described by the
successive occupation of the 1p orbit. Independent mean-
field orbitals are considered, while correlations and spin-
orbit interaction are neglected. To treat strong correlations
in the nucleon wave function, the formation of subclusters is
discussed in Sec. III C.

I use Gaussian wave functions, which have the advantage
that the center-of-mass (c.m.) motion can be separated from
the intrinsic motion. The Gaussian wave function has been
considered in Ref. [26] for the light nuclei and compared to a
Jastrow function approach. The differences of the results for
the Pauli blocking shift are small so that it can be concluded
that details of the wave function are not very important; only
the global distribution in phase space and the overlap with the
Fermi sphere are relevant.

The shell-model wave functions of interest are the 1s and
1p states with different width parameters Bs, Bp, respectively,

ψ1s(r) ∝ e−r2B2
s /4 Y00(θ, φ),

ψ1p(r) ∝ e−r2B2
p/4 r Y1m(θ, φ), (8)

or, in Fourier space,

ψ1s(p) ∝ e−p2/B2
s Y00(θ, φ),

ψ1p(p) ∝ e−p2/B2
p pY1m(θ, φ). (9)
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The ratio of the squared width parameters will be denoted by
β = B2

s /B2
p. The A-nucleon wave function


A,ν (1, . . . , A) = A{
ψ1s,ν1 (1) . . . ψ1s,ν4 (4)

× ψ1p,ν5 (5) . . . ψ1p,νA (A)
}

(10)

is approximated by the antisymmetrized product (Slater deter-
minant) of occupied orbitals, ν denotes the quantum numbers
of the cluster, and the intrinsic quantum number νi contains
spin and isospin of the single nucleon.

The point rms radius of the A-nucleon cluster follows as
square root of

〈r2〉A,ν = 1

A
〈
A,ν |

A∑
i

(ri − Rcm )2|
A,ν〉, (11)

with the c.m. position Rcm = A−1 ∑A
i ri. For A � 4, the

nucleons occupy 1s orbits. After introduction of Jacobi co-
ordinates, the c.m. part can be separated, and the intrinsic part
gives [26]

〈r2〉A,ν = 3(A − 1)

A B2
s

, A � 4. (12)

The same result is obtained if taking Rcm = 0 so that r1 =
−r2 − · · · − rA.

For larger nuclei 4 � A � 16, the 1p orbitals are succes-
sively occupied. Assuming β = 1, i.e., assuming Bs = Bp and
denoting this common value as B̄, one obtains for the point
rms radii the square root of

〈r2〉A,ν = 3(A − 1) + 2(A − 4)

A B̄2
, 4 � A � 16, (13)

which can be used to derive this common parameter B̄ from
the observed rms radii.

For β = B2
s /B2

p �= 1, the expressions for the rms radii are
more complex. As example, for A = 6 one finds (A3)

〈r2〉6Li = β

6B2
s

21 + 160/β + 382/β2 + 688/β3 + 288/β4

(1 + 2/β )(3 + 8/β + 16/β2)
.

(14)
For 4 � A � 16 and arbitrary β, as approximation to re-

sults like Eq. (14) I assume the sum of a contribution from the
1s orbit (four nucleons) and a contribution from the 1p orbit
[(A − 4) nucleons],

〈r2〉A,ν ≈ 9

A B2
s

+ 5A − 20

A B2
p

, 4 � A � 16. (15)

The nucleon wave functions should reproduce the measured
rms radii shown in Table I. This is essential for the correct
determination of the distribution in momentum space and the
calculation of Pauli blocking.

In Table I, the stable nuclei with mass number A � 16 are
shown, together with nuclei with half-life larger than 1 s. For
comparison, the nucleus 5He and the interesting nucleus 8Be
are also included. The binding energy per nucleon BA,Z/A [22]
and degeneracy are given. Note that the binding energy per
nucleon for 8Be is quite large compared to the neighboring
nuclei. However, it is not stable as shown by the very short
half-life. It decays into two α particles, which have even

0 2 4 6 8 10 12 14 16
mass number A

0

0.2

0.4

0.6

0.8

1

B
 [

fm
-1

]

B
B

s

B
p

FIG. 2. The range parameter B of the Gaussian orbits. B̄ accord-
ing to (13) (blue crosses) as well as Bs (green circles) and Bp (red
plus) as function of the mass number A.

higher values for the binding energy per nucleon. There is also
no stable nucleus with the mass number A = 5. Within the
shell-model approach, the nucleon added to the 4He core has
to be positioned in the 1p state at higher kinetic energy so that
binding does not occur. 5He-like correlations are discussed
below in Sec. IV B. All other nuclei have a binding energy
larger than the sum of the binding energies of respective
cluster components.

The unstable, long-living isotopes given in Table I have
weak interaction decays (electron capture for 7Be, β− for
3H, 10Be, and 11Be). For the stable nuclei, the solar element
abundances are given, in addition to the isotope fractions
[32]. Compared to the elements C, N, and O, the clustered
“rare” elements Li, Be, and B have very low abundance.
Note that missing bound nuclei with A = 5, 8 are relevant for
nucleosynthesis in astrophysics.

In Table I, values for the charge rms radii and point
rms radii, rms2

point = rms2
charge − 0.87832 fm2, are taken from

Ref. [33]. The rms radii do not exhibit a simple dependence
on A as expected, e.g., for a liquid drop model. Details of
the A-nucleon wave function are of relevance. The nuclear
shell model describes already important properties of the A-
nucleon wave function. Correlations which also influence the
rms radii, in particular clustering [2], are discussed below in
Sec. III C.

The deuteron is weakly bound and therefore extended in
configuration space. The difference of the rms radii of t and h
is well understood; see Ref. [27], Appendix A. The α particle
is a compact, strongly bound nucleus. The wave functions of
these light nuclei are reasonably described by a Gaussian 1s
wave function [26]. The calculation of B̄ according to Eq. (13)
assuming β = 1 is shown in Table I; see also Fig. 2. A smooth
behavior is obtained for A � 10. The clustered nuclei with
6 � A � 9 demand a further discussion of the nucleon wave
function.

In the general systematics (see Ref. [33]), the rms value
for 6Li is relatively large. Within the nuclear shell-model
approach, two nucleons are positioned in the 1p state weakly

064310-5



GERD RÖPKE PHYSICAL REVIEW C 101, 064310 (2020)

TABLE II. Potential parameter V WS
0,s ,V WS

0,p and Pauli blocking shift EPauli
A,Z (P = 0; T, nB,Yp) ≈ nB δEPauli

A,Z (T ), approximated by two
interpolation fits. First version: δEPauli

A,Z (T ) ≈ A aAZ exp(−bAZ T ). Second version: δEPauli
A,Z (T ) ≈ A fAZ/(T + gAZ )3/2. Units: MeV, fm.

Bs V WS
0,s Bp V WS

0,p aAZ bAZ fAZ gAZ

A Z [fm−1] [MeV] [fm−1] [MeV] [MeV fm3] [MeV−1] [MeV5/2 fm3] [MeV]

4 2 1.051 73.7 796.1 0.06002 50621 14.291
6 3 0.982 63.8 0.617 35.2 640.6 0.06427 35278 12.771
7 3 0.957 60.8 0.751 41.6 599.9 0.06188 35845 13.624
7 4 0.957 60.8 0.666 35.2 598.4 0.06440 32834 12.737
9 4 0.918 56.8 0.764 40.5 549.3 0.06094 33943 13.990
10 4 0.902 55.3 0.904 61.0 541.5 0.05148 47499 18.281
11 4 0.888 54.3 0.865 54.1 532.4 0.05290 46823 18.482
10 5 0.902 55.3 0.864 53.8 539.4 0.05414 42678 16.916
11 5 0.888 54.3 0.894 59.7 534.8 0.05068 48450 18.730
12 6 0.875 53.3 0.875 56.6 529.1 0.05085 47663 18.653
13 6 0.864 52.7 0.892 60.9 531.7 0.04821 53382 20.217
14 6 0.853 52.0 0.881 59.5 531.9 0.04801 53891 20.358
14 7 0.853 52.0 0.855 54.0 526.8 0.05039 48385 18.929
15 7 0.843 51.6 0.842 52.2 528.1 0.05071 47916 18.763
16 8 0.834 51.2 0.810 46.9 524.2 0.05297 43513 17.555

bound to the α-like core. One can account for weakly bound,
more extended nucleons in the 1p state if one constructs
the shell-model wave function (10) with different parameter
values Bs, Bp, i.e., with β �= 1. Strong deviations are expected
for the clustered nuclei 6Li, 7Li, 7Be, and 9Be, whereas the
nuclei with A � 10 behave smoothly.

For an exploratory calculation within a shell-model ap-
proach, I assume that the inner 1s wave function changes
smoothly if A is increasing. With the ansatz Bs(A) =
1.324 A−1/6 fm−1 the values B̄, Table I, are approximately
reproduced for A � 10. Then, the parameter values Bp given
in Table I follow from Eq. (15). For A = 6, the value Bs(6) =
0.982 fm−1 is estimated. To reproduce the empirical value
of the point rms radius of 6Li, with Eq. (14) one finds β =
2.533, i.e., Bp = 0.617 fm−1. These values are also confirmed
by a more detailed six-nucleon calculation given below in
Appendix A.

The results shown in Table I and Fig. 2 describe only
properties of the wave function as derived from the rms radii.
The α-like core changes smoothly, but the outer 1p nucleons
show a particular behavior for 5 � A � 9. Small values of Bp

means that the 1p orbital is very extended. As a consequence,
the density is low, and correlation effects become relevant.
A signature is cluster formation which appears in the low-
density regions, as known from the Hoyle state. Here, the
many-nucleon wave function has another structure. For 8Be, it
is described in good approximation by the Tohsaki-Horuichi-
Schuck-Röpke (THSR) wave function [2]. Clustering in nu-
clei [34–36] will be discussed below in Sec. III C.

B. Shell-model approach

For large numbers A, an appropriate description of the
nucleon wave function is the shell model where the single-
nucleon wave functions are obtained from an effective po-
tential. Within local potentials, a well-known example is the

Woods-Saxon potential

V mf,WS(r) = V WS
0 /[1 + e(r−RA )/a]. (16)

Typical parameter values which reproduce the properties of
heavy nuclei are V WS

0 = 52.06 MeV, RA = 1.26A1/3 fm, and
a = 0.662 fm [28]. However, the light nuclei are not well
described by these fit parameters.

To calculate Pauli blocking, one needs the effective poten-
tial to reproduce the nucleon wave functions. I take the general
form (16) with parameters which reproduce the rms values.
Within a variational approach, I consider the Gaussians as
class of wave functions and find the parameter values of (16)
for which the solutions of the wave function reproduce the
values of Bs and Bp = Bsβ

−1/2 presented in Table I. From the
three parameters V WS

0 , RA, and a, occurring in Eq. (16), I fix
RA = 1.26A1/3 fm and a = 0.662 fm as given above. Thus, I
consider V WS

0 as a fit parameter to reproduce the rms values
of the corresponding nucleon wave functions. The solutions
V WS

0,s ,V WS
0,p are given for the A � 16 nuclei in Table II. The

values V WS
0,s are consistent with the value V WS

0 [28] for the
larger nuclei. The values Bs(A), Bp(A) are also shown in in
Fig. 2. The decrease of Bs for increasing A is given by the
ansatz Bs(A) = 1.324 A−1/6 fm−1 given above and describes
the smooth change of the α-like 1s core with increasing A.
The values of Bp show strong deviations from Bs for small
A < 10. This may be considered as a signature that the wave
function of these exotic nuclei is not well described by the
shell model as discussed in Sec. III C.

With the potential, one can calculate the Pauli blocking
shift of the cluster as the sum over the shift (7) of the single-
nucleon states. Approximating the Fermi distribution by the
classical distribution

fτ (1) ≈ nτ

2

(
2π h̄2

mT

)3/2

e−h̄2 p2
1/(2mT ) (17)
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FIG. 3. Pauli-blocking shift δEPauli
AZ (T ) of 1s, 1p nuclei (A � 16)

at T = 5 MeV. Shell-model calculations (blue crosses) are compared
to cluster model calculations (red circles). The green diamond gives
the result of a microscopic calculation for 6Li. Values for A < 4 are
taken from Ref. [26].

valid in the low-density region (μτ < 0), a linear dependence
on the baryon density results. In general, one has

EPauli
A,Z (P; T, μn, μp)

=
∑

ν

EPauli
1,ν

= nBFA,Z (Yp) δEPauli
A,Z (P; T ) + O(

n2
B

)
. (18)

For symmetric matter (nn = np) follows FA,Z (Yp) = 1, and for
asymmetric matter one has

nB FA,Z (Yp) = 2

A
(Nnn + Znp). (19)

Results are presented here for P = 0. For the light 1s
elements, the P dependence is discussed in Ref. [15]. Accord-
ing to Eqs. (7) and (18), one has δEPauli

A,Z (T ) = 4 δEPauli
AZ,s (T ) +

(A − 4) δEPauli
AZ,p (T ). The separate contributions of the four

nucleons in the s orbit and the (A − 4) nucleons in the p orbit
are given in Appendix C, Table VIII, for different T ; see also
Fig. 3. Interpolations for δEPauli

A,Z (T ) are shown in Table II; see
Sec. III D below.

A consequence of the Pauli blocking is that the in-
medium binding energy of the cluster is decreasing with
increasing density. In Ref. [7], the Mott density nMott

A,Z (T ) =
BA,Z/δEPauli

A,Z (P = 0, T ) has been introduced, characterizing
the density where the bound state is dissolved. It depends
on T as shown in Table VIII of Appendix C. In general,
the Mott condition BA,Z − EPauli

A,Z (P; T, μn, μp) = 0 gives a
critical baryon density which depends not only on T but also
on P and asymmetry. In the case of 6Li, one has the situation
where the bound state dissolves into a (medium-modified) α

particle and two nucleons. This leads to further reduction of
the Mott density.

Note that the values for the Mott density given in Table VIII
in Appendix C cannot be interpreted such that any A-nucleon
correlations disappear for increasing density at this value.

Above the Mott density, bound states may exist for P �= 0
where the blocking is smaller; see the decreasing overlap with
increasing |P| in Fig. 1. In addition, correlations are present
in the continuum (see Sec. IV B below) and contribute to the
composition of nuclear matter above the Mott density [14].

C. Cluster model

The main issue to calculating the Pauli blocking is the
knowledge of the many-nucleon wave function, which deter-
mines the phase space occupation. The shell model is based
on the concept of independent motion in a mean-field po-
tential. As a quasiparticle approach, correlations between the
nucleons are neglected. However, this model is problematic
for nuclei with small mass numbers.

The “clustered” elements Li, Be, and B are weakly bound
p-shell nuclei which demand special treatment. Whereas the
ground states of C, N, and O (12 � A � 16) may be reason-
ably approximated by a shell model, it fails for the lighter
nuclei because of the strong clustering contribution to the
ground-state wave function. Clustering in nuclei is treated by
the resonating group method (RGM) and related approaches;
see Refs. [37–40] and references given there.

A striking example is 8Be. In contrast to other light nα

nuclei which are stable and have relative large binding energy,
8Be (n = 2) is unstable and decays in two α particles; see
Table I. The reason is the strong quartet clustering, and ab
initio calculations [41] show a dumbbell-shaped intrinsic den-
sity distribution. Similar to the Hoyle state which also clearly
shows a cluster structure, the THSR approach [2] has been
worked out to describe α-like clustering in nuclei. Significant
cluster structures are also observed in the neighboring nuclei
7Li, 7Be, and 9Be using AMD (antisymmetrized molecular
dynamics) calculations [36]. For recent inelastic scattering,
see Ref. [42]. Whereas 9Be can be discussed as a two-α bound
state hold together by the additional neutron, 7Li and 7Be can
be considered as bound states of α + 3H and 3He, respectively.
Also, 6Li may be contain deuteron-like correlations in addi-
tion to the α particle. The density distribution of the intrinsic
ground state of 9Be is shown in Ref. [34].

The wave function of the cluster model is given by the anti-
symmetrized product of the wave functions of the constituent
subclusters. For instance, the THSR approach considers 8Be
as antisymmetrized product of two α-like Gaussians with
two different width parameters describing the intrinsic motion
and the center-of-mass motion of the constituent subclusters.
The intrinsic density distribution of these clustered nuclei is
characterized by two α-like cluster for 8Be and 9Be. The Pauli
blocking shift results mainly from the blocking of the intrinsic
motion of these subclusters, so I approximate this by the sum
of the Pauli blocking of the constituents. Considering 7Be, 7Li,
and 6Li in the same way, I calculate the Pauli blocking shifts
as the sum of the shifts of the constituent subclusters. The
shifts of the corresponding light clusters are given in Ref. [26]
(denoted by asterisks). Using the expression (46) of Ref. [26]
to calculate the Pauli blocking shifts of the constituents, one
finds

EPauli
A,Z (P; nB,Yp, T ) ≈ nB FA,Z (Yp) A

fA,Z

(T + gA,Z )3/2
, (20)
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TABLE III. Cluster states: A∗ (the asterisk denotes that information about the shifts is taken from Ref. [26]). Ac denotes the adapted α shift
from shell-model calculation. Pauli blocking shift EPauli

A,Z (P = 0; T, nB,Yp) ≈ nB δEPauli
A,Z (T ) is approximated by two interpolation fits. First

version: δEPauli
A,Z (T ) ≈ A aAZ exp(−bAZ T ). Second version: δEPauli

A,Z (T ) ≈ A fAZ/(T + gAZ )3/2. Units: MeV, fm.

δEPauli
A,Z (5)/A δEPauli

A,Z (20)/A aAZ bAZ fAZ gAZ

A Z [MeV fm3] [MeV fm3] [MeV fm3] [MeV−1] [MeV5/2 fm3] [MeV]

2* 1 384.4 79.0 695.6 0.12216 8715.8 3.011
3* 1 524.8 160.8 791.1 0.08550 23175 7.493
3* 2 528.5 146.3 831.5 0.09412 19482 6.0765
4* 2 662.5 241.9 931.3 0.07117 41092 10.670
4 2 597.3 252.1 796.1 0.06002 50621 14.291
6* 3 569.8 187.6 834.7 0.07997 28374 8.545
6c 3 526.5 194.4 737.5 0.07096 32603 10.673
7* 3 603.5 207.1 869.1 0.0762 32990 9.406
7c 3 566.3 212.9 787.5 0.06908 37030 11.237
7* 4 605.0 200.9 882.9 0.07897 30926 8.776
7c 4 567.9 206.7 799.6 0.07178 34554 10.480
9* 4 588.8 215.0 827.9 0.07117 36527 10.670
9c 4 531.0 224.0 707.7 0.06002 44996 14.291

with FA,Z (Yp) given by Eq. (19). As before, I take P = 0,
neglecting the P dependence of the Pauli shift. Values for the
parameter fA,Z and gA,Z are given in Table III. The Gaussian
approach for the wave functions is used, but for consistency
the shift of the α particle is taken according to the present
shell-model approach, Table II, which slightly differs because
the c.m. motion is not separated. These cluster values are
denoted by c. They are used in the further discussion. Results
are also shown in Fig. 3.

In Appendix A, the cluster model approximation described
here is checked by considering the lightest clustered nucleus
6Li. A microscopic calculation is performed using an effective
nucleon-nucleon interaction potential and separating of the
c.m. motion. A large value of the Pauli blocking is obtained;
see Table V in Appendix B. Note that the Pauli blocking is
stronger for the cluster structure than the shell-model value.
The wave function in the 1s state is large at p = 0, but goes
to zero for the 1p state so that the overlap with the Fermi
distribution becomes small.

D. Interpolation formula

Let us consider the contribution to the energy shift,
Eq. (18), which is linear in the baryon density. A calculation
of the full density dependence of the energy shift has been
performed for the deuteron [14], which shows that the con-
tribution of correlations to the density is strongly suppressed
above the Mott density. For the light elements, an expres-
sion for the contribution ∝n2

B has been given in Ref. [15].
As example, the quadratic term ∝n2

B for the energy shift
of 5He is calculated below in Eq. (42). I suppose that the
linear term of the energy shift is sufficient to describe the
Mott effect. The higher order terms of the density expansion
may become relevant near the saturation density. They need
a special treatment that is in general beyond the scope of
the present work. One can expect that near the saturation
density any correlations beyond the quasiparticle approach
are fading away. A detailed description of this behavior is

available at present only for some special cases such as 2H and
5He [14].

Calculations for the Pauli blocking shift δEPauli
A,Z (T ) have

been performed for all p-shell nuclei for 1 MeV � T �
20 MeV and baryon densities up to the Mott density; see,
e.g., Table VIII in Appendix C. To implement the in-medium
shifts in calculations of the composition of nuclear matter and
related properties, I propose interpolation expressions for the
Pauli blocking shift

EPauli
A,Z (P; T, nB,Yp) ≈ nB FA,Z (Yp) A aA,Z e−bA,Z T , (21)

where the dependence on P is neglected, thus taking P = 0.
With the results shown in Table VIII in Appendix C, one
obtains from a least square deviation fit the values aA,Z and
bA,Z given in Tables II and III; see also Fig. 4. The relative
deviations of the interpolation fit (21) are less than 2% in the
region considered here.

A similar fit (20) has been proposed in Ref. [26] for the
light cluster A � 4. The values fA,Z and gA,Z are also given
in Tables II and III. The relative deviations are less than 4%.
Within the parameter region discussed here, both interpolation
formulas give similar results. However, outside this region,
(20) overestimates the behavior at low temperatures where the
phase space near p = 0 is relevant. There, the 1p wave func-
tion has zero density so that Pauli blocking is less efficient.
This lower value for the Pauli blocking is better reproduced
by expression (21).

Within this work, I use the fit (21). The Pauli blocking
shifts EPauli

A,Z are nearly proportional to the mass number A.
The corresponding parameter values aA,Z and 5000bA,Z are
shown in Fig. 4. For the nuclei 10 � A � 16, one has the
average values ā = 532.0 MeV fm3 and b̄ = 0.05103 MeV−1.
These values are also shown in Fig. 4 (dotted lines). In
conclusion, the expression

EPauli
A,Z (P; T, μn, μp)

≈ AFA,Z (Yp)532.0 e−0.05103 T/[MeV]nB[MeV fm3] (22)

works for 1p nuclei with 10 � A � 16.
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FIG. 4. Parameter values of the fit (21). The values aA,Z [MeV
fm3] and 5000bA,Z [MeV−1] are shown. Dotted lines are the averages
ā = 532.0 MeV fm3 and b̄ = 0.05103 MeV−1. Shell-model calcula-
tions are denoted by green plus signs (aA,Z ) and blue crosses (bA,Z );
cluster model calculations are shown by orange diamonds (aA,Z ) and
red circles (bA,Z ).

For the lighter, clustered nuclei, the shell-model approach
considering a wave function formed by 1s, 1p orbitals is
not applicable. The strong deviation of aA,Z , bA,Z from the
average values ā, b̄, respectively, are caused by the anomalous
large rms radii of the rare element nuclei and clustering
effects.

IV. EQUATION OF STATE INCLUDING SCATTERING
STATES AND LOOSELY BOUND OBJECTS

A. Generalized Beth-Uhlenbeck approach

The equation of state (1) includes the sum over excited
states ν, in particular, the continuum of scattering states.
Considering 1p nuclei, excited states are of relevance. As
an example, the contribution of the channel describing few-
nucleon correlations with A = 8 to the equation of state
contains also the nucleus 8Be. Sometimes it is included in
NSE as a real nucleus, decaying quickly into two α particles.

A more systematic quantum statistical approach is nec-
essary to treat continuum correlations. In the S-wave α +
α channel, 8Be appears as a resonance and contributes to
the virial coefficient bα investigated in Ref. [10]. Similarly,
unstable nuclei in other channels should be treated as contin-
uum correlations via the scattering phase shifts. The need to
treat scattering states is evident when considering in-medium
effects and the dissolution of bound states because of Pauli
blocking. The bound-state contribution to the partial densities
(1) shows a discontinuous behavior if a bound state merges
with the continuum and disappears. This discontinuity is
compensated for taking into account continuum contributions
according to the Levinson theorem.

To describe these effects, the intrinsic partition function
zpart

A,Z,J (P; T, μn, μp) of the channel {A, Z, J} at P is introduced

in Ref. [15],

npart
A,Z,J (T, μn, μp)

=
∫

d3P

(2π )3
e−h̄2P2/(2AmT )e(Nμn+Zμp)/T zpart

A,Z,J (P; T, μn, μp).

(23)

A further subdivision into a bound part and a
continuum part, zpart

A,Z,J (P; T, μn, μp) = zbound
A,Z,J (P; T, μn, μp) +

zcont
A,Z,J (P; T, μn, μp), is not free of ambiguity. One can choose

as bound-state contribution

zbound
A,Z,J (P; T, μn, μp)

= (2J + 1)e−E cont
A,Z,J (P)/T

bound∑
ν

[eBA,Z,J,ν (P;T,μn,μp)/T − 1]

�[BA,Z,J,ν (P; T, μn, μp)], (24)

where the in-medium binding energy is given by BA,Z,J,ν (P) =
−EA,Z,J,ν (P) + E cont

A,Z,J (P). Here, E cont
A,Z,J (P) is the edge of con-

tinuum in the channel under consideration. The quasiparticle
approach is used where the density effects are taken into
account in the mean-field approximation. In particular, the
single-nucleon states are shifted by the self-energy. As exam-
ple, one can use the parametrization [15,20] of the relativistic
mean-field approximation DD2-RMF [25]. For the bound-
state energies EA,Z,J,ν (P; T, μn, μp), I take the solution of the
in-medium Schrödinger equation (5) containing the single-
particle shifts and the Pauli blocking (21); see Ref. [26].
The −1 in the bound-state contribution (24) is a relict of
the scattering state contribution according to the Levinson
theorem; see Eq. (26) below. It makes the bound-state con-
tribution continuous if the binding energy goes to zero. Here,
the continuum edge of the cluster constituents at the same total
momentum P is for the decay into single nucleons

E cont
A,Z,J (P; T, μn, μp)

= NEn(P/A; T, μn, μp) + ZEp(P/A; T, μn, μp). (25)

A similar relations gives the edge of the continuum if other
decay channels containing subclusters are considered. The
argument of the step function �(x) = 1, x � 0; = 0 else,
denotes the binding energy which must be positive to have
a bound state. Above the Mott density, this condition is a
restriction for the summation over P to that region where
bound states may exist. If the quasiparticle shift is taken in
effective mass approximation, the shift can be transferred to
the chemical potential.

The contribution of two interacting clusters to the EoS
is related to the scattering phase shifts according to Beth
and Uhlenbeck [9,43]. For instance, for the deuteron channel
2H = d (A = 2, Z = 1, J = 1) one has the generalized Beth-
Uhlenbeck formula [14]

zpart
d (P; T, μn, μp)

= e− h̄2P2

4mT − Econt
d (P)

T 3

[(
eBd (P)/T − 1

)
�[Bd (P)]

+ 1

πT

∫ ∞

0
dE e−E/T

{
δd (E ) − 1

2
sin[2δd (E )]

}]
(26)
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with medium-modified bound-state energies and phase shifts
also obtained from the in-medium Schrödinger equation (5)
to be consistent. The generalized Beth-Uhlenbeck formula
[14] considers already the quasiparticle distribution so that
the single-particle energies are shifted by a mean-field con-
tribution. Note that the term − 1

2 sin[2δd (E )] in Eq. (26)
compensates the contributions already used for the mean-field
shift of the single-nucleon quasiparticle energies [14]. Thus,
double counting of interaction terms is avoided.

In the low-density limit, the in-medium modifications
can be neglected, and the Fermi and/or Bose distributions
are replaced by the Boltzmann distribution. In this ordinary
Beth-Uhlenbeck formula for the second virial coefficient, the
single-particle contribution is described by the distribution of
free, noninteracting nucleons. The integral over P in Eq. (26)
can be performed and

npart,0
d (T ) = 3

(
2mT

2π h̄2

)3/2

e(μn+μp)/T

[
e−E (0)

d /T − 1

+ 1

πT

∫ ∞

0
dE e−E/T δ

(0)
d (E )

]
(27)

results.
The scattering phase shift δ

(0)
d (E ) as function of the kinetic

energy E of relative motion is mainly given by δ3S1
(E );

for a more detailed discussion of the low-density limit, see
Ref. [10]. There, the full contribution to the spin-triplet chan-
nel contains also the phase shifts δ3D1

(E ), etc. Within the virial
expansion, one has

npart,0
d (T ) = 4/�3e(μn+μp)/T b0

d (T ), (28)

where �2 = 2π h̄2/(mT ) and

b0
d (T ) = 3√

2

[
e−E (0)

d /T − 1 + 1

2πT

∫ ∞

0
dElab

×e−Elab/2T δ
(0)
d (Elab)

]
, (29)

if the single nucleon contribution is given by the free nucle-
ons, npart,0

τ (T ) = 2�−3eμτ /T . Here, Elab is the energy of the
projectile hitting the resting target. Continuum contributions
to the cluster-second virial coefficient from nucleon-nucleon,
nucleon-α, and α-α scattering phase shifts have been given in
Ref. [10].

The inclusion of scattering phase shifts between two com-
ponents of the cluster {A, Z, J} is seen from the square brack-
ets in Eqs. (26), (27), and (29) and suggests defining the
intrinsic channel partition function

CA,Z,J (P)

=
bound∑

ν

(eBA,Z,J,ν (P)/T − 1)�[BA,Z,J,ν (P)]

+ 1

πT

∫ ∞

0
dE e−E/T

{
δA,Z,J (E , P)

− 1

2
sin[2δA,Z,J (E , P)]

}
(30)

where E is the c.m. energy. The integral part in Eq. (30) de-
scribing the continuum contribution was denoted in Ref. [15]
as residual second virial coefficient. Binding energies and
scattering phase shifts contain in-medium corrections so that
they depend, in general, on P, T, μn, μp. Calculating this
expression, the artificial subdivision in bound and continuum
contributions becomes obsolete. A generalized phase shift
may be introduced containing contributions of negative E ,
where at each bound-state energy a jump of π happens; see
Ref. [15].

In-medium corrections are treated within the generalized
Beth-Uhlenbeck approach [14] for the nucleon-nucleon sys-
tem. In this work, the treatment of light clusters [15,26,27] is
extended to the 1p nuclei. One has to determine the medium
modifications of the scattering phase shifts solving Eq. (5).
This in-medium Schrödinger equation contains a potential,
and, as usual, one can choose the potential to reproduce the
free scattering phase shifts. I will use a separable potential
which leads to simpler expressions for the Pauli blocking; see
Appendix B.

B. 5He, no in-medium shifts

For equilibrium nuclear matter with low proton fraction Yp,
neutron-rich nuclei are dominant. In particular, triton t (3H)
is more abundant than helion h (3He). Also, the neutron-rich
nuclei 4H, 5He, 6He, etc., may become relevant [17]. However,
they are not stable. One has to consider the channels, for
which they appear as resonances in the continuum of scatter-
ing states.

In this subsection, I focus on 5He. It belongs to the chan-
nel with A = 5, Z = 2, J = 3/2 which contains the contri-
bution of the unstable nucleus. The binding energy B5He =
27.56 MeV [22] is smaller than the binding energy of 4He
so that B5He,αn = B5He − 28.3 MeV = −0.7356 MeV. It de-
cays as 5He → α + n; the half-life is 7 × 10−22 s.

The partial density of the 5He channel is (I consider the
virial coefficient bαn(T ) for the α − n system [10])

n5He = 16

(
mT

2π h̄2

)3/2

bαn(T ) e(−Eα+3μn+2μp)/T . (31)

Within NSE, the partial density of this unstable nucleus would
be (degeneracy 2J + 1 = 4)

nNSE
5He = 4

(
5mT

2π h̄2

)3/2

e(3μn+2μp+B5He
)/T

= nn

2
nα4

(
5

4

2π h̄2

mT

)3/2

e−0.7356 MeV/T

= 4nα

(
5

4

)3/2

eμn/T eB5He,αn
/T

. (32)

This partial density contributes to the total neutron density
with the factor 3 and to the total proton density with the factor
2. For a bound state with bound-state energy E5He = −B5He =
−27.56 MeV, one finds for relation (31)

bNSE
αn (T ) = 53/2

4
e(−E5He

+Eα )/T . (33)
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TABLE IV. N − α virial coefficient bαn, Eq. (34). The results
of Ref. [10] using empirical phase shifts are compared to the NSE
expression (33) and the Beth-Uhlenbeck calculations with phase
shifts from two model potentials, a square well potential (sq. w.),
and a separable potential (s. p.), considering only the contribution of
the P3/2 channel.

T bαn [10] bαn [10] bBU
αn , sq. w. bBU

αn s. p.
[MeV] bNSE

αn full P3/2 wave P3/2 wave P3/2 wave

1 2.68 1.51 1.73 1.73 1.75
2 3.87 2.26 2.48 2.48 2.49
3 4.37 2.57 2.78 2.77 2.78
4 4.65 2.73 2.91 2.88 2.90
5 4.83 2.81 2.97 2.92 2.95
6 4.95 2.86 2.99 2.92 2.96
7 5.03 2.89 2.99 2.90 2.94
8 5.10 2.92 2.98 2.87 2.91
9 5.15 2.93 2.96 2.82 2.87
10 5.19 2.95 2.93 2.77 2.82
12 5.26 2.97 2.65 2.71
14 5.30 2.98 2.53 2.59
16 5.34 3.00 2.41 2.48
18 5.37 3.00 2.30 2.37
20 5.39 3.00 2.19 2.26

However, instead of the unstable nucleus, one has to treat
the continuum contributions, in particular the phase shifts. It is
an advantage of the Beth-Uhlenbeck formula that the second
virial coefficient can be expressed in terms of properties which
are directly observed, avoiding the introduction of a potential.
As given in Ref. [10],

bBU
αn (T ) = 51/2

πT

∫ ∞

0
dElab e−4Elab/5T δtot

αn(Elab). (34)

The relative energy is (4/5) Elab, the latter is the energy
of the neutron, and the α is fixed. Scattering phase shifts
for the different α − n channels are given in Ref. [44] and
parametrized in Ref. [45], in particular (units: MeV):

δP3/2 (Elab) = arccot
[(

0.1281 − 0.1095 Elab + 0.006794 E2
lab

− 0.000113 E3
lab

)/(
0.043733 E3/2

lab

)]
(35)

which gives the main contribution to δtot
αn(E ) = 2δS1/2 +

2δP1/2 + 4δP3/2 + · · · . Results for the virial coefficient (34),
calculated with δtot

αn(E ) as well as the main contribution 4δP3/2

at different values of T are shown in Table IV; see Ref. [10].
There exist also correlations in the other channels (δS1/2 , δP1/2 )
which partially compensate each other, and higher angular
momenta give almost no contribution to the density.

For comparison, calculations of phase shifts with a square
well potential V (r) = −V0�(a − r); V0 = 55 MeV, a = 2 fm,
as well as the separable potential given in Appendix B,
Eq. (B1), with λ = 670 MeV fm3, γ = 1.791 fm−1 are also
given in Table IV. Both potentials are quite different but
reproduce nearly the same phase shifts in the parameter region
under consideration. The corresponding virial coefficients
coincide in good approximation.

There is a significant contribution of the P3/2 channel which
allows us to introduce a nuclear state at negative binding
energy Beff

5He,αn
(T ). However, the NSE value B5He,αn =

−0.736 MeV overestimates the contribution of the 5He chan-
nel. In particular, at high temperatures, the virial form gives
lower values for the partial density, which is also known
from the deuteron case. There, the introduction of an effective
energy to account for the contribution of the continuum was
also proposed in Ref. [24]. If comparing this generalized virial
approach to the NSE, the contribution of the 5He channel is
essentially reduced, in particular at higher T .

C. 5He, with in-medium shifts

As shown in Eq. (1), a cluster decomposition of the single-
particle self-energy allows the decomposition of the total
baryon density into partial densities. For A > 1, one obtains
the contribution of the channel C = {A, Z, J}

npart
A,Z,J (T, μn, μp)

= (2J+1)

(
AmT

2π h̄2

)3/2

e(−E cont
A,Z,J +Nμn+Zμp)/T

× CA,Z,J (T, μn, μp), (36)
neglecting quantum degeneracy and the P dependence of
CA,Z,J (P; T, μn, μp) (30) so that the integral over the c.m.
momentum P can be performed. Within a quasiparticle ap-
proach, in-medium bound-state energies and scattering phase
shifts are used to evaluate the intrinsic channel partition
function CA,Z,J . Note that in general the P dependence may
be taken into account within an effective mass approxima-
tion. The continuum edge E cont

A,Z,J (P; T, μn, μp) (25) is also
taken for P = 0. A binary effective interaction of subclus-
ters C1, C2, with C � C1 + C2, is considered which leads
to the scattering phase shifts δC;C1C2 (E ), where E denotes
the intrinsic energy of relative motion of the subclusters.
The continuum edge E cont

C;C1,C2
(T, μn, μp) = Equ

C1
(T, μn, μp) +

Equ
C2

(T, μn, μp) is obtained in the rigid shift approximation. I
neglect the in-medium modification of the effective masses.
As discussed above, the binding energy in the special bi-
nary channel BC;C1C2 (T, μn, μp) = BC − E cont

C;C1C2
relative to

the corresponding continuum edge of subclusters has to be
taken. The single-nucleon contribution (A = 1) follows from
the quasiparticle shift calculated, e.g., from the DD2-RMF
approach [20]. In general, the fermionic distribution function
is used to calculate the single-nucleon densities.

Applying Eq. (36) to the binary reaction channel α + n �
5He, A = 5, Z = 2, J = 3/2, one finds

npart
5He

(T, μn, μp) = 4

(
5

4

)3/2

nα (T, μn, μp)e−ESE
n /T +μn/T

× C5He;αn(T, μn, μp), (37)

with (there are no bound states)

C5He;αn(T, μn, μp)

= 1

πT

∫ ∞

0
dE e−E/T

{
δ5He;αn(E ) − 1

2
sin[2δ5He;αn(E )]

}

= exp
[ − E eff

5He;αn(T, μn, μp)/T
]

(38)
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FIG. 5. In-medium scattering phase shifts for α − n (a) and n −3 H, p −3 He (b). Experimental data of Hoop et al. [44] and Reichstein et al.
[49] and calculations of LeMere et al. [47] and Shen et al. [48] are compared to the separable potentials with parameters given in the text.
Medium modifications are shown for T = 10 MeV and different free neutron densities nn.

with E being the energy of relative motion. For the sake
of parametrization, I introduce the effective channel energy
E eff

5He;αn
(T, μn, μp), which may be considered as an effective,

medium-dependent excitation energy to describe the statis-
tical weight of the corresponding channel. The in-medium
scattering phase shifts contain the Pauli blocking effects, and
single-nucleon self-energies cancel with continuum contribu-
tions in the rigid shift approximation.

Compared to (34), a more general Beth-Uhlenbeck (BU)
result is [14]

bgBU
αn (T, μn, μp) = 4

51/2

πT

∫ ∞

0
dElab e−4Elab/5T

×
{
δαn(Elab) − 1

2
sin[2δαn(Elab)]

}
(39)

with in-medium phase shifts; see Fig. 5. The free neutron
density is calculated from the Fermi distribution function
containing the quasiparticle shift ESE

n (as before, the P
dependence is neglected).

The values of bαn(T, nn) are calculated as function of
the temperature T and the free neutron density nn (only the
motion of the neutron 1p orbit is blocked), using the BU
formula [see (27)] and the generalized BU expression (39)
[see (26)]. The partial density related to the channel A =
5, Z = 2, J = 3/2 is

n5He(T, μn, μp) = 8

�3
bαn(T, nn) e[−Eα (T,μn,μp)+2μn+2μp]/T

× e(−ESE
n +μn )/T . (40)

The free neutron density nn is obtained from the Fermi dis-
tribution function with given T, μn,ESE

n . In-medium shifts
for the α particle are taken from Ref. [26], and for the neutron
shift ESE

n one can use the parametrization [15] of the DD2-
RMF approximation [25]. The calculations using a separable
potential are given in Appendix B.

We scan the region 1 � T � 20 MeV and nn � 0.1 fm−3.
The results are parametrized as follows (note that the account

of continuum contributions by effective energies has also been
considered in Ref. [24]):

bαn(T, nn) = 53/2

2
C5He;αn(T, μn, μp) = 53/2

2
e−E eff

αn (T,nn )/T .

(41)
For practical use, the dependence of the effective energy on
the baryon density is approximated as

E eff
αn (T, nn) = Eαn,0(T ) + Eαn,1(T ) nn + Eαn,2(T ) n2

n. (42)

Data presented in Table VI are reproduced with relative accu-
racy below 5% by the parameter values (units: MeV, fm)

Eαn,0(T ) = 0.85503 + 0.21729 T + 0.031362 T 2;

Eαn,1(T ) = 100.05 + 80.749 ln T

+ 384.08 exp(−0.44383 T );

Eαn,2(T ) = −322.53 + 450.2 ln T . (43)

D. 4H

Of interest is the 4H cluster in neutron-rich stellar mat-
ter. It belongs to the channel A = 4, Z = 1, J = 2. Sim-
ilar to 5He, it is not bound, and appears as correla-
tions in the continuum of the 3H + n channel. Measured
phase shifts for 3H + n are given in Ref. [46]; see also
Refs. [47,48]. Of interest are the 3δ1(E ) phases as function of
the c.m. energies E which are reproduced approximately by
a separable potential (B1) with λ = 1144.9 MeV fm3 and
γ = 1.326 fm−1.

The mirror cluster 4Li appears in the 3He + p channel and
is more extensively studied; see Ref. [49]. The corresponding
virial coefficients have been considered in Ref. [50]; see
also Ref. [51]. Here, the 3δ1(E ) phases as function of the
c.m. energies E are reproduced approximately by a separable
potential with λ = 967.9 MeV fm3, γ = 1.377 fm−1; see
Fig. 5. As in the case of the mirror nuclei 3H and 3He, the
potential is weaker as in the case 3H + n because of Coulomb
repulsion.
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I calculate according to Appendix B that

C4H;tn(P = 0, T, μn, μp)

= 1

πT

∫ ∞

0
dEe−E/T

{
δ4H;tn(E ; P = 0, T, μn, μp)

− 1

2
sin[2δ4H;tn(E ; P = 0, T, μn, μp)]

}
. (44)

For parametrization, the effective energy E eff
tn (P = 0,

T, μn, μp) = −T ln[C4H;tn(P = 0, T, μn, μp)] is introduced;
see Table VII. The data in the Table VII are reproduced with
relative accuracy of less than 2% by the approximation

E eff
tn (T, nn) = Etn,0(T ) + Etn,1(T )nn (45)

(higher order terms in nn can be neglected), where the param-
eter values are (units: MeV, fm)

Etn,0(T ) = 3.0014 + 1.69165 T + 0.025471 T 2;

Etn,1(T ) = 334.62 + 97.424 ln T + 356.09 exp(−0.91636 T ).

(46)

For the partial density of 4H one finds

npart
4H

(T, μn, μp) = 5

2

(
4

3

)3/2

nt (T, μn, μp)

× e−ESE
n /T +μn/T C4H;tn(T, μn, μp). (47)

There is another channel A = 4, Z = 1, J = 1 of 4H contain-
ing the excited state 4H∗ at 0.31 MeV excitation energy. In the
present approach, to consider the scattering phase shifts one
has to consider the 1δ1(E ) phases and finds the contribution

npart
4H∗ (T, μn, μp) = 3

2

(
4

3

)3/2

nt (T, μn, μp)

× e−ESE
n /T +μn/T C4H∗;tn(T, μn, μp). (48)

with the corresponding phase shifts, describing the known
values [49]. Because the differences are small, one can as-
sume that both contributions to the partial density can be put
together. As before, I parametrize the result for the intrinsic
channel partition function for both contributions as

npart
4H

(T, μn, μp) ≈ 4

(
4

3

)3/2

nt (T, μn, μp)

× e−ESE
n /T +μn/T C4H;tn(T, μn, μp), (49)

C4H;tn(T, μn, μp) = exp
[
E eff

4H;tn(T, μn, μp)/T
]
. (50)

There are also negative phase shifts 1δ0(E ),3 δ0(E ) belonging
to other channels, and affect the bound 1s nucleon, i.e., the
medium modification of the triton. They lead to the negative
values of the virial coefficient given in Ref. [50] but will not
be discussed here.

In contrast to 5He, the effective excitation energies for
4H are large and the values for the scattering phase shifts
in the corresponding channels are small. They are strongly
influenced by the introduction of the quasiparticle picture [the
sin term in Eq. (44)] and the Pauli blocking effects, as seen

by the increase of the the effective excitation energies with
density and temperature.

V. ILLUSTRATIVE CALCULATION OF THE
COMPOSITION OF ASYMMETRIC NUCLEAR MATTER

A. Virial, excited states and continuum correlations

Having the partial densities npart
c (T, μn, μp) of the com-

ponent c, the composition of nuclear matter is described
by the mass fractions Xc = Acnpart

c /nB with
∑

c Xc = 1. This
composition is of interest for different applications such as
HIC or astrophysical simulations. For instance, the role of
the lightest p nuclei in the composition and the EoS has
been discussed recently [17]. Such correlations determine the
neutrino opacity, but the inclusion of the lightest p nuclei
to evaluate the EoS and the composition demands special
attention.

As an illustrative example, the composition of nuclear
matter is evaluated for parameter values T = 10 MeV, Yp =
0.1, as function of the mass density ρ (nB = 0.0597015 ×
10−14ρ cm3/g/fm3, saturation baryon number density nsat =
0.15 fm−3, mass density ρsat = 1014.4 g cm−3). The subsatu-
ration density region log10 ρ [g/cm3] = 11–14 is considered.
Asymmetric matter with a small value of Yp is of interest in
stellar processes. As shown in Ref. [17], Fig. 5, higher clusters
(metals, Z > 2) are not relevant in this region. Using standard
approaches such as the NSE and the excluded volume model
[18], near the saturation density a large mass fraction of
neutron-rich unstable H and He isotopes is predicted.

In order to discuss the account of in-medium corrections,
different approximations are compared starting from a simple
NSE approach. As a result, it will be shown that the contri-
bution of unstable, neutron-rich isotopes to the composition
is strongly reduced near the saturation density if in-medium
effects are taken into account.

The simple NSE model neglects all interaction beyond
reactive collisions to establish the chemical equilibrium of the
components. The large asymmetry Yp = 0.1 prefers the for-
mation of neutron-rich clusters. Considering only the nearly
stable elements n, p, d, t, h, α, at high densities (log10[ρ] >

13), t becomes dominant and almost all protons are bound
to t . The inclusion of the subsequent neutron-rich, unbound
isotopes 4H and 5He with known binding energies [22] into
the NSE leads to changes in the high-density region (see
Fig. 6, dashed lines).

Instead of t , 4H becomes dominant. In the density re-
gion log10[ρ] > 13, almost each proton is bound to this
neutron-rich isotope. Similarly, 5He becomes larger than the α

mass fraction. In the NSE calculation, known excited states of
the nuclei according to the tables [22] are taken into account.
In particular, there exists a low-lying level of 4H at 0.31 MeV
excitation energy and J = 1.

One can continue to include even further known isotopes
such as 5H, 6H, 7H, 6He, 7He, 8He, etc., with known binding
energies and degeneracy found in the tables [22]. As shown in
Ref. [17], Fig. 5, for the NSE model as well as for the excluded
volume model, according to the mass action law the effect
of the dominance of neutron-rich isotopes becomes even
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FIG. 6. Composition of nuclear matter, T = 10 MeV, Yp = 0.1,
as function of the mass density including 4H and 5He. The NSE with-
out excited states (dashed) is compared to this quantum statistical
in-medium approach (full lines).

more visible, and matter near saturation density log10[ρ] ≈ 14
appears as a mixture of free neutrons, 7H, 8He, and other
unbound nuclei. It is evident that a model of noninteracting,
unbound nuclei is not adequate to describe matter near the
saturation density. It will be shown in the subsequent sections
that the mass fractions of all these weakly bound nuclei are
strongly suppressed near the saturation density if in-medium
corrections are taken into account.

One can also add to the NSE further known nuclei with
Z > 2. However, the mass fractions are very small (below
10−3) at the parameter values for T,Yp considered here.

Surprisingly, also in the low-density limit the NSE model
fails to describe correctly the composition of the system
because, like excited states, also scattering states have to
be included. Unbound states are not stable and appear as
a resonance in the continuum of scattering states. Above I
referred to 8Be which appears in the two-α continuum. Instead
of considering a resonance gas, one has to treat the continuum
of scattering states consistently.

A systematic treatment not only of the contribution of
excited states, but of the whole continuum of scattering states
is given by the Beth-Uhlenbeck formula; see Eq. (27) for
the case A = 2. In the channel A = 2, Z = 1, J = 0, 1 the
contribution of the scattering states has been parametrized
over the temperature range 1 � T � 20 MeV; see Ref. [51].
The second virial coefficient bpn(T ) contains the contribu-
tion of the deuteron bound state but is reduced owing to
the negative contributions of the continuum, in particular at
increasing T . Another parametrization is given in Ref. [27].
Virial coefficients for other channels such as 4Li and 4H are
found in Ref. [50].

I introduce the virial terms for d , 4H, and 5He as described
in Sec. IV. There is a significant reduction of d and a large
reduction of 4H. The reason is the small binding energy so
that most of the partial density is determined by the integral
over the continuum, in particular at increasing T . Because the

phase shifts for t − n scattering are small, a strong reduction
is obtained from the virial coefficient. A reduction is also
observed for 5He, but the α − n phase shifts are rather large
so that only a minor reduction results. For a more detailed dis-
cussion of the common treatment of bound-state contribution
and scattering states, see also Refs. [15,27].

B. Contribution of unbound nuclei 4H and 5He

To investigate the contribution of the unbound nuclei 4H
and 5He to the composition of nuclear matter (T = 10 MeV,
Yp = 0.1), I use the expressions for the corresponding chan-
nels given in Sec. IV, Eqs. (37) and (38) for the 5He channel
and Eqs. (49) and (50) for the two 4H channels. As function of
density, the composition is shown in Fig. 6 which is obtained
within these quantum statistical calculations. An important
feature of the account of in-medium effects, in particular Pauli
blocking, is the suppression of the cluster mass fractions at
near-saturation densities. The mass fractions of n, p increase
to the values 0.9 and 0.1, respectively. This is already seen if
the quantum statistical treatment of only the light 1s nuclei
d, t, h, α is compared to the NSO approach [26].

Considering the unbound nuclei 4H and 5He, the position
of the edge of continuum should be correctly taken into
account. With C(0)

4H
(T ) being the phase shift integral (50) in

the zero-density limit, omitting the quasiparticle shift, one has
the virial form [I put 4H and 4H∗ together; see Eq. (49)]

n(0)
4H

= (5 + 3) × 8

�3
e(−Et +3μn+μp)/T C(0)

4H
(T ))

= 32

33/2
n(0)

t eμn/T C(0)
4H

(T ), (51)

n(0)
5He

= 4 × 53/2

�3
e(−Eα+3μn+2μp)/T C(0)

5He
(T )

= 53/2

2
n(0)

α eμn/T C(0)
5He

(T ). (52)

Within the quantum statistical approach, the mass frac-
tions of the corresponding channels are calculated according
Eqs. (49) and (40). The in-medium effects are incorporated
as quasiparticle shift of t and α [15] so that the in-medium
densities nt , nα appear, the neutron chemical potential is
shifted (see Appendix D) and the in-medium expression C(T ),
Eq. (50), is taken.

The contribution of the unbound nuclei 4H and 5He is
reduced at high densities so that the Mott effect becomes
visible. Near the saturation density, the mass fraction of bound
clusters are decreasing so that Xn, Xp approach the free quasi-
particle limits 0.9, 0.1, respectively. The reduction of weakly
bound states originates from the contribution of scattering
states as known from the deuteron channel. In addition, the
introduction of the quasiparticle description leads to a further
reduction owing to the sin term (30), since part of the scat-
tering phase shift (Born approximation) is already taken into
account by the self-energy shift of the single-nucleon states.
Pauli blocking in dense matter reduces further the contribution
of the unbound nuclei. As consequence, one can conclude
that the NSE with additional account of these unstable nuclei
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FIG. 7. Composition of nuclear matter, T = 10 MeV, Yp = 0.1,
as function of the mass density. Continuum edge with self-energy
shift according to DD2-RMF at P = 0, light elements (A � 4) ac-
cording to Ref. [15], Pauli blocking in scattering phase shifts by
interpolation formulas (42) and (45), and Pauli blocking of light
p-shell nuclei according to Eq. (21).

largely overestimates their contribution near the saturation
density, as seen in Fig. 6.

C. Light p-shell nuclei in the EoS

Medium effects have a significant influence on the abun-
dances of exotic, light p-shell clusters in dense matter, in par-
ticular calculating the composition in thermodynamic equi-
librium, Eq. (1). Within the quantum statistical approach, the
partial densities of the light p-shell nuclei are calculated with
the in-medium energies

EA,Z,J,ν (P; T, μn, μp)

= E (0)
A,Z,J + h̄2P2

2Am
+ EPauli

A,Z (P; T, μn, μp)

+ ESE
A,Z (P; T, μn, μp). (53)

For the Pauli blocking term EPauli
A,Z (P; T, nB,Yp) I use the

interpolation formula (21) as described in Sec. III D. The
self-energy term ESE

A,Z (P; T, μn, μp) is taken as the sum over
the self-energy shifts ESE,RMF

τ (T = 0, nB,Yp) of the consti-
tuting nucleons, taken here in the DD2-RMF approximation
[15,20]; see also Ref. [15]. Because the self-energy shift is
present in the bound states as well as the scattering states,
it is of minor relevance for the Mott effect. As discussed in
Appendix D, a reduction is expected for heavy nuclei so that
I take the self-energy shift with a factor 0.5. Up to the Mott
density, such additional effects are not essential. Above the
Mott density, a further reduction of the contribution of clus-
tered, light p-shell nuclei is expected because one has to treat,
instead of bound states, scattering states in the continuum as
already presented in the previous Sec. V B.

As an example, calculations are shown in Fig. 7 for the
conditions given above, i.e., T = 10 MeV and Yp = 0.1 for

mass densities 1011 . . . 1014 g/cm3. Only the ground states
of the nuclei with A � 16 are considered. If comparing the
quantum statistical approach to the ordinary NSE, below
1012 g/cm3 both approaches agree quite well; medium effects
such as self-energy shifts and Pauli blocking are small. There
are deviations because of the virial coefficient containing
the continuum contributions, in particular for weakly bound
nuclei such as d . The reduction of the abundance of deuterons
at high temperatures has been discussed elsewhere [15].

Already at densities of 1013 g/cm3, the mass fraction of
clustered, light p-shell nuclei has a maximum and start to
be blocked out. This happens before the neutron-rich iso-
topes like 10Be and 11Be become preferred Be isotopes in
the strongly asymmetric matter. One sees that for the entire
density region at T, Yp given above the mass fraction of
nuclei with Z > 2 are below 10−3 so that only a marginal
change of the mass fractions of light nuclei (A � 4) is seen
in comparison to Fig. 6.

I focused on the Pauli blocking effect as the main ingre-
dient to determine the composition of nuclear matter near
the saturation density. For a more detailed investigation, one
should also consider other effects, in particular self-energy ef-
fects; see Appendix D. As discussed there, the single-nucleon
self-energy shift should be reduced for heavier nuclei, and by
describing the p dependence in effective mass approximation,
additional changes of the composition at high densities are
expected. For densities higher than the Mott density, i.e.,
nB > 0.03 fm−3, the mass fraction of clustered, light p-shell
nuclei is further reduced because one has only continuum
contributions which become small for high densities; cf.
Fig. 5. Correlations in the medium will further influence the
in-medium modifications as discussed in Ref. [15]. One can
expect that the composition in the subsaturation region ρ >

1013.5 g/cm3 is in general correctly described, in particular the
transition to a Fermi liquid of quasiparticles, but the detailed
description of correlations as well as of the stability against
phase transitions remains open for future work.

VI. CONCLUSIONS

Just as with the light nuclei with mass number A � 4,
the clustered, light p-shell nuclei (4 � A � 16) are strongly
modified in warm dense matter. Compared to the NSE, Pauli
blocking leads to a reduction of the cluster abundances in nu-
clear matter and the dissolution of bound states at increasing
densities. The extension of the simple NSE to unstable nuclei
like 4H and 5He is problematic. The systematic treatment of
continuum correlations using the generalized Beth-Uhlenbeck
formulas gives a reduction of the mass fraction at increas-
ing temperatures and densities. The dominant appearance
of neutron-rich unstable isotopes in asymmetric matter near
the saturation density, as discussed, e.g., in Ref. [17] using
improved versions of the NSE, is not supported.

For fixed temperature and increasing density, correlations,
in particular in bound states, are formed in low-density nuclear
matter according to the mass action law. They are dissolved
mainly owing to Pauli blocking near the saturation density
(Mott effect), and a single-nucleon quasiparticle approach to
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nuclear matter becomes applicable. Interpolation formulas are
given to describe the medium modifications of clusters and
correlations in dense nuclear matter in the temperature region
1 � T � 20 [MeV] and subsaturation densities. Calculations
of the composition of nuclear matter at T = 10 MeV and
Yp = 0.1 show, in addition to the light nuclei d, t, h, α, a
significant contribution of the neutron-rich clusters 4H and
5He in the density region around nsat/10, but at baryon number
densities exceeding 0.03 fm−3 these correlations are reduced
by Pauli suppression.

Unbound nuclei like 4H and 5He are treated as correla-
tions in the continuum. Using a generalized Beth-Uhlenbeck
approach which is able to implement in-medium effects, the
measured scattering phase shifts in the respective reaction
channels have been used to give an estimate of the medium
dependence of the phase shifts and to evaluate the partial
densities of these components. For the bound 1p nuclei with
mass number 6 � A � 16, the intrinsic nucleon wave function
of the A-nucleon cluster is an essential ingredient to evaluate
the in-medium shift of the binding energy because of Pauli
blocking. Whereas for 10 � A � 16 a shell model is applica-
ble, the clustered nuclei with 6 � A � 9 show a significant
subcluster structure which has to be taken into account to
calculate the Pauli blocking shift. Simple fit formulas are
given for the bound-state energy shifts which can be used to
evaluate the composition and related properties of warm and
dense matter.

The quantum statistical approach is based on fundamental
concepts such as the spectral function and the self-energy.
Systematic improvements of this approach are possible con-
sidering further many-particle effects. In particular, at densi-
ties above 0.03 fm−3, a detailed description of the self-energy
as function of momentum and energy as well as correlations
in the medium may be a subject of future work to improve the
description of correlations in nuclear matter near the satura-
tion density. Semiempirical approaches such as the concept
of excluded volume [18] or the generalized RMF [19,20],
which are used presently to account for in-medium effects in

the nuclear matter EoS, can profit to get inputs from a more
systematic many-particle approach.

Astrophysical applications of the nuclear matter EoS de-
mand the treatment of correlations in dense matter; see, e.g.,
Refs. [12,13,19,51]. For instance, the neutrino opacity of
stellar matter is an important ingredient to describe supernova
explosions. The composition of nuclear matter and the forma-
tion of correlations determine the neutrino transport in hot and
dense matter. The large mass fractions of neutron-rich, unsta-
ble isotopes like 4H in stellar matter with low Yp, which are
predicted by NSE and related approaches [17], overestimate
these correlations and are not appropriate for calculations of
supernova and merger dynamics in the high-density region.

The understanding of few-body correlations in dense
matter, in particular bound-state formation, is an important
ingredient to describe heavy-ion collisions. Light p-shell
nuclei (4 � A � 16) are observed from HIC experiments; see
Ref. [5]. To explain the measured yields, different models
can be used such as freeze-out of a fireball, coalescence
models, or transport models like AMD or QMD simulations.
Compared to the simple NSE approximation for the freeze-out
approach, one finds a strong suppression of these yields at
increasing densities because of Pauli blocking. Also, for other
approaches such as transport models [11], in-medium effects
should be taken into account to explain cluster formation in
HIC.

The present work may be considered as a first step of
a quantum statistical treatment of light 1p-shell clusters in
nuclear matter. To describe the properties of hot and dense
nuclear matter, in addition to improvements of the approxi-
mations performed here, one has also to extend the treatment
of light clusters to heavier nuclei; see Refs. [16,54]. Light
clusters, pasta phases, and phase transitions have to be con-
sidered in core-collapse supernova matter [55] and mergers.
The investigation of few-nucleon correlations in dense matter
is a basic prerequisite to understand matter under extreme
conditions also in nonequilibrium processes such as heavy-ion
collisions.

APPENDIX A: SOLUTION OF THE IN-MEDIUM WAVE EQUATION FOR 6Li

The wave function of 6Li is taken as Gaussian,

ψGauss
6Li (p1, . . . , p6) = 1

N6
e−(p2

1+p2
2+p2

3+p2
4+β6 p2

5+β6 p2
6 )/B2

6 p5,z p6,zδp1+···+p6,0 . (A1)

N6 denotes the normalization factor. I adapt a Gaussian separable interaction

V6Li(12, 1′2′) = λ6 e
− (p2−p1 )2

4γ 2
6 e

− (p′
2−p′

1 )2

4γ 2
6 δp1+p2,p′

1+p′
2
. (A2)

The rms radius follows as (14)

rms6Li =
[

β6

6B2
6

21 + 160/β6 + 382/β2
6 + 688/β3

6 + 288/β4
6

(1 + 2/β6)
(
3 + 8/β6 + 16/β2

6

)
]1/2

. (A3)
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The intrinsic energy of the 6Li nucleus E (0)
6Li

= KE6Li + PE6Li contains the kinetic and potential energy. For the kinetic energy,
one finds

KE6Li = h̄2

2m

B2
6

4β6

21 + 160β6 + 382β2
6 + 688β3

6 + 288β4
6

(1 + 2β6)
(
3 + 8β6 + 16β2

6

) . (A4)

The potential energy is

PE6Li = λ6
(
6V x

12V
y

12V
z

12 + 8V x
15V

y
15V

z
15 + V x

56V
y

56V
z

56

)
(A5)

with

V x
12 = V y

12 = V z
12 = B6γ

2
6

π1/2
(
B2

6 + 4γ 2
6

) , (A6)

V x
15 = V y

15 = 2B6γ
2
6 (1 + 2β6)1/2β

1/2
6

π1/2
(
B2

6 + γ 2
6 + β6γ

2
6

)1/2(
B2

6 + 8B2
6β6 + 3B2

6β
2
6 + 8β6γ

2
6 + 16β2

6γ 2
6

)1/2 , (A7)

V z
15 is a lenghtly expression not given here, and

V x
56 = V y

56 = B6γ
2
6 β

1/2
6

π1/2
(
B2

6 + 2β6γ
2
6

) ,

V z
56 = 4B6γ

2β
5/2
6

(
3B4

6 − 4B2
6β

2
6 + 4B2

6β6γ
2
6 + 4γ 4

6 + 8β6γ
4
6 + 12β2

6γ 4
6

)
π1/2

(
3 + 8β6 + 16β2

6

)(
B2

6 + 2β6γ
2
6

)3 . (A8)

Within a variational approach, the optimum values for
B6, β6 are obtained from the minimum of the intrinsic en-
ergy of the cluster. The parameters λ6, γ6 are determined to
reproduce the empirical values of the binding energy and
the rms radius of 6Li; see Table I. With λ6 = −964.5 MeV
fm3 and γ6 = 1.16, one finds the optimum values for B6 =
1.0626 fm−1 and β6 = 3.6174 so that Bp = 0.5587 fm−1. This
result confirms the assumption that Bs changes smoothly (see
Table I), whereas β is rather large for 6Li, and the result for
Bp agrees reasonably well with the estimated value shown in
Table II. Note that the ansatz for the wave function does not
include deuteron-like clustering. Deuteron-like correlations
are weak, as shown by the low binding energy of d . A
calculation including clustering is possible within the THSR
ansatz.

The potential energy is modified by the Pauli block-
ing effect. The evaluation of the shifts EPauli,G

6Li
(T ) =

nB δEPauli,G
6Li

(T ) according Eq. (5) gives the values shown in
Table V for different T . The value at T = 5 MeV is also seen
in Fig. 3. It is higher than the shell-model value. The large
value of β supports the extended character of the 1p orbits
leading to low densities that favor the formation of clusters.

APPENDIX B: SEPARABLE POTENTIAL MODEL AND 5He
AND 4H CONTINUUM CORRELATIONS

The solution of the in-medium wave equation to deter-
mine the medium corrections of the scattering phase shifts
is convenient for nonlocal, separable potentials. According
to Ref. [31], any potential can be represented as a sum of
separable potentials. In nuclear physics, separable potentials
are introduced, e.g., in Refs. [29,30].

To reproduce the δP3/2 (E ) of the α − n scattering, I use for
the l = 1 state

V (p, p′) = − λ

�0

p

(p2/γ 2 + 1)2

p′

(p′2/γ 2 + 1)2
. (B1)

With

I (E ) = λ

2π2

∫ ∞

0
d p

p2

E − h̄2 p2/(2m)

p2

(p2/γ 2 + 1)4
, (B2)

TABLE V. Pauli-blocking shifts EPauli,G
6Li

(T, nB ) ≈
nB δEPauli,G

6Li
(T ) for 6Li.

T δEPauli,G
6Li

(T )
[MeV] [MeV fm3]

1 3489.7
2 3574.4
3 3457.6
4 3268.9
5 3060.9
6 2855.5
7 2661.7
8 2482.8
9 2319.2
10 2170.4
12 1912.3
14 1698.6
16 1520.4
18 1370.4
20 1243.1
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TABLE VI. Second virial coefficient (39) and effective energies E eff
αn (T ) [MeV] according Eqs. (41) and (42). A separable potential (B1)

was used with λ = 670 MeV fm3, γ = 1.791 fm−1, and T = 2, 4, . . . , 18, 20 MeV.

nn [fm−3] E eff
αn (2) E eff

αn (4) E eff
αn (6) E eff

αn (8) E eff
αn (10) E eff

αn (12) E eff
αn (14) E eff

αn (16) E eff
αn (18) E eff (20)

0.0001 1.525 2.279 3.317 4.639 6.236 8.091 10.185 12.499 15.017 17.723
0.001 1.699 2.481 3.533 4.867 6.474 8.339 10.441 12.764 15.29 18.003
0.01 4.113 4.795 5.931 7.372 9. 084 11.047 13.241 15.647 18.246 21.025
0.02 7.196 7.677 8.859 10.42 12.27 14.366 16.681 19.192 21.882 24.738
0.03 10.3 10.665 11.904 13.603 15.614 17.871 20.33 22.967 25.764 28.708
0.04 13.344 13.669 14.997 16.86 19.061 21.503 24.13 26.912 29.831 32.875
0.05 16.3 16.653 18.112 20.173 22.595 25.247 28.062 31.003 34.054 37.205
0.06 19.167 19.606 21.251 23.556 26.229 29.113 32.129 35.238 38.427 41.689
0.07 21.95 22.547 24.45 27.048 30.001 33.131 36.353 39.632 42.957 46.327
0.08 24.668 25.533 27.787 30.727 33.975 37.35 40.77 44.208 47.659 51.129
0.09 27.389 28.71 31.414 34.716 38.245 41.838 45.429 49.001 52.557 56.109
0.1 30.426 32.45 35.613 39.207 42.938 46.68 50.386 54.049 57.678 61.285
Eαn,0(T ) 1.4157 2.2051 3.2677 4.5979 6.1899 8.033 10.113 12.413 14.918 17.613
Eαn,1(T ) 297.12 271.81 270.21 277.68 288.87 301.18 313.25 324.39 334.35 343.04
Eαn,2(T ) −68.449 281.09 494.93 649.07 759.83 836.47 887.17 918.99 937.19 945.68

one has

I (E ) = λ

π

γ 5[−8E3 − 36E2γ 2h̄2/m + 32
√

2(−Eh̄2/m)3/2γ 3 + 18E (h̄2/m)2γ 4 + γ 6(h̄2/m)3]

32(2E + γ 2h̄2/m)4
. (B3)

Bound states appear at I (E ) = −1. The scattering phase shifts follow from

δ1(E ) = − arctan

(
ImI (E )

1 + ReI (E )

)
. (B4)

The empirical phase shifts of 5He are well reproduced with the parameter values λ = 670 MeV fm3, γ = 1.791 fm−1; see
Sec. IV B. Parameter values for 4H are given in Sec. IV D.

To include Pauli blocking effects, one has to consider in Eqs. (B2) and (B4)

I (E ; T, μn) = λ

2π2

∫ ∞

0
d p

p2

E − h̄2 p2/(2m)

p2

(p2/γ 2 + 1)4
[1 − fn(p; T, μn)] . (B5)

The neutron orbital is only blocked by the neutron background with density nn. I assume an ideal fermion distribution with the
chemical potential μn(T, nn) according to

nn = 1

π2

∫ ∞

0
d p

p2

e(h̄2 p2/2m−μn )/T + 1
. (B6)

The real part of I (E ; T, nn) is given by the principal value integral; the imaginary part is

ImI (E ; T, μn) = λ

2π

m

h̄2

(
2mE

h̄2

)3/2 1

(2Em/(h̄2γ 2) + 1)4

[
1 − 1

eE/T −μn/T + 1

]
. (B7)

Results for the virial coefficients calculated with in-
medium scattering phase shifts are given in Tables VI and VII,
together with the corresponding effective energies which are
used for the interpolations (43) and (46).

APPENDIX C: SHIFTS AND MOTT DENSITIES
FOR SELECTED TEMPERATURES

Within the shell model, the Pauli blocking shift is given
by the contributions of occupied 1s and 1p orbitals according
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TABLE VII. CBU
4H

(T ) and effective energies E eff
tn (T ). A separable potential (B1) was used with λ = 1144.9 MeV fm3, γ = 1.326 fm−1, and

T = 1, 2, 3, 5, 10, 20 MeV.

nn [fm−3] CBU(1) E eff (1) CBU(2) E eff (2) CBU(3) E eff (3) CBU(5) E eff (5) CBU(10) E eff (10) CgBU(20) E eff (20)

0.0001 0.008651 4.7502 0.03475 6.7189 0.05832 8.5249 0.08764 12.183 0.1066 22.387 0.094462 47.191
0.001 0.006673 5.0097 0.029987 7.0139 0.05206 8.8655 0.080605 12.591 0.1014 22.882 0.091884 47.744
0.01 0.00008886 9.3283 0.0041078 10.989 0.01361 12.89 0.033803 16.936 0.06141 27.901 0.06955 53.313
0.02 6.236E-7 14.288 0.00036852 15.812 0.002727 17.713 0.012388 21.955 0.0349 33.534 0.050911 59.554
0.03 6.357E-9 18.874 0.00003619 20.453 0.000564 22.439 0.004588 26.921 0.01993 39.155 0.03721 65.826
Eαn,0(T ) 4.6196 6.5808 8.4052 12.095 22.319 47.114
Eαn,1(T ) 477.15 459.68 464.96 492.79 560.79 622.89

Eq. (18). For symmetric matter, one has

EPauli
A,Z (P = 0; T, μn, μp)

≈ nB
[
4 δEPauli

AZ,s (T ) + (A − 4) δEPauli
AZ,p (T )

]
= nB δEPauli

A,Z (P = 0; T ). (C1)

For the light p-shell nuclei, both contributions are given
in Table VIII at selected temperatures T = 5, 10, 15, and
20 MeV. The Mott density nMott

A,Z (T ) = BA,Z/δEPauli
A,Z (P = 0; T )

describes the baryon number density where at P = 0 the
bound state merges with the continuum and disappears. Values
for nMott

A,Z (T ) are also given in Table VIII. Note that above the
Mott density A-nucleon correlations survive because bound
states with large c.m. momentum P can exist (the Pauli
blocking becomes smaller; see Fig. 1). In addition, A-nucleon
continuum correlations remain.

APPENDIX D: SINGLE-NUCLEON SELF-ENERGY SHIFTS

Single-particle excitations in nuclear systems are described
by the single-nucleon spectral function Aτ (p, ω), which
is determined by the dynamical self-energy �τ (p, ω).
In the quasiparticle approach, the spectral function is
approximated by a δ-like single-particle contribution

and a background. The quasiparticle dispersion relation
Equ

τ (p) = h̄2 p2/(2mτ ) + ESE
τ (p) contains the self-energy

shift ESE
τ (p) = �τ [p, ω = Equ

τ (p)].
The concept of quasiparticle excitation proved to be suc-

cessful at low densities as well as high densities (Fermi
liquid). A criterion is that further correlations which determine
the background of the spectral function are not significant.
The quasiparticle shift can be related to empirical data; I
use here the DD2-RMF approximation [25]. For instance, at
T = 0 the quasiparticle shift in the low-density limit amounts
to (units MeV, fm)

ESE,RMF
τ (T = 0, nB,Yp)

≈ [−1058.4 + 490.15 signτ (1 − 2Yp)

− 1.659(1 − 2Yp)2 − 0.00761 sgnτ (1 − 2Yp)3

− 0.2668(1 − 2Yp)4]nB + O(
n2

B

)
, (D1)

with sgnτ = 1 for τ = n and sgnτ = −1 for τ = p.
The microscopic approach to the self-energy can be per-

formed using the method of Green’s functions and diagram
representations, but needs also an expression for the interac-
tion potential. In lowest order of interaction, one obtains the

TABLE VIII. Temperature-dependent shifts δEPauli
AZ,s (T ) and δEPauli

AZ,p (T ) of 1s, 1p nuclei, A′ = A − 4. The corresponding Mott densities
nMott

A,Z (T ) are also given. Units: MeV, fm.

T = 5 MeV 5 MeV 5 MeV 10 MeV 10 MeV 10 MeV 15 MeV 15 MeV 15 MeV 20 MeV 20 MeV 20 MeV
A Z 4δEPauli

AZ,s A′δEPauli
AZ,p nMott

A,Z 4δEPauli
AZ,s A′δEPauli

AZ,p nMott
A,Z 4δEPauli

AZ,s A′δEPauli
AZ,p nMott

A,Z 4δEPauli
AZ,s A′δEPauli

AZ,p nMott
A,Z

4 2 2389.7 0.01184 1691.5 0.01673 1277.3 0.02216 1008.2 0.02807
6 3 2596.8 226.8 0.01133 1777.7 175.5 0.01638 1313.5 132.5 0.02212 1021.1 103.2 0.02846
7 3 2695.5 422.7 0.01258 1821.0 374.4 0.01788 1334.2 304.0 0.02395 1031.2 247.8 0.03068
7 4 2695.5 378.1 0.01223 1821.0 307.8 0.01766 1334.2 238.7 0.02391 1031.2 188.9 0.03082
9 4 2888.5 796.3 0.01578 1908.6 709.1 0.02222 1379.3 577.5 0.02972 1056.1 471.5 0.03807
10 4 2976.8 1240.6 0.01541 1948.2 1236.8 0.02040 1399.7 1076.1 0.02624 1067.5 917.3 0.03275
11 4 3074.9 1453.6 0.01446 1995.1 1401.2 0.019281 1425.9 1194.5 0.02499 1083.6 1004.5 0.03136
10 5 2976.8 1172.5 0.01561 1948.2 1133.7 0.02101 1399.7 968.3 0.02734 1067.4 815.4 0.03439
11 5 3074.9 1520.9 0.01658 1995.1 1500.5 0.02180 1425.9 1297.1 0.02799 1083.6 1100.9 0.03469
12 6 3161.4 1792.7 0.01860 2034.5 1737.1 0.02443 1446.9 1485.5 0.03143 1095.9 1251.7 0.03927
13 6 3257.5 2198.8 0.01779 2081.2 2152.2 0.02294 1473.7 1851.4 0.02921 1113.0 1566.2 0.03624
14 6 3342.0 2537.8 0.01791 2119.8 2456.5 0.02301 1494.6 2099.0 0.02930 1125.7 1767.7 0.03639
14 7 3342.0 2419.4 0.01817 2119.8 2294.1 0.02371 1494.6 1936.4 0.03051 1125.7 1617.6 0.03815
15 7 3437.2 2738.7 0.01870 2165.6 2562.8 0.02442 1520.9 2146.4 0.03149 1142.5 1783.9 0.03946
16 8 3524.6 2945.7 0.01972 2206.9 2678.4 0.02612 1544.3 2206.2 0.03403 1157.3 1813.7 0.04295
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Hartree-Fock approximation

ESE,HF
τ1

(1) =
∑

2

[V (12, 12) − V (12, 21)] f (2). (D2)

For instance, the Hartree shift of the simple Yukawa potential

V Yukawa(r) = −λ exp[−r/Rπ ]/r (D3)

with Rπ = 1.4 fm reproduces (D1) for symmetric matter
(Yp = 1/2) if the parameter value λ = 42.97 MeV fm is
chosen.

There exist more realistic nucleon-nucleon interactions and
higher order diagram approximations such as the Brueckner-
Hartree-Fock approximation considering ladder sums for the
self-energy; see also Ref. [14]. Correlations in the medium
may be taken into account, leading to the cluster mean-field
approximation [27]. The consideration of higher order dia-
grams allows to introduce the two-particle distribution func-
tion as known from the average potential energy in classical
statistics.

For nuclei, the effective interaction with free nucleons can
be modeled by an optical potential. A recent version for A �
13 has been given in Ref. [52]. It can be approximated by
the folding integral of the Yukawa interaction with the density
distribution of nucleons in the core nucleus. I will not present
here details of such model calculations.

Whereas the interaction outside the nucleus is reasonably
described by a Yukawa-like potential (see also the M3Y
potential [53]), slow free nucleons can only hardly enter the
nucleus because of the Pauli principle. This is a higher order
effect, the core nucleon is part of the cluster which determines
the Pauli-forbidden region in the phase space. In higher orders
of perturbation theory, one has to include diagrams leading to

the pair distribution function g(r), as also seen in the cluster
mean-field approximation [15]. The pair distribution function
becomes small at the surface of the core nucleus, radius
RA = (4πnsat/3)−1/3A1/3 = 1.17A1/3 fm. As a consequence,
the mean field given by the average potential is also reduced
if short distances between the cluster nucleon and the free
environmental nucleon are avoided. This effect should be
taken into account if larger nuclei in matter are considered.
A more sophisticated evaluation, considering higher order
diagrams to describe the antisymmetrization of the outside
free nucleon with respect to all nucleons bound in the cluster,
may be a topic of future investigations if heavy clusters in
matter are considered.

To give an estimate of the reduction of the nucleon pair
distribution inside the nucleus, I cut the Hartree term at the
surface of the nucleus,

ESE,cut = 4π

∫ ∞

RA

dr r2 V Yukawa(r). (D4)

Compared to the value at RA = 0, one has the reduction 0.68
for A = 6, and 0.48 for A = 16. One concludes that the single-
nucleon self-energy shift is reduced by a factor of about 1/2
in the region 6 � A � 16.

This effect will not change the general feature of the
formation and dissolution of clusters when the baryon density
rises to the saturation density. It is not of relevance for the
composition at low densities but modifies the composition
near nsat. Note that further effects are obtained from the
effective mass corrections; see Ref. [26]. With the empirical
value for the effective mass given there, the binding energy of
the cluster is slightly reduced.
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