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The Kπ = 0+
1 , Kπ = 2−, and Kπ = 0−

1 bands of 20Ne are investigated with microscopic structure and reaction
calculations via proton and α inelastic scattering off 20Ne. Structures of 20Ne are calculated with variation
after parity and total angular momentum projections in the antisymmetrized molecular dynamics (AMD). The
Kπ = 0+

1 and Kπ = 0−
1 bands have 16O + α cluster structures, whereas the Kπ = 2− band shows a 12C +2α-like

structure. Microscopic coupled-channel calculations of proton and α scattering off 20Ne are performed by
using the proton-nucleus and α-nucleus potentials, which are derived by folding the Melbourne g-matrix NN
interaction with AMD densities of 20Ne. The calculation reasonably reproduces the observed cross sections of
proton scattering at Ep = 25–35 MeV and α scattering at Eα = 104–386 MeV. Transition properties from the
ground to excited states are discussed by reaction analyses of proton and α inelastic processes. Mixing of the
Kπ = 2− and Kπ = 0−

1 bands is discussed by detailed analysis of the 0+
1 → 3−

1 and 0+
1 → 3−

2 transitions. For
the 3−

1 state, mixing of the Kπ = 0−
1 cluster component in the Kπ = 2− band plays an important role in the

transition properties.
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I. INTRODUCTION

Cluster structure plays an important role in nuclei, in
particular, in light-mass regions. A typical cluster structure in
sd-shell nuclei is the 16O + α cluster structure of 20Ne [1].
The idea of the 16O + α cluster structure has been introduced
to describe energy levels of the parity-doublet Kπ = 0+

1 and
Kπ = 0−

1 bands [2], and extended to describe the higher
nodal 16O + α cluster band assigned as the Kπ = 0+

4 (labeled
as Kπ = 0+

hn) band. The structure and α-decay properties
of 16O + α cluster states have been intensively investigated
with potential models and (semi)microscopic cluster models
[1,3–14].

In excited states of 20Ne, further rich phenomena beyond
the 16O + α cluster structure arise from cluster breaking,
i.e., internal excitation of 16O and α clusters. For example,
in the Kπ = 0+

1 band, the cluster breaking is essential to
describe deviation from ideal rotational spectra at the band
terminal [15–17]. In addition, 12C +2α (or 12C +8Be) cluster
structure has been considered to discuss the Kπ = 0+

2 and
Kπ = 0+

3 bands, in the frameworks of extended cluster models
[6,9–11] and antisymmetrized molecular dynamics (AMD)
[18]. The cluster structures of 20Ne have been also discussed
with mean-field approaches [19–22]. Moreover, the lowest
negative-parity band experimentally assigned as the Kπ = 2−
band is considered to be a particle-hole state or octupole Y32

vibration [11,16,19,20,23].

It means that two types of negative-parity states appear in
low-energy levels of 20Ne: the mean-field type states in the
Kπ = 2− band and the 16O + α cluster states in the Kπ = 0−

1
band. The former band arises from the Kπ = 2− particle-hole
excitation, and the latter is caused by the Kπ = 0− excitation
of the inter-cluster motion between 16O and α clusters. In the
experimental levels, the 3−

1 (5.62 MeV) and 3−
2 (7.16 MeV)

states are assigned to the Kπ = 2− and Kπ = 0−
1 bands,

respectively. Energy levels and in-band E2 transitions in each
band have been reproduced well by theoretical calculations
with the (16O +α) + (12C + 8Be) coupled-channel orthogo-
nal condition model (CC-OCM) [11] and the deformed-basis
AMD (def-AMD) [16]. However, the observed E3 transition
strength, B(E3; 3−

1 → 0+
1 ) [24], for the interband transition

from the Kπ = 2− band to the ground band is much larger
by one order of magnitude than the theoretical value of CC-
OCM, and is inconsistent with the simple interpretation of the
Kπ = 2− band as the particle-hole excitation.

In order to investigate structure and transition properties of
the ground and excited bands, electron and hadron scattering
experiments have been performed for sd-shell nuclei. For
20Ne, hadron inelastic scattering such as (p, p′) and (α, α′)
have been investigated [25–31]. Phenomenological reaction
analyses of the (p, p′) and (d, d ′) cross sections have sug-
gested again the strong 3−

1 → 0+
1 transition consistent with

the B(E3; 3−
1 → 0+

1 ) data determined by γ decays, but the
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B(E3; 3−
1 → 0+

1 ) values evaluated from hadron scattering
show dependence on energies and projectile particles.

In principle, proton and α inelastic scattering can be good
probes for transition properties from the ground to excited
states provided that reliable reaction analyses are available.
Recently, microscopic coupled-channel (MCC) calculations
for proton and α scattering have been remarkably developed.
In the MCC calculations, matter and transition densities of
target nuclei obtained with microscopic structure models are
utilized as inputs of coupled-channel reaction calculations
in microscopic folding models (MFMs), in which nucleon-
nucleus and α-nucleus potentials are constructed by folding
effective NN interactions. In our previous studies [32–35], we
have applied the MCC calculations to proton and α scattering
off various target nuclei in the p- and sd-shell regions with
structure model calculation of AMD. Using the Melbourne g-
matrix NN interaction [36], we have succeeded in reproducing
(p, p′) and (α, α′) cross sections of various excited states such
as cluster and vibration excitations. The Melbourne g-matrix
interaction is an effective NN interaction in nuclear medium
based on a bare NN interaction of the Bonn B potential [37].
Owing to the fundamental derivation, it contains energy and
density dependences in the applicable range without relying
on phenomenological adjustment of interaction parameters.

In the present study, we calculate the structure of 20Ne
with variation after parity and angular-momentum projections
(VAP) in the AMD framework [38–40]. We then apply the
MCC approach to proton and α scattering off 20Ne with the
Melbourne g-matrix NN interaction using AMD densities of
20Ne as structure inputs of the target nucleus. With analyses
of the structure and reaction calculations, structures of the
ground and excited states in the Kπ = 0+

1 , Kπ = 2−, and
Kπ = 0−

1 bands are investigated. In particular, properties of
the 3−

1 and 3−
2 states and possible mixing of the Kπ = 2− and

Kπ = 0−
1 bands are discussed in detail.

The paper is organized as follows. The next section de-
scribes the frameworks of the AMD calculation of 20Ne and
the MCC approach for proton and α scattering off 20Ne.
Structure properties are described in Sec. III, and the results
of proton and α scattering are shown in Sec. IV. A discussion
of the 3−

1 and 3−
2 states is given in Sec. V. Finally the paper is

summarized in Sec. VI.

II. METHOD

A. Structure calculations of 20Ne

We apply the VAP version of AMD to calculate structure of
20Ne. The method is almost the same as those used for studies
of 12C and neutron-rich Be isotopes in Refs. [39,41,42]. It is
sometimes called AMD+VAP, but we simply call it AMD in
the present paper. For comparison, we also apply a 16O + α

cluster model with the generator coordinate method (GCM)
[43,44].

In the framework of AMD, an A-nucleon wave function
is given by a Slater determinant of single-nucleon Gaussian
wave functions as

�AMD(Z) = 1√
A!

A{ϕ1, ϕ2, . . . , ϕA}, (1)

ϕi = φX iχiτi, (2)

φX i (r j ) =
(

2ν

π

)3/4

exp[−ν(r j − X i )
2], (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here A is the antisymmetrizer, and ϕi is the ith single-particle
wave function written as a product of spatial (φX i ), spin
(χi), and isospin (τi fixed to be proton or neutron) wave
functions. The width parameter ν is chosen to be ν = 0.19
fm−2 for all nucleons, the same as that used for AMD+VAP
calculations of 12C and 16O in Refs. [39,45]. Parameters Z ≡
{X 1, . . . , X A, ξ1, . . . , ξA}, which represent Gaussian centroid
positions and nucleon-spin orientations, are optimized by the
energy variation for each Jπ state of 20Ne so as to minimize
the energy expectation value E = 〈�|Ĥ |�〉/〈�|�〉 with re-
spect to the parity and total angular momentum projected
wave functions � = PJπ

MK�AMD(Z). Here PJπ
MK is the parity and

total angular momentum projection operator.
The VAP is performed for Jπ = {0+, 2+, 4+},

{2−, 3−, 4−}, and {1−, 3−} by choosing K = 0, K = 2,
and K = 0, respectively. For each band, first the bandhead
state is obtained by the VAP from a randomly chosen initial
state, and then higher angular momentum states are calculated
by the VAP from the initial wave function projected from
�AMD(Z) obtained for the bandhead state. Totally eight AMD
wave functions �AMD(Z(m) ) (m = 1, . . . , 8) are obtained after
the VAP, and all of them are superposed to obtain final wave
functions of the ground and excited states of 20Ne. Namely,
for the basis wave functions PJπ

MK�AMD(Z(m) ) projected
from the intrinsic wave functions, the diagonalization of
Hamiltonian and norm matrices is done to obtain Jπ states.
The diagonalization is done with respect to K and m, meaning
the K mixing and the configuration (m) mixing. As a result of
the diagonalization, Jπ = {0+, 2+, 4+} states in the Kπ = 0+

hn
band are also obtained.

The effective nuclear interactions used in the present AMD
calculation are the same as those in Refs. [39,45]. The MV1
(case 1) central force [46] with the parameters (b, h, m) =
(0, 0, 0.62) and the spin-orbit term of the G3RS force [47,48]
with the strength parameters uls ≡ uI = −uII = 3000 MeV
are used. The Coulomb force is also included.

The AMD calculation of 20Ne with this set of interactions
obtains reasonable results of energy levels and in-band tran-
sitions of the Kπ = 0+

1 , Kπ = 0−
1 , and Kπ = 0+

hn bands but it
gives a higher energy of the Kπ = 2− band than the Kπ = 0−

1
band, which is the inverse ordering of the Kπ = 2− and Kπ =
0−

1 bands compared with experimental levels. The excitation
energy of the Kπ = 2− band is sensitive to the strength of
spin-orbit interactions, as discussed in Refs. [16,19]. We can
improve the Kπ = 2− energy with a slight modification of the
spin-orbit strength and obtain the correct ordering of the Kπ =
2− and Kπ = 0−

1 bands. In order to discuss possible state
mixing between the Kπ = 2− and Kπ = 0−

1 bands, we also
use a strength of uls = 3400 MeV modified from the original
value uls = 3000 MeV, and perform diagonalization of the
basis AMD wave functions already obtained by VAP with
the default strength (uls = 3000 MeV). We label the AMD
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calculation with the default and modified strengths, uls =
3000 and 3400 MeV, as AMD and AMD-ls34, respectively.

In addition to the AMD calculation, a structure calculation
of the 16O + α cluster model (CM) is also performed with
GCM. In the GCM framework, the Brink-Bloch 16O + α

cluster wave functions [49] with inter-cluster distances of
1, 2 . . . , 10 fm are superposed. In the CM calculation, we
adopt the same parametrization as that used in the 16O + α

cluster model calculation with the resonating group method
in Refs. [7,8]. That is, the width parameter of ν = 0.16 fm−2

of 16O and α clusters and the Volkov No. 2 central nuclear
interaction with m = 0.62 are used.

B. MCC calculation of proton and α scattering off 20Ne

Elastic and inelastic cross sections of proton and α scatter-
ing off 20Ne are calculated with the MCC approach as done
in our previous studies of Refs. [32–35]. For the details of the
reaction calculations, the reader is referred to those references.

The nucleon-nucleus potentials are constructed in a MFM,
where the diagonal and coupling potentials are calculated
by folding the Melbourne g-matrix NN interaction [36] with
matter and transition densities of the target nucleus. The
α-nucleus potentials are obtained in an extended nucleon-
nucleus folding (NAF) model [50] by folding the calculated
nucleon-nucleus potentials with an α density.

The Melbourne g matrix is an effective NN interaction
derived with a bare NN interaction of the Bonn B potential
[37]. It contains energy and density dependences with no
adjustable parameter, and works well in application for sys-
tematic description of proton elastic and inelastic scattering
off various nuclei at energies Ep = 40–300 MeV [34–36,51–
53] and also α elastic and inelastic scattering at energies Eα =
100–400 MeV [32,33,35,50,54]. In the present calculation
of the proton-nucleus potentials, the spin-orbit term of the
potential is not taken into account to avoid complexity as in
Refs. [34,35].

As structure inputs for the target nucleus, the matter [ρ(r)]
and transition [ρ tr (r)] densities of 20Ne obtained by the AMD
and CM calculations are used. Jπ = 0+, 1−, 2+, 3−, and 4+
states in the Kπ = 0+

1 , Kπ = 2−, Kπ = 0−
1 , and Kπ = 0+

hn
bands and λ � 4 transitions between them are adopted in the
MCC+AMD calculation, and those in the Kπ = 0+

1 , Kπ =
0−

1 , and Kπ = 0+
hn bands are used in the MCC+CM calcula-

tion. In order to reduce model ambiguity from the structure
calculation, the theoretical transition densities obtained by
the structure calculations are renormalized in application to
the MCC calculations so as to fit the experimental transition
strengths as ρ tr (r) → f trρ tr (r). Here the factor f tr is deter-
mined with the squared ratio of experimental [Bexp(Eλ)] to
theoretical [Bth(Eλ)] strengths as f tr = √

Bexp(Eλ)/Bth(Eλ)
for known values of Bexp(Eλ), and f tr = 1 (no renormaliza-
tion) is used for unknown cases.

III. STRUCTURE OF 20Ne

The calculated energy levels of 20Ne obtained by AMD,
AMD-ls34, and CM are shown in Figs. 1(a), 1(b), and 1(c),
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FIG. 1. The calculated energy levels of 20Ne obtained by
(a) AMD, (b) AMD-ls34, and (c) CM, and (d) the experimental
levels assigned to the Kπ = 0+

1 , Kπ = 2−, Kπ = 0−
1 , and Kπ = 0+

hn

bands.
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TABLE I. Excitation energies (Ex) and root-mean-square matter radii (R) of 20Ne. The calculated values obtained with the AMD (default),
AMD-ls34 (modified spin-orbit strength), and CM calculations, and also the experimental values, are listed. The experimental value of the
point-proton rms radius of the ground state is R = 2.888(2) fm from the charge radius data [55].

Expt. AMD AMD-ls34 CM

Jπ Ex (MeV) Ex (MeV) R (fm) Ex (MeV) R (fm) Ex (MeV) R (fm)

Kπ = 0+
1

0+
1 0 0.0 3.01 0.0 2.98 0.0 2.95

2+
1 1.634 1.1 3.01 1.2 2.98 1.0 2.94

4+
1 4.248 3.5 2.99 3.6 2.97 3.3 2.92

Kπ = 2−

2−
1 4.967 8.2 2.94 6.5 2.91

3−
1 5.621 9.0 2.96 7.5 2.93

4−
1 7.004 10.4 2.97 9.2 2.94

5−
1 8.453 11.6 2.97 10.5 2.94

Kπ = 0−
1

1−
1 5.788 5.8 3.20 6.6 3.18 4.7 3.20

3−
2 7.156 7.5 3.19 8.4 3.17 6.4 3.22

5−
2 10.262 10.8 3.19 11.6 3.17 9.4 3.33

respectively, and the experimental levels assigned to the Kπ =
0+

1 , Kπ = 2−, Kπ = 0−
1 , and Kπ = 0+

hn bands are shown in
Fig. 1(d). The AMD calculation reasonably describes the
experimental energy levels of the Kπ = 0+

1 , Kπ = 0−
1 , and

Kπ = 0+
hn bands [Fig. 1(a)]. However, it overestimates the

Kπ = 2− levels and gives inverse ordering of the Kπ = 2−
and Kπ = 0−

1 bands compared with the experimental levels.
In the AMD-ls34 result with a modified spin-orbit strength
[Fig. 1(b)], the excitation energy of the Kπ = 2− band comes
down lower than the Kπ = 0−

1 band, and correct ordering of
the two negative-parity bands is obtained. As a result, the
state mixing between the Kπ = 2− and Kπ = 0−

1 bands occurs
in the 3− states in the AMD-ls34 case. This state mixing
is not obtained in the default AMD calculation. Even in
the case of AMD-ls34, the calculation slightly overestimates
the bandhead energy and level spacing compared with the
experimental data. This overestimation may indicate that the
triaxial deformation of the Kπ = 2− band is not sufficiently
described by the present simple treatment with the AMD wave
functions. The result might be somewhat improved by ex-
tending the model space, for example, by including deformed
Gaussian bases and superposing many configurations as done
in def-AMD. In the result of CM, the energy levels of the
Kπ = 0+

1 , Kπ = 0−
1 , and Kπ = 0+

hn bands are reproduced, but
the Kπ = 2− band is missing because the 16O + α model
space contains only axial symmetric configurations with pure
K = 0 components.

In Table I, the calculated values of excitation energies
(Ex) and root-mean-square radii (R) of 20Ne obtained with
AMD and CM are listed together with the experimental
excitation energies. Experimentally, the Jπ = {0+

1 , 2+
1 , 4+

1 },
{2−

1 , 3−
1 , 4−

1 }, and {1−
1 , 3−

2 } states with strong in-band E2 tran-
sitions are assigned to the Kπ = 0+

1 , Kπ = 2−, and Kπ = 0−
1

bands, respectively. Following this experimental assignment,
we use the label 3−

1 (3−
2 ) for the Kπ = 2− (Kπ = 0−

1 ) band
member of the theoretical results. The negative-parity states in

the Kπ = 0−
1 band have large radii compared to the Kπ = 0+

1
and Kπ = 2− bands because of a spatially developed 16O + α

structure.
Figure 2 shows intrinsic density distribution of the basis

AMD wave functions for the bandhead states, 0+
1 (Kπ = 0+

1 ),
2−

1 (Kπ = 2−), and 1−
1 (Kπ = 0−

1 ). In the three states, one or
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FIG. 2. Density distribution of intrinsic wave functions for the
bandhead states (a) 0+

1 , (b) 2−
1 , and (c) 1−

1 of the Kπ = 0+
1 , Kπ =

2−, and Kπ = 0−
1 bands of 20Ne obtained with AMD. The densities

projected onto X -Z , Y -Z , and Y -X planes are shown in left, middle,
and right panels, respectively. Intrinsic axes are chosen as 〈ZZ〉 �
〈YY 〉 � 〈XX 〉 and 〈XY 〉 = 〈Y Z〉 = 〈ZX 〉 = 0.
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TABLE II. E2 transition strengths for in-band transitions in the Kπ = 0+
1 , Kπ = 2−, and Kπ = 0−

1 bands, Eλ and isoscalar dipole (IS1)
transition strengths to the ground state, and electric quadrupole moment (Q) of the 2+

1 state. The theoretical values obtained by the AMD
(default), AMD-ls34 (modified spin-orbit strength), and CM calculations are listed together with the experimental values from Refs. [24,56].
Theoretical values of the (16O +α) + (12C +8Be) coupled-channel OCM (CC-OCM) [11] and the deformed-basis AMD (def-AMD) [16] are
also shown. In addition, the B(Eλ) values reduced from inelastic scattering data of (e, e′) [57], (p, p′) at 800 MeV [29], 24.5 MeV [26,28],
and (d, d ′) at 52 MeV [25] are also shown. The units are e2fm2λ for B(Eλ), e2fm6 for B(IS1), and efm2 for Q.

Expt. [24,56] CM AMD AMD-ls34 CC-OCM [11] def-AMD [16]

B(E2; 2+
1 → 0+

1 ) 65.4(3.2) 53 69 63 57.0 70.3
B(E2; 4+

1 → 2+
1 ) 71(6) 67 92 84 70.9 83.7

B(E2; 3−
1 → 2−

1 ) 113(29) 95 89 107.5 102.8
B(E2; 4−

1 → 3−
1 ) 77(16) 79 68 77.0 77.8

B(E2; 4−
1 → 2−

1 ) 34(6) 32 31 34.0 38.5

B(E2; 3−
2 → 1−

1 ) 161(26) 178 163 150 151.2

B(E3; 3−
1 → 0+

1 ) 260(90) 53 155 29.9
B(E3; 3−

2 → 0+
1 ) 543 548 335

B(IS1; 1−
1 → 0+

1 )/4 222 164 129
B(E4; 4+

1 → 0+
1 ) 5060 9270 7440

Q(2+
1 ) −23(3) −14.7 −16.9 −16.0 −15.2

(e, e′) [57] (p, p′) [29] (p, p′) [26,28] (d, d ′) [25]
800 MeV 24.5 MeV 52 MeV

B(E2; 2+
1 → 0+

1 ) 71 52 66
B(E4; 4+

1 → 0+
1 ) 8100 5530 15200

B(E3; 3−
1 → 0+

1 ) 300 450 420
B(E3; 3−

2 → 0+
1 ) 146 230 450

two α clusters are formed. The 0+
1 (Kπ = 0+

1 ) state shows an
16O + α like structure, whereas the 1−

1 (Kπ = 0−
1 ) state has the

most prominent 16O + α cluster structure. Qualitatively, these
two bands can be regarded as the parity doublets constructed
from the 16O + α cluster structure as in a simple 16O + α

cluster model, but strictly speaking it is not correct because the
0+

1 (Kπ = 0+
1 ) state contains a deformed 16O cluster showing a

significant component of internal excitation of the cluster. The
Kπ = 2− band shows a 12C +2α-like structure with an axial
asymmetric shape, where two α clusters are formed around
a 12C cluster. As a result of formation of the 12C cluster, the
Kπ = 2− band gains the spin-orbit interaction. Compared to
the Kπ = 0−

1 band, the Kπ = 2− band has a compact structure
with a mean-field aspect of particle-hole excitation on the
prolate state. It means that the Kπ = 2− band has the duality
of cluster and mean-field features.

The results of electric (Eλ) and isoscalar dipole (IS1)
transition strengths and electric quadrupole moment (Q) are
shown in Table II. The theoretical values obtained by AMD,
AMD-ls34, and CM are shown together with the experimental
data from Refs. [24,56]. Moreover, theoretical values of the
CC-OCM [11] and def-AMD [16] calculations are also shown
for comparison. In addition to the experimental B(Eλ) mea-
sured by γ decays, the values reduced from (e, e′) scattering
data [57] and those evaluated from inelastic scattering of
(p, p′) [26,28,29] and (d, d ′) [25] are also shown in Table II.
Note that uncertainty remains in the evaluation with hadron
scattering because it relies on the phenomenological reaction

analysis and shows significant dependences on energy and
projectile.

The observed in-band E2 transitions in the Kπ = 0+
1 ,

Kπ = 2−, and Kπ = 0−
1 bands are reproduced well by the

ADM calculation. The agreement is almost the same quality
as other theoretical calculations of CC-OCM and def-AMD.
The experimental Q moment of the 2+

1 state is somewhat
underestimated by the AMD and CM calculations.

For the E4 transition in the Kπ = 0+
1 band, the strength

B(E4; 4+
1 → 0+

1 ) obtained with the AMD calculation is con-
sistent with the (e, e′) scattering, while the CM calculation
gives a weaker E4 transition. The values evaluated from
(p, p′) scattering strongly depend on energies and have large
uncertainty. For E3 transitions from the Kπ = 0−

1 band, AMD
and CM give the remarkably strong 3−

2 → 0+
1 transition be-

cause of the developed 16O + α cluster structure. For the
transition from the Kπ = 2− band, the AMD calculation
obtains the weak 3−

1 → 0+
1 transition as one order of mag-

nitude smaller strength than the 3−
2 → 0+

1 strength. These
AMD results of B(E3; 3−

1 → 0+
1 ) and B(E3; 3−

2 → 0+
1 ) are

consistent with the CC-OCM calculation, but not consistent
with the observation. The observed B(E3; 3−

1 → 0+
1 ) is much

larger than the AMD and CC-OCM results. Moreover, the
evaluation from (p, p′) and (d, d ′) scattering suggests the
same order transitions to the 3−

1 (Kπ = 2−) and 3−
2 (Kπ = 0−

1 )
states though uncertainty still remains.

Transition properties from the 0+
1 state to the 3−

1 (Kπ = 2−)
and 3−

2 (Kπ = 0−
1 ) states are sensitive to the state mixing
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FIG. 3. Matter densities of 20Ne calculated with AMD.

between the Kπ = 2− and Kπ = 0−
1 bands. Let us discuss

effects of the state mixing on the E3 transition strengths by
comparing the AMD-ls34 and AMD results for the cases
with and without state mixing, respectively. As shown in
Table II, the B(E3; 3−

1 → 0+
1 ) value of AMD-ls34 is three

times as large as that of AMD because of mixing of the
Kπ = 0−

1 cluster component in the 3−
1 state. On the other

hand, the B(E3; 3−
2 → 0+

1 ) value decreases in the AMD-ls34
result compared to AMD because of destructive mixing of
the Kπ = 2− component in the 3−

2 state. In order to describe
the experimental B(E3; 3−

1 → 0+
1 ), the state mixing case of

AMD-ls34 seems more likely than the almost no mixing
case of AMD. Such the significant mixing may originate
in coupling of the 12C +2α and 16O + α cluster structures
contained in the Kπ = 2− and Kπ = 0−

1 bands, respectively,
as follows. The 16O + α cluster structure can be smoothly
transformed into 12C +2α with internal excitation of the 16O
cluster. Owing to this cluster degree of freedoms between
the 16O + α and 12C +2α channels, the 3− excitations in two
channels can couple with each other.

The calculated matter densities are shown in Fig. 3. Com-
pared to the Kπ = 0+

1 and Kπ = 2− bands, the 1−
1 and 3−

2
states in the Kπ = 0− band show relatively broader density
distribution in the outer region because of the developed
16O + α cluster structure, but the state dependence of matter
densities is not so strong. The calculated form factors and tran-
sition densities are shown in Figs. 4 and 5, respectively. For
the 2+

1 → 0+
1 and 3−

1 → 0+
1 transitions, theoretical values are

renormalized with f tr determined from the experimental and
theoretical B(Eλ) values listed in Table II. The experimental
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FIG. 4. Elastic and inelastic form factors of 20Ne calculated with
AMD (red solid lines) and CM (green dashed lines) compared with
the experimental data (circles). The 3−

1 and 3−
2 form factors calcu-

lated with AMD-ls34 (blue dotted lines) are also shown in panels
(e) and (f), respectively. The theoretical 2+

1 form factors obtained by
AMD (CM) are renormalized by f tr = 0.97 (1.11). The theoretical
3−

1 form factors obtained by AMD and AMD-ls34 are multiplied by
f tr = 2.22 and 1.30, respectively. The experimental data are those
measured by electron scattering [57].

form factors observed by (e, e′) scattering are also shown in
Figs. 4(a), 4(b), and 4(c). The AMD and CM calculations
reproduce the elastic form factors, and also describe the
inelastic form factors to the 2+

1 state. The calculated 4+
1 form

factors obtained with AMD are in good agreement with the
(e, e′) data, but those with CM underestimate the data [see
Fig. 4(c)].

In the AMD result for E3 transitions, clear differences
between the 3−

1 and 3−
2 states can be seen in the form factors

and transition densities, which are shown by red lines of
Figs. 4(e), 4(f), and 5(d). The 3−

1 form factors have the higher
peak at a larger q, while the 3−

2 form factors show the lower
peak at a smaller q. Similarly, one can see the difference
also in the transition densities: narrower distributions of the
3−

1 → 0+
1 transition densities and broader distributions with

the outer tail of the 3−
2 → 0+

1 transition densities because of
the developed 16O + α cluster structure. One can say again
that the E3 form factors and transition densities are sensitive

064308-6



PROPERTIES OF Kπ = 0+
1 , Kπ = 2−, … PHYSICAL REVIEW C 101, 064308 (2020)

-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

 0  1  2  3  4  5  6

(a) 0+
1→2+

1

ρtr (r
) (

fm
-3

)

r (fm)

AMD×0.97
CM×1.11

 0

 0.02

 0.04

 0.06

 0  1  2  3  4  5  6

(b) 0+
1→4+

1

ρtr (r
) (

fm
-3

)

r (fm)

AMD
CM

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0  1  2  3  4  5  6

(c) 0+
1→1−1

ρtr (r
) (

fm
-3

)

r (fm)

AMD
CM

 0

 0.05

 0.1

 0.15

 0  1  2  3  4  5  6

(d) 0+
1→3−

ρtr (r
) (

fm
-3

)

r (fm)

AMD:3−1×2.22
AMD:3−2

CM:3−2

FIG. 5. Transition densities of 20Ne calculated with AMD and
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1 state
are renormalized by f tr = 0.97 (1.11), and those for the 3−

1 state are
multiplied by f tr = 2.22.

to the state mixing between the Kπ = 2− and Kπ = 0−
1 bands.

Detailed discussions of its effect are given in Sec. V.

IV. PROTON AND α SCATTERING

The MCC calculations with AMD and CM are performed
for proton scattering at incident energies of Ep = 25, 30,
and 35 MeV and α scattering at Eα = 104, 146, and 386
MeV. To see the coupled channel (CC) effect, the one-step
calculation of the distorted wave born approximation
(DWBA) is also performed using the AMD densities. As
described previously, the theoretical transition densities are
renormalized by multiplying the factors ( f tr), which are de-
termined as f tr = √

Bexp(Eλ)/Bth(Eλ) to fit the experimen-
tal data of B(E2; 2+

1 → 0+
1 ), B(E2; 4+

1 → 2+
1 ), B(E2; 3−

2 →
1−

1 ), and B(E3; 3−
1 → 0+

1 ). For the E2; 2+
1 → 2+

1 transition,
f tr is chosen to adjust the theoretical Q(2+

1 ) to the experimen-
tal value. For other transitions, f tr = 1 (no renormalization) is
used.

The calculated cross sections of proton elastic and inelastic
scattering are shown in Fig. 6 compared with the experimen-
tal data. The MCC+AMD (red solid lines) and MCC+CM
(green dashed lines) reproduce the 0+

1 and 2+
1 cross sections

data well at the first and second peaks. For the 4+
1 cross

sections, the observe data do not show clear enough peak
structures to discuss diffraction patterns. The MCC+AMD
reasonably reproduces the global amplitudes of the 4+

1 data,
while the MCC+CM gives smaller 4+

1 cross sections than
MCC+AMD and the data because of the weaker E4 transition
than the AMD result. The 1−

1 cross sections are reasonably
described with the MCC+AMD and MCC+CM calculations
except for forward angles. As for the 3−

1 cross sections, the
MCC+AMD reproduces the first peak amplitude of the data,
but somewhat overestimates the second peak amplitude. In
comparison of the DWBA+AMD (blue dotted lines) and
MCC+AMD (red solid lines) calculations, non-negligible CC
effects are seen in this energy range Ep = 25–35 MeV except
for the 3−

1 state.
The α elastic and inelastic cross sections are shown in

Fig. 7. The calculated cross sections are compared with the
experimental data. For the elastic scattering [Fig. 7(a)], the
Eα = 104 MeV data from Ref. [30] are reproduced well by
MCC+AMD (red solid lines) and MCC+CM (green dashed
lines) except for backward angles, whereas the Eα = 386
MeV data from Ref. [31] are about two times smaller than
the present MCC calculations. We do not know the reason for
this apparent inconsistency, but uncertainty from the present
reaction model is unlikely because its applicability to α elastic
scattering at Eα = 100–400 MeV has been examined already
for various target nuclei [32–35,50,54]. Therefore, it is likely
that the Eα = 386 MeV data in Ref. [31] contain uncertainty
of the normalization. Assuming the normalization to be an
overall factor of 2, we multiply the original (α, α) and (α, α′)
data of Ref. [31] by this factor, and obtain excellent agreement
of the calculations with the (α, α) data as shown in Fig. 7(a).
Also the 2+

1 cross sections at Eα = 104–386 MeV are well
reproduced by the MCC+AMD and MCC+CM calculations.
For the 4+

1 cross sections, the MCC+AMD result seems better
than the MCC+CM result. For the 1−

1 and 3−
1 cross sections,
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FIG. 6. Cross sections of proton elastic and inelastic scattering off 20Ne at incident energies of Ep = 25, 30, and 35 MeV calculated with
MCC+AMD (red solid lines), DWBA+AMD (blue dotted lines), and MCC+CM (green dashed lines), which are labeled as AMD, DWBA,
and CM, respectively. Experiment data are cross sections at Ep = 24.5 MeV [26,28], 30 MeV [28], and 35 MeV [58].

there are no data for individual states at Eα = 104 MeV,
but the cross sections at Ex = 5.7 MeV were reported by
the Eα = 104 MeV experiment in Ref. [30]. The data may
contain the 1−

1 (5.79 MeV) and 3−
1 (5.62 MeV) contributions,

but they cannot be described by a simple sum of the calculated
1−

1 and 3−
1 cross sections of the present calculations. The

Eα = 386 MeV data of the 3−
1 cross sections are somewhat

overestimated by the MCC+AMD calculation, in particular,
at the second peak. In comparison of the MCC+AMD (red
solid lines) and DWBA+AMD (blue dotted lines) calculations
for α scattering, one can see non-negligible CC effect, in
particular, at Eα = 104 MeV, but the CC effect becomes
weaker at Eα = 386 MeV.

V. DISCUSSION

As discussed in previous sections, the structure calculation
of AMD-ls34 with the modified spin-orbit strength suggests

possible state mixing between the Kπ = 2− and Kπ = 0−
1

bands in the 3−
1 and 3−

2 states of 20Ne. Let us remind that
the default AMD calculation gives almost no state mixing
and obtains the theoretical value of B(E3; 3−

1 → 0+
1 ) = 53

e2fm4, much smaller than the experimental value of 260 ± 90
e2fm4. In the AMD-ls34 result, the Kπ = 2− band comes
down to lower energy than the Kπ = 0−

1 band, consistent
with the experimental energy spectra, and the state mixing
occurs between the 3−

1 (Kπ = 2−) and 3−
2 (Kπ = 0−

1 ) states. As
a consequence of mixing of the Kπ = 0−

1 cluster component
in the 3−

1 (Kπ = 2−) state, the theoretical B(E3; 3−
1 → 0+

1 )
value is enhanced to be B(E3; 3−

1 → 0+
1 ) = 155 e2fm4, in

better agreement with the experimental value.
This state mixing between the 3−

1 and 3−
2 states affects the

E3 form factors and transition densities. The AMD (red solid
lines) and AMD-ls34 (blue dotted lines) results for the form
factors are compared in Figs. 4(e) and 4(f), and those for the
transition densities are compared in Fig. 8. In these figures, the
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FIG. 7. Cross sections of α elastic and inelastic scattering off 20Ne at incident energies of Eα = 104, 146, and 386 MeV calculated with
MCC+AMD (red solid lines), DWBA+AMD (blue dotted lines), and MCC+CM (green dashed lines), which are labeled as AMD, DWBA,
and CM, respectively. Experiment data are cross sections at Eα = 104 MeV [30], and 146 MeV [59], and 386 MeV [31]. The Eα = 386 MeV
data from Ref. [31] are multiplied by a factor of 2. The (α, α′) data at Eα = 104 MeV in the panels (d) and (e) are the cross sections observed
for Ex = 5.7 MeV and may contain 1−

1 (5.79 MeV) and 3−
1 (5.62 MeV) contributions.

3−
1 form factors and transition densities are renormalized with

f tr = 2.22 for AMD and f tr = 1.30 for AMD-ls34 so as to
fit the data of B(E3; 3−

1 → 0+
1 ). Namely, the renormalized 3−

1
transition densities of the two calculations (AMD and AMD-
ls34) in Fig. 8 give the same value of B(E3; 3−

1 → 0+
1 ) = 260

e2fm4. Nevertheless, behaviors of the transition densities are
different between the AMD and AMD-ls34 results. For the 3−

1
transition densities [Figs. 8(a) and 8(b)], AMD-ls34 gives a
lower peak amplitude in the inner region (r = 2–3 fm) and
a longer tail in the outer region (r ≈ 5 fm) because of the
mixing of the Kπ = 0−

1 cluster component. As a result, in the
3−

1 form factors of AMD-ls34, the peak amplitude gets smaller
and the peak position shifts to a smaller q [see the blue dotted
line of Fig. 4(e)]. Also the 3−

2 transition densities are strongly
affected by the state mixing as shown in Fig. 8(c). Because

of the destructive mixing of the Kπ = 2− component, inner
amplitudes in the r < 3 fm region are suppressed and the outer
peak around r = 3–4 fm gets smaller and shifts outwards in
AMD-ls34 (blue dotted lines) compared to AMD (red solid
lines).

The mixing of the Kπ = 2− and Kπ = 0−
1 bands also

affects the 3−
1 and 3−

2 cross sections of proton and α inelastic
scattering via the transition densities. In Fig. 9, the 3−

1 and
3−

2 cross sections calculated with AMD and AMD-ls34 and
from experimental data are compared. For the (p, p′) cross
sections at Ep = 25 and 35 MeV, the AMD-ls34 calculation
obtains smaller cross sections of the 3−

1 and 3−
2 states than

the original AMD result. In particular, the suppression at the
second peak of the 3−

1 cross sections is remarkable and shows
a better agreement with the 3−

1 data at Ep = 25 MeV. The 3−
2
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FIG. 8. Transition densities from the ground to 3− states ob-
tained with AMD (default) and AMD-ls34 (modified spin-orbit
strength): (a) transition densities to the 3−

1 state, (b) those but r2

weighted, (b) transition densities to the 3−
2 state. Transition densities

to the 3−
1 state in (a) and (b) are are renormalized by ftr = 2.22 for

AMD and 1.30 for AMD-ls34.

cross sections are suppressed in the whole region of angles.
As a result, the agreement with the 3−

2 data is improved at the
first peak but gets somewhat worse at the second peak.

For α scattering to the 3−
1 state, peak positions shift to

forward angles in the AMD-ls34 result probing the longer tail
of the transition densities, which is caused by mixing of the
Kπ = 0−

1 cluster component. Compared to the experimental
3−

1 cross sections at Eα = 386 MeV, a good agreement is
obtained by AMD-ls34. This result may support significant
mixing of the Kπ = 0−

1 cluster component in the 3−
1 (Kπ =

2−) state. For the (α, α′) cross sections at Eα = 104 MeV,
the data observed for 5.7 MeV are not high enough quality to

discuss detailed features of the 3−
1 state because they contain

large uncertainty from the 1−
1 contribution. As for the 3−

2 cross
sections, the AMD-ls34 result predicts smaller cross sections
than the AMD result because of the destructive mixing of the
Kπ = 2− component in the 3−

2 (Kπ = 0−
1 ) state.

In the present analysis with AMD and AMD-ls34, we can
say that possible mixing of the Kπ = 0−

1 cluster component
in the 3−

1 state can be probed by proton and α cross sections
through the transition densities. The better agreements of the
AMD-ls34 result with the (p, p′) data at Ep = 25 MeV and
(α, α′) data at Eα = 386 MeV support the significant outer tail
of the 3−

1 transition densities and favor the state mixing case.
For the 3−

2 state, experimental data are not enough to draw an
answer to the state mixing in the 3−

2 state.

VI. SUMMARY

The structure and transition properties of the Kπ = 0+
1 ,

Kπ = 2−, and Kπ = 0−
1 bands of 20Ne were investigated with

the microscopic structure and reaction calculations via proton
and α scattering off 20Ne.

In the structure calculation of 20Ne with AMD, 16O + α

cluster structures were obtained in the parity-doublet Kπ =
0+

1 and Kπ = 0−
1 bands, and the 12C +2α-like structure was

obtained in the Kπ = 2− band. The AMD calculation repro-
duced the experimental B(E2) of in-band transitions. It also
described the experimental form factors of the 0+

1 , 2+
1 , and 4+

1
states.

The MCC calculations with the Melbourne g-matrix NN
interaction were performed for proton and α scattering off
20Ne using the AMD densities of 20Ne. The MCC calculations
reasonably reproduced the observed cross sections of proton
scattering at Ep = 25–35 MeV and α scattering at Eα = 104–
386 MeV. Transition properties from the ground to excited
states were discussed via the reaction analyses of proton and
α inelastic processes.

The mixing of the Kπ = 2− and Kπ = 0−
1 bands in the

3−
1 and 3−

2 states was investigated in the analyses of AMD
(default) with almost no mixing and AMD-ls34 (a modified
spin-orbit strength) with the state mixing. The former calcu-
lation (AMD) significantly underestimates the experimental
B(E3; 3−

1 → 0+
1 ), while the latter (AMD-ls34) calculation

obtains a better result for B(E3; 3−
1 → 0+

1 ) because the E3
transition strength is enhanced by mixing of the Kπ = 0−

1
cluster component. The state mixing of the 3−

1 (Kπ = 2−) and
3−

2 (Kπ = 0−
1 ) states also affects the E3 transition densities

from the ground state, which can be probed by (p, p′) and
(α, α′) cross sections, in principle. The detailed analysis of
proton and α cross sections for the 3−

1 and 3−
2 states was

performed by the MCC calculations with AMD and AMD-
ls34. The observed (p, p′) data at Ep = 25 MeV and (α, α′)
data at Eα = 386 MeV seem to support the mixing of the
Kπ = 0−

1 cluster component in the 3−
1 (Kπ = 2−) state.

It should be commented that applicability of the present
MCC approach with the Melbourne g-matrix NN interaction
for low-energy proton scattering in the Ep � 30 MeV range
has not been well examined yet. In order to clarify the prop-
erties of the 3−

1 and 3−
2 states, further detailed data of proton

and α scattering at various energies are needed.
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FIG. 9. Cross sections of proton and α inelastic scattering calculated with MCC using the AMD (default) and AMD-ls34 (modified spin-
orbit strength) densities, and the experimental cross sections. The (p, p′) cross sections at Ep = 25 and 35 MeV to the (a) 3−

1 and (b) 3−
2 states

and the (α, α′) cross sections at Eα = 146 and 386 MeV to the (c) 3−
1 and (d) 3−

2 states. The (p, p′) data at Ep = 24.5 MeV [28] and (α, α′)
data at Eα = 104 MeV [30] and 386 MeV [31] are also shown. The (α, α′) data at 386 MeV of Ref. [31] are multiplied by a factor of 2. The
(α, α′) data at Eα = 104 MeV in the panel (c) are not cross sections for an individual state but may contain 1−

1 and 3−
1 contributions around

5.7 MeV.
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